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STRUCTURAL DAMAGE DETECTION WITH TRANSFER FUNCTION 

PARAMETER CHANGES 

SUMMARY 

Defects may occur in engineering structures over the years due to use or environmental 

effects. In addition, as a result of natural disasters such as earthquakes, buildings may 

be forced out of their design philosophies, and as a result, defects appear in the weakest 

places. In order to protect the environment and human health, these defects should be 

detected as soon as possible, and necessary measures should be taken to increase 

building and environmental safety. With the developing technology, it has been 

possible to monitor the buildings instantly and to notice possible changes in a short 

time. The new work area, in which changes in behavior are constantly monitored for 

the building to serve safely, is called Structural Health Monitoring. 

Structural Health Monitoring studies are aimed to examine the behavior of buildings. 

Since any change occurring in the structure will affect the building's behavior, the 

building's behaviors can be obtained with the data collected from certain parts of the 

building. Thus, when any damage occurs in the structure, it is inevitable that the 

damage will be detected with the changes in the data obtained. 

Today, the behavior of engineering structures is widely studied on vibration-based. 

Both recording, sorting, and analyzing the obtained data is an engineering process in 

itself. It is necessary to work with an optimum number of data to carry out Structural 

Health Monitoring work quickly. Trying to detect damage using too much data will 

not be economical and will require unnecessary labor force usage. Therefore, the most 

important need for Structural Health Monitoring study is to establish a statistical model 

representing the relationship between damage and building behavior in the most 

accurate way. As a result, when starting the building health study, the most appropriate 

sensor placements should be planned for the structure to be monitored, and it should 

be ensured that the sensors are used effectively. 

In this thesis, determination of structural damage by changes in the parameters of the 

transfer functions of the structure, which is one of the Vibration-Based Damage 

Detection methods. In order to determine both the location and the intensity of 

structural damage in building-type structures, two analytical studies were conducted. 

The first analytical study was carried out on the finite element model of a five-story 

building-type structure with laboratory dimensions. In this model, floors were 

represented by plastic sheets and columns with reinforcements. Both the unit step 

function and the earthquake record were affected from one direction to the model, and 

the story displacements of the model were obtained. The transfer functions 

representing the first three modes in the direction of motion of each floor were obtained 

using these excitations and displacements. 

As a result of the first study, a relationship could be created between transfer function 

changes and the story damage. It was found that story damages can be detected using 

transfer function changes in both single and multi-story damage cases. In addition, it 
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was determined that the numerator change of the transfer function obtained from the 

damaged floor and the numerator change of the transfer function obtained from a lower 

floor are in opposite directions. This relationship made it possible to identify the 

damaged floor for all damage levels. 

Another issue examined in the first study is determining the level of damage on the 

story with transfer function parameter changes. Two different relationships were 

accepted between the changes in the numerator values of the transfer functions and the 

level of story damage. The first relation acceptance is that the numerator change of the 

transfer function is linear when the damage level is up to 60%. Second, the numerator 

change of the transfer function is linear when the damage level is up to 80%. 

In the case of single story damage, it was revealed that the parameter changes 

belonging to the first mode of the transfer function obtained from the first floor are the 

most effective parameters in determining the damage of all stories. 

In the case of multiple story damage, it was observed that the parameter changes of 

the first mode of the transfer function obtained from the first floor were insufficient in 

detecting the damaged stories. It was necessary to examine the changes of transfer 

functions obtained from other floors according to the location of the damaged story. 

In the second study, the analytical model of a ten-story building with a reinforced 

concrete core in the center and a reinforced concrete frame system around it was used. 

This study aimed to determine the damages that may occur in high rise buildings 

during the earthquake by transfer function changes. 

It turned out that the transfer functions obtained from the lower floors are more 

sensitive in detecting damage, as in the first study. It was also seen that the damage 

level and the percentage change of the numerators of the transfer functions are directly 

proportional. On the other hand, parameter changes of the transfer functions obtained 

from the middle floors were found to be low-level and even insensitive to all damage 

situations. 

In case there is no difference in the signs of the changes in the transfer function 

parameter changes, the rates of change in the transfer functions of successive floors 

are examined. It was found that the ratio between the change in the transfer function 

numerator of the damaged floor and the change in the transfer function numerator of 

the lower floor can be used to determine the damaged floor. 

As a result, it was found that damage assessment can be made for both single story 

damage and multi story damage scenarios in the building-type structures with transfer 

function parameter changes. The method proposed here can be shown as an important 

development in Structural Health Monitoring studies, as it can detect both the severity 

of the damage and the damaged story using a minimum number of sensors. 
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TRANSFER FONKSİYONU PARAMETRE DEĞİŞİMLERİ İLE YAPISAL 

HASAR TESPİTİ 

ÖZET 

Mühendislik yapılarında yıllar içerisinde kullanımdan veya çevresel etkilerden 

kaynaklı birtakım kusurlar ortaya çıkabilir. Ek olarak deprem gibi doğal afetler 

sonucunda yapıların tasarım felsefeleri dışında zorlanabilir ve bunun sonucunda en 

zayıf yerlerinde kusurlar kendini gösterir. Çevre ve insan sağlığını korumak amacıyla 

ortaya çıkan bu kusurların en kısa süre içerisinde tespit edilmesi ve yapı ve çevre 

güvenliğini arttırmak amacıyla gerekli önlemlerin alınması gereklidir. Gelişen 

teknoloji ile birlikte yapıların durumlarının anlık olarak takip edilmesi ve olası 

değişimlerin kısa bir süre içerisinde fark edilebilmesi mümkün olmuştur. Yapının 

güvenli bir şekilde hizmet etmesi için davranışlarındaki değişikliklerin sürekli olarak 

takip edildiği yeni çalışma alanına Yapısal Sağlık İzleme adı verilir. 

Yapısal Sağlık İzleme çalışmaları yaygın olarak yüksek binalar, köprüler, bazı 

karayolları, havaalanları, tarihi eserler gibi önemli mühendislik yapılarını korumak, 

hasarları düşük seviyede iken tespit ederek yapı güvenliğini sürdürmek için önlem 

almak amacıyla gerçekleşmektedir. Öte yandan deprem, hortum, tusunami gibi doğal 

afetlerden etkilenmiş yapılarda öncelikli olarak meydana gelen hasarın varlığının, 

sonrasında ise hasarın şiddetinin ve konumunun tespitinin yapılması Yapısal Sağlık 

İzleme çalışmalarının en önemli amaçlarından biridir. 

Yapısal Sağlık İzleme çalışmaları, temelde yapıların davranışlarını incelemeyi 

hedeflemiştir. Yapıda meydana gelen her türlü değişim yapı davranışına etki 

edeceğinden, yapının belirli bölgelerinden toplanan veriler ile yapıya ait davranışlar 

elde edilebilir. Böylece yapıda herhangi bir hasar meydana geldiğinde elde edilen bu 

verilerdeki değişmeler ile hasarın tespit edilebilecek olması muhtemeldir.  

Günümüzde mühendislik yapılarının davranışları yaygın olarak titreşim tabanlı olarak 

incelenmektedir. Yapı üzerinde belirlenmiş lokasyonlara koyulacak sensörler 

sayesinde yapının hem doğal hemde uyarılma sırasındaki davranışları kolaylıkla elde 

edilebilir. Literatürde Titreşim Tabanlı Hasar Tespit Yöntemleri olarak geçen 

çalışmalarda doğru sonuca ulaşmak için yapılması gereken en önemli işin yapıya ait 

titreşimlerin doğru bir şekilde elde edilmesi olduğu bilinmektedir. Çünkü yapıya ait 

titreşimlerin kayıt edilmesi sırasında yapının içerisinde işletimden kaynaklı, rüzgar 

gibi doğal kuvvetlerden kaynaklı veya çevresel gürültü kaynaklı bir çok unsur kaydın 

doğru bir şekilde elde edilmesinin önüne geçmektedir. Ortadan kaldırılabilecek 

unsurların çalışmalara başlamadan ortadan kaldırılması, diğerlerinin etkisinin ise yapı 

veya yapının doğrulanmış analitik modeli üzerinde kontrollü olarak gerçekleştirilecek 

deneyler sonucunda öğrenilmesi ve göz önüne alınması önemlidir. 

Elde edilen dataların hem kayıt edilmesi hemde ayıklanarak analiz edilmesi başlı 

başına bir mühendislik sürecidir. Hızlı bir şekilde Yapısal Sağlık İzleme çalışmasını 

gerçekleştirebilmek için optimum sayıda data ile çalışılması gerekmektedir. 

Gereğinden fazla data kullanarak hasar tespiti yapmaya çalışmak hem ekonomik 

olmayacak hemde gereksiz işgücü kullanımına ihtiyaç duyacaktır. Dolayısıyla hasar 

ile yapı davranışı arasındaki ilişkiyi en doğru şekilde temsil edebilen istatistiksel 

modelin kurulabilmesi Yapısal Sağlık İzleme çalışmasının en önemli ihtiyacıdır. 

Sonuç olarak yapı sağlığı izleme çalışmasına başlanırken, izlenecek yapı için en uygun 
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sensör yerleşimleri planlanmalı ve sensörlerin etkili bir şekilde kullanıldığından emin 

olunmalıdır. 

Yapı üzerinde meydana gelmiş hasarların tespitinde kullanılabilecek birçok titreşim 

tabanlı yöntem vardır. Bu yöntemlerin ortak özellikleri genel olarak yapının 

titreşimlerini inceleyerek hasar tespiti yapmak olsa da birbirlerine göre avantajları 

veya dez avantajları bulunmaktadır. Genel olarak maliyet, zaman, hassasiyet ve 

uygulama kolaylığı bu avantaj ve dezantajların kapsamı olarak söylenebilir. Aynı 

zamanda incelenecek yapının türü de hasar tespiti yapmak için seçilecek yöntemin 

belirlenmesinde önemli bir rol oynar.  

Bu tezde titreşim tabanlı hasar tespit yöntemlerinden biri olan yapıya ait transfer 

fonksiyonlarının parametrelerindeki değişimler ile yapısal hasarın tespiti yapılmıştır. 

Bina türü yapılarda yapısal hasarın hem lokasyonunun hem de şiddetinin belirlenmesi 

için yapıya ait katlardan elde edilen transfer fonksiyonu değişimlerinin incelendiği iki 

analitik çalışma yapıldı. 

İlk analitik çalışma laboratuvar boyutlarında beş katlı bir bina tipi yapının sonlu 

elemanlar modeli üzerinde gerçekleştirildi. Bu modelde katlar plastik levhalar ile 

kolonlar donatılar ile temsil edildi. Modele hem birim basamak fonksiyonu hemde 

1940 El Centro deprem kaydı tek yönden etkitildi ve modele ait kat deplasmanları 

kaydedildi. Her bir katın hareket doğrultusundaki ilk üç modunu temsil eden transfer 

fonksiyonları, bu etkiler ve meydana gelen kat deplasmanları kullanılarak bulundu.  

Transfer fonksiyonları elde edildikleri katın karakteristik bir özelliğini yansıttığından, 

girdi olarak birim basamak fonksiyonunun veya deprem kaydının kullanılması sonucu 

değiştirmedi ve kata ait transfer fonksiyonlarının her iki durum için de aynı olduğu 

ortaya çıktı. 

İlk modelde her bir kata ait kolonların atalet momentleri %10 ile %80 seviyesi arasında 

azaltılarak katlarda meydana gelen hasar durumları temsil edildi. Ayrıca birden fazla 

katın aynı anda hasarlı olması durumunu yansıtmak için belirli seviyelerde çoklu kat 

hasarı durumu da çalışıldı.  

İlk çalışma sonucunda transfer fonksiyonları değişimleri ile hasarlı kat arasında bir 

ilişki kurulabildi. Bunun sonucunda hem tekil hemde çoklu kat hasarı durumlarında 

transfer fonksiyonu değişimleri kullanılarak kat hasarlarının tespit edebileceği ortaya 

çıktı. Hasarlı kattan elde edilen transfer fonksiyonunun pay değişimi ile bir alt kattan 

elde edilen transfer fonksiyonunun pay değişiminin birbirine zıt yönde oldukları tespit 

edildi. Bu ilişki tekil kat hasarı durumunda tüm hasar seviyeleri için hasarlı katın 

tespitini mümkün kıldı. 

Çoklu kat hasarı durumlarında hasar tespitinde, ilgili durumda hasarlı olan katların 

transfer fonksiyonunun pay değişimleri lineer olarak toplanarak toplam değişime 

yakın bir sonuç elde edildi ve arada kalan bu fark ile lineerlik katsayısının çarpılması 

ile yapılan hata yüzdece bulundu. 

İlk çalışmada incelenen bir diğer konu ise katta meydana gelen hasar seviyesinin 

transfer fonksiyonlarının parametre değişimleri ile tespit edilmesidir. Transfer 

fonksiyonlarının pay değerlerinin değişimleri ile kat hasarının seviyesi arasında iki 

farklı ilişki kabulü yapıldı. İlk ilişki transfer fonksiyonunun pay değişiminin, kat 

hasarının %60 seviyesine kadar olduğu durumda lineer olmasıdır. İkincisi ise transfer 

fonksiyonunun pay değişiminin, kat hasarının %80 seviyesine kadar olduğu durumda 

lineer olmasıdır.  
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Tekil kat hasarları, transfer fonksiyonlarının pay değerlerinin değişiminin %60 

seviyesindeki hasara kadar lineer kabul edildiği ilişki kullanılarak daha az hata ile 

tespit edilebildi. Öte yandan transfer fonksiyonlarının pay değerlerinin değişiminin 

%80 seviyesindeki hasara kadar lineer kabul edildiği ilişki kullanılarak, çoklu kat 

hasarları, ilk ilişkiye göre daha düşük hata oranı ile tespit edebildi. Sonuç olarak, ilişki 

daha düşük seviyelere kadar lineer kabul edilirse tekil kat hasarları, daha yüksek 

seviyelere kadar lineer kabul edilirse çoklu kat hasarları etkili bir şekilde tespit 

edilebildi.  

Tekil kat hasarı durumunda birinci kattan elde edilen transfer fonksiyonunun birinci 

moduna ait olan parametre değişimlerinin tüm katların hasarlarını tespit etmede en 

etkili parametreler olduğu ortaya çıktı. 

Çoklu kat hasarı durumunda ise yanlızca birinci kattan elde edilen transfer 

fonksiyonunun birinci moduna ait parametre değişimlerinin hasarlı katları tespitinde 

yetersiz kaldığı görüldü. Hasarlı katların yerine göre diğer katlardan elde edilen 

transfer fonksiyonlarının değişimlerinin incelenmesi gerekti. 

İkinci çalışmada taşıyıcı sistemi merkezde betonarme çekirdek ve etrafında betonarme 

çerçeve sistem olan on katlı bir binanın analitik modeli kullanıldı. Bu çalışmada 

deprem sonrası yüksek binalarda meydana gelebilecek hasarların transfer fonksiyonu 

değişimleri ile tespiti amaçlandı. Bu çalışmada transfer fonksiyonunun girdisi 1999 

Kocaeli Depremi’nin kuzey-güney ivme kaydı olurken, çıktısı kat deplasmanları oldu. 

Model üzerinde kiriş, kolon ve çekirdek hasarları incelendi. Hasarlı eleman sayıları ve 

elemanların hasar seviyeleri değiştirilerek farklı durumlar sonucunda transfer 

fonksiyonu değişimleri araştırıldı. Eleman hasarları kirişlerde plastik mafsal 

tanımlanarak, kolonlarda atalet momenti düşürülerek, perde duvarda ise kat yüksekliği 

boyunca tanımlanan sonlu elamanın elastisite modülü azaltılarak temsil edildi. 

Alt katlardan elde edilen transfer fonksiyonlarının, ilk çalışmada olduğu gibi, kat 

hasarlarının tespitinde daha hassas olduğu ortaya çıktı. Ayrıca hasar seviyesi ile 

transfer fonksiyonlarının paylarının yüzde değişiminin doğru orantılı olduğu görüldü. 

Öte yandan, orta katlardan elde edilen transfer fonksiyonlarının, tüm hasar 

durumlarına karşı düşük seviyede duyarlı olduğu hatta bazen duyarsız kaldığı görüldü. 

Ayrıca, üst katlardan elde edilen transfer fonksiyonlarının parametreleri tüm hasar 

durumları incelendiğinde, alt katlardan elde edilenlerden daha az değişsede orta 

katlardan elde edilenlere göre daha fazla değişim gösterdi. 

Alt katlardaki düşük seviyeli hasarın bile ilgili katların transfer fonksiyonunun pay 

değişimlerinin işaret değişiklikleri ile tespit edilebildiği görüldü. Öte yandan üst 

katlarda hasarlı eleman sayısı ve hasar seviyesi artsa bile bu yöntemle hasarın 

varlığının tespit edilebileceği ancak yerinin tespit edilemeyeceği ortaya çıktı. 

Betonarme çekirdekte meydana gelen hasarın, tüm katlardan elde edilen transfer 

fonksiyonu parametrelerinde, kiriş veya kolonlardakilere göre daha dikkat çekici 

değişimlere neden olduğu belirlendi. İlk örnekte olduğu gibi hasarın şiddeti ile 

parametrelerdeki değişimin seviyesi doğru orantılı olarak değişti. 

Transfer fonksiyonlarındaki değişimlerin işaretlerinde farklılık olmadığı durum için 

birbirini izleyen katların transfer fonksiyonlarının parametre değişim oranları 

incelendi. Hasarlı katın transfer fonksiyonunun parametre değişimi ile bir alt katın 

transfer fonksiyonunun parametre değişimi arasındaki oranın hasarlı katın 

belirlenmesinde kullanılabilecek bir diğer metot olduğu tespit edildi. 
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Sonuç olarak bu tezde transfer fonksiyonunun parametre değişimleri ile bina türü 

yapılar için hasarın yerinin ve seviyesinin tespitinin yapılabileceği gösterildi. Burada 

önerilen yöntem hem hasarın şiddetini hemde hasarlı katı minimum sayıda sensör 

kullanarak tespit edebildiği için Yapı Sağlığı İzleme çalışmalarında önemli bir gelişme 

olarak gösterilebilir. 
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 INTRODUCTION 

 Overview 

The importance of the structural damage assessment in terms of environmental and 

public health is increasing. The aging of building stocks, the increase in the intensity 

of earthquakes, and the weakening of the structures constructed when technology and 

engineering knowledge are limited may cause human deaths or environmental 

pollution. In order to avoid similar consequences, Structural Health Monitoring (SHM) 

studies required to identify existing or potential structural damages have been 

accelerated. 

One of the highlighted benefits of the developing technology is that instant monitoring 

of structure behavior provides information about structure health, just like human 

health. Thus, minor defects in the structure can be easily detected, and the safe use of 

the structure is maintained with instant interventions. In addition, the ability to make 

calculations faster and with minor errors thanks to advanced computers is another 

benefit of developing technology for structure health studies. 

Governments and private companies recognized the importance of SHM and started 

investing in SHM systems. Today, SHM activities are carried out in many bridges, 

castles, historical buildings, museums, government buildings, skyscrapers, highways, 

and buildings with high human density in or around them. 

The increase in engineering knowledge has facilitated the determination of the cause 

of the changes in the structure and the consequences that may arise by investigating 

the data obtained during SHM more effectively. Moreover, the fact that structural 

damages can be detected with emerging methods revealed as a result of academic 

researches leads to the widespread use of SHM systems. 

SHM studies generally examine the differences occurring in the structure. Since all 

kinds of changes occurring in the structure affect the vibration character, most SHM 

studies have been performed on Vibration-Based Damage Detection (VBDD) 

methods. 
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 Structural Health Monitoring 

SHM can be defined as monitoring the status of all the elements belonging to the 

structure, which are the materials that make up the structure and the elements that 

represent the structure as a whole, by following the structure throughout its lifetime. 

Although conditions such as aging, environmental effects, or accidents affect the 

structure, the state of the structure must remain as specified in the design. Since the 

monitoring is time-dependent, the data obtained during the monitoring period can 

represent all the past situations of the structure. Thanks to the time dependency feature 

of the monitoring process, significant information about the structure can be obtained, 

such as the evolution of the damage, the level of progress, and the remaining life of 

the structure [1].  

Monitoring the integrity of a structure in use over time is an outstanding improvement 

for the manufacturers, users, and maintenance team. The main advantages of SHM [1]:  

Optimal use of structure, minimizing the usage interruption in the structure and 

preventing catastrophic failures. 

Providing the opportunity to make improvements in the structure instantly. 

Changing the working principle of maintenance services. First, SHM aims to perform 

periodic maintenance instead of performance-based (long-term) maintenance and 

(short-term) reduce the workforce required for maintenance by not taking action for 

undamaged products. Second, by significantly minimizing human intervention and 

consequently reducing labor, downtime, and human error, thus increasing safety and 

reliability.  

Although there are many ways to manage the SHM process, as a result of the studies, 

the SHM process has been defined in terms of a four-stage statistical pattern 

recognition paradigm. This four-step paradigm includes [2]:  

i. operational evaluation, 

ii. data acquisition, normalization and cleansing. 

iii. feature selection and information condensation, and 

iv. statistical model development for feature discrimination. 
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Although the studies on SHM consist of these steps, few studies involve all of them. 

With the help of [3], the steps are explained in detail on the following pages. 

1.2.1 Operational system 

The operational evaluation consists of four questions that must be answered in the 

damage assessment process in SHM. 

i. What are the life safety and/or economic reasons for carrying out structural 

health monitoring? 

ii. How is damage defined for the system being investigated, and what situations 

are most hazardous for multiple damage cases? 

iii. What are both the operational and environmental conditions when the system 

to be monitored is operating? 

iv. What are the limitations on acquiring data in the operational environment? 

As a result of the operational evaluation, limitations about what to monitor and how to 

monitoring process will continue are determined in the structure. The damage 

identification process continues according to the characteristics of the monitored 

structure, and it is desired to take advantage of the unique properties of the damage to 

be detected. 

1.2.2 Data acquisition, normalization and cleansing 

The data acquisition part of the SHM process is where the excitation methods, sensor 

type, number and location, and techniques such as data collection, storage, and 

transmission are decided. 

Normalization of data is one of the most important requirements of SHM, as the 

conditions when the data are measured constantly change. Data normalization is the 

process of separating the effect of the damage on the sensor reading from the effects 

caused by operational or environmental changes. One of the most common procedures 

is to normalize the responses measured with the measured inputs. When a difference 

due to operational or environmental factors is detected, a temporary normalization can 

be made by comparing the obtained data with data obtained at another time in a similar 

cycle. The source of variability in the system being monitored during the data 

collection process should be identified and, if possible, eliminated. Since it is generally 
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impossible to remove all sources of variability, necessary measurements should be 

made to quantify the existing sources. Variability can be caused by environmental and 

test conditions, changes in the data reduction process and unit differences. 

Data cleansing is the process of selecting data that will and will not be used for feature 

detection. The data cleansing process is usually carried out based on information 

obtained from experience. For example, when controlling the test setup, it can be 

determined that a sensor is loosely set, and the person making the measurement decides 

whether the obtained data can be used or not. Moreover, signal processing techniques 

such as filtering and resampling are standardly used data cleaning procedures. 

1.2.3 Feature extraction and information condensation 

Examining the data properties varying between undamaged and damaged structures 

constitutes the common point of SHM studies in the literature. Condensation of the 

data is the basis of the feature selection process. Therefore, the properties to be 

determined for damage assessment are application-based. 

Comparison of the measured system responses, such as vibration amplitude or 

frequency, with observed system responses, is one of the most commonly used feature 

extraction methods. Another feature development method for damage detection is to 

apply possible engineering defects or damages to the system and establish 

relationships that can reveal which parameters change with these defects and the 

interaction between changing parameters and defects. Besides using experimentally 

validated finite element models, the advantage of measurements to be made on 

defective systems is to reveal whether the amount of change in parameters as a result 

of damage is at a detectable level. Analytical tools are generally preferred for 

performing numerical studies where defects are created through simulation. Damage 

accumulation tests on essential elements of the system effectively determine the 

appropriate features if realistic loading conditions are utilized. Part of this process is 

to accumulate certain types of damage in an accelerated manner, such as induced-

damage testing, fatigue testing, corrosion growth, or temperature cycling. Appropriate 

features can be obtained as a result of experimental or analytical studies as stated 

above, and combinations of these studies may also be required. 
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The operational application and emerging measurement techniques used in SHM 

require more data than structural dynamics knowledge. Therefore, the concentration 

of many sets of data obtained the entire life of the structure is of great importance.  

In addition, robust data reduction techniques should be developed to maintain feature 

sensitivity to relevant structural changes in the presence of environmental and 

operational variability, as data will be obtained from a structure over an extended 

period of time and in an operational environment. The statistical significance of the 

features should be characterized by helping to increase the quality of accurate data and 

recording standards and should be used in the concentration process. 

1.2.4 Statistical model development 

Developing a statistical model that distinguishes the damaged and undamaged 

structures is another noticeable part of the SHM process in the literature. Statistical 

model development is the name given to the process of deriving the algorithms 

containing information about the damage utilizing the data obtained from the damaged 

and undamaged structure. Statistical model development algorithms can be divided 

into two as supervised learning and unsupervised learning. When data can be obtained 

from both damaged and undamaged structures, algorithms are developed as a result of 

supervised learning. On the other hand, unsupervised learning refers to the algorithms 

applied to non-sample data from an undamaged structure. 

The study to define the damage status of a system can be defined as a five-step 

process[4]. 

i. Existence: Is there damage in the system? 

ii. Location: Where is the damage in the system? 

iii. Type: What kind of damage is present? 

iv. Extent: How severe is the damage? 

v. Prognosis: How much useful life remains? 

Information on the damage status will gradually increase if these questions are 

answered in order. When these questions are applied for an unsupervised learning 

mode, models can only provide information about the presence and location of the 
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damage. On the other hand, in the supervised learning mode, additional knowledge 

such as the type and size of the damage and useful life of the structure is obtained. 

Statistical models are also used to minimize false signs of damage. Mainly false 

damage indicators can be divided into two groups. The first is a false positive sign 

(indicator shows damage in the absence of damage). The second is a false negative 

sign (indicator shows no damage in case of damage). Errors of the first type cause 

unnecessary labor or loss of confidence in the monitoring system, while errors of the 

second type lead to worse consequences such as loss of security. In many algorithms, 

one type of error is more dominant than the other. 

 Present Study 

Damage assessment constitutes the most crucial part of the SHM studies. Although 

there are weaknesses in engineering structures due to faulty design, over time, 

weakening due to use or environmental effects also occurs. The main ones are known 

as material deterioration, loss of element strength, or weakening due to ground 

movements. The results of this weakening are typical and cause defects in the 

structure. Therefore, the structure moves away from its design features and reaches a 

level that will endanger human life and environmental health. 

Changes that threaten the structure's health can be defined as damage. In general, the 

level of changes in the structure and severity of damage in the structure are directly 

proportional to each other. When measured changes are significant, it is easy to detect 

structural damage visually and measurements obtained from the structure. However, 

minor changes can not be detected visually and are very difficult to detect with 

measurements. In addition, after detecting damage in the structure, determining the 

damage location requires another engineering review. Generally, it is necessary to 

examine the other features of the data obtained to determine the location of the damage. 

This process is called damage localization. Damage detection and damage localization 

are two general purposes of damage detection with SHM studies. 

This thesis demonstrates the vibration-based damage detection studies with the 

transfer function parameter changes of the building type structures. In this study, using 

the data obtained from the floors of the building type structures as outputs and the 

ground excitation as inputs, the transfer functions of each floor are derived, and the 
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relationship between transfer function's parameter changes and damages occurring in 

the building was investigated.  

In the first of the two analytical studies included in this thesis, transfer functions are 

derived from the floors of a building model in laboratory model dimensions. Using 

both unit impulse and earthquake recording as ground excitation, both free vibration 

and forced vibration data are utilized for obtaining transfer functions of the model. By 

examining both single story and multiple story damage cases, the efficiency of 

parameter changes of the transfer functions obtained from floors in detecting damage 

was revealed. In addition, a statistical model was established between the severity of 

story damage and the level of transfer function parameter changes. 

The second analytical study in the thesis was done on the finite element model of a 

full-size building. The parameter changes of the transfer functions obtained from the 

floors as a result of damage on the structural elements in the building, which has a 

reinforced concrete core in the center and the frame system around it, were examined. 

The changes in the transfer functions due to damage on the different elements such as 

beams, columns, and core elements were compared. In addition to the statistical model 

between the damage level and the parameter changes of the transfer function in the 

first study, a statistical model was established to detect the damaged story in both 

studies. 

This thesis aims to determine the damages that occur in the building-type structures 

with the parameter changes of the transfer functions obtained from the building floors. 

At the same time, it is another goal to increase the sensor efficiency by creating a 

statistical model between the parameter changes of the transfer function and the 

structural damage. Thus, the number of sensors required for the SHM process 

decreases, and studies require fewer data and labor. 

 Scope of The Thesis  

This thesis consists of two numerical studies of vibration-based damage detection 

methods with transfer function parameter changes. The overview of vibration-based 

damage determination methods used for structures in the literature is examined in 

Chapter 2. The theoretical foundations of the transfer function are in Chapter 3. 

Chapter 4 includes two different numerical studies that aim to determine and locate 
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the structural damage using transfer function parameter changes for the building type 

structures. Chapter 5 contained the conclusion and discussion. 

 Equipment, Software and Service Acquisition Used 

The study includes only the theoretical part; for this reason, only the following 

software is required: 

i. SAP2000 to analyze the FE model of the buildings. 

ii. MATLAB to data acquisition and derive relationships. 
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 LITERATURE REVIEW 

 Overview 

Nowadays, building stocks consist of old structures when built-in times of insufficient 

technology and regulation. Moreover, many structures built today are flawed, or they 

are exposed to external forces such as earthquakes, dynamic vibration from different 

sources (caused by vehicles passing by, equipment operating inside buildings, etc.) 

and contain invisible damages. The necessity to monitor the damage of the structures 

due to unexpected external or operational forces and to take measures if necessary has 

created a new engineering field called Structural Health Monitoring (SHM).  

SHM is the determination of the changes that occur by following the structural 

integrity and the condition of structural elements from the start of use of any 

engineering structure until the end of its lifetime. In addition, it is possible to predict 

the remaining life of the structures by determining the locations and levels of damage 

on the structure. Although SHM is carried out in many engineering fields, recent 

researches have accelerated in civil engineering after aeronautical and mechanical 

engineering. 

Although there are many non-destructive damage detection methods, damage 

identification based upon changes in vibration characteristic methods are getting more 

popular among researchers nowadays. Vibration-based damage detection (VBDD) 

methods mainly focus on the vibration responses of the structure under known 

excitations. VBDD methods try to find out how the modal and structural parameters 

are affected by the changes in vibration responses due to damage on the structure. 

VBDD methods can determine both local and global damages in various types of 

structures featly.  

Throughout the literature, VBDD methods are divided into three main groups; 

I. Traditional methods using change of basic modal parameters 

a. Mode shape 

b. Curvature mode shape 
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c. Natural frequency 

d. Modal strain energy 

e. Frequency response function (FRF) 

f. The transfer function (TF) 

g. Dynamically measured flexibility 

II. Advanced computational methods 

a. Neural Network 

b. Wavelet technique 

Each of the methods grouped above has its advantages and disadvantages, and these 

will be mentioned later. 

Damage assessments made in structural dynamics are groped in three different ways 

according to the type of data used [5]. 

I. Linear analysis 

II. Nonlinear analysis 

III. Analysis with transient signals and wavelet transforms. 

 Damage Detection Methods 

Structural damage detection methods aim to determine the location and severity of the 

damage by analyzing different parameter changes in the structure due to damage. The 

following parameters focus on the most common vibration-based damage detection 

methods in the literature. 

2.2.1 Mode shape 

Mode shapes reflect characteristic properties of structures. Consequently, the location 

and severity of the damage are determined by analyzing the changes in the mode 

shapes of the undamaged and damaged structure. Mode shapes contain local 

information of the structure, which allows precise determination by directly using the 

mode shapes in local damage detection. Mode shapes are obtained from either the 

Finite Element Model (FEM) or experimental data analysis. Mode shapes are less 

sensitive to environmental influences such as temperature than natural frequency. 
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Since mode shapes are location-based, they require measurements from multiple 

locations for the solve of consistency. 

West (1984) presents one of the first investigations that the location of structural 

damages is related to changes in modal shapes without using a prior FE model. The 

author uses modal assurance criteria (MAC) to find the correlation of the mode shapes 

obtained vibrations from undamaged Space Shuttle Orbiter body flap and the mode 

shapes from under acoustic loading. Mode shapes are aggrouped with various 

schemes, and changes in MAC are analyzed to localize the damage [6].  

Mayes (1992) presents structural translation and rotation error checking technique 

(STRECH) to localize two modal model errors. The location of the stiffness difference 

in the structure determines as a result of a general comparison between the differences 

of the two modes. Additionally, STRECH can be used  to compare the results of both 

two different tests and one test with FEM [7]. 

Ratcliffe (1997) presents the damage assessment by the finite difference 

approximation of Laplace's differential operator applied to the mode shapes data of a 

beam. This method successfully locates the stiffness reduction of more than 10%. 

However, when the damage is less severe, further processing of Laplacian output is 

required [8]. 

Hu and Afzal (2006) present a statistical algorithm that works as a damage indicator 

by comparing the mode shapes of intact and damaged timber beams [9]. 

An experimental study on shear building completed by Ghosh and Chaudhuri (2015) 

demonstrates the efficiency of higher mode shapes in localizing damage. It is found 

that the location of the damage determines the effectiveness of higher mode shapes 

and their derivatives in the damage detecting process. Their efficiency is slightly 

decreased, especially for shorter buildings [10]. 

Tatar et al. (2017) present a damage assessment study on a real nine-story reinforced 

concrete building before and after seismic retrofitting. Obtained mode shapes from the 

forced vibration response of the building are used for calculating MAC (Modal 

Assurance Criteria) and COMAC (Co-ordinate Modal Assurance Criteria) values. 

They proved that the seismic retrofitting operations are effective, and the response of 

the structure is reduced due to rehabilitation and retrofitting [11]. 
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2.2.1.1 Modal assurance criteria (MAC) 

MAC is a static indicator used for damage detection due to mode shape differences 

between intact and damaged structures. MAC is generally effective at detecting severe 

damages and is not sufficient for minor damage detection. MAC only considers model 

shapes, which means that a separate frequency comparison must be used with MAC 

values to determine associated mode pairs. Generally, experimentally obtained mode 

shapes and those obtained from FE models are compared to MAC. In addition, MAC 

does not require any estimation of system matrices such as flexibility or mass. It only 

indicates the consistency between mode shapes [12]. 

The limits of the MAC values are between 0 and 1. 0 means the mode shapes are not 

consistent, and 1 means mode shapes are consistent. MAC is calculated as a scalar 

product of two-mode shape vectors {𝜑𝐴} and {𝜑𝑋} [12].  

 
𝑀𝐴𝐶(𝑟, 𝑞) =

|∑ {𝜑𝐴}𝑗{𝜑𝑋}𝑗
𝑛
𝑗=1 |

(∑ {𝜑𝐴}𝑗
2𝑛

𝑗=1 )(∑ {𝜑𝑋}𝑗
2𝑛

𝑗=1 )
 

 

(2.1) 

where, 

𝜑𝐴 is the mode shape vector of the undamaged structure. 

𝜑𝑋 is the mode shape vector of the damaged structure. 

Kim et al. (1993) present the efficiency of MAC and its different variations in the 

location of structural damage. They specify the damaged part with the collaboration of 

COMAC and partial modal analysis criterion (PMAC) [13].  

Srinivasan and Kot (1992) present a study on the cylindrical shell to determine cracks 

with mode shapes and frequency methods. Authors claim that mode shape change 

quantified with the change of MAC values is a more sensitive indicator than resonant 

frequencies [14]. 

2.2.1.2 Co-ordinate modal assurance criteria (COMAC) 

Lieven and Ewins (1988) present COMAC that is an extension of  MAC, and it infers 

which degrees of freedom in the structure negatively affects a low MAC value. Both 

analytical-analytical or experimental-experimental and analytical-experimental mode 

shape data can be used to calculate COMAC values [15]. COMAC method comprises 

of two steps. First, two-mode shape vectors are coupled with a method such as MAC. 
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Second, correlation values at each node are calculated using all these coupled-mode 

pairs as given in equation (2.2) [16]. 

 
𝐶𝑂𝑀𝐴𝐶(𝑝) =

∑ |(𝜙𝑝𝑟)(𝜑𝑝𝑟)|
2𝑁

𝑟=1

∑ (𝜙𝑝𝑟)
2𝑁

𝑟=1 ∑ (𝜑𝑝𝑟)
2𝑁

𝑟=1

 

 

(2.2) 

where, 

𝜙𝑝𝑟 = Modal coefficient from the degree of freedom p and modal vector r from one 

set of modal vectors. 

𝜑𝑝𝑟 = Modal coefficient from the degree of freedom p and modal vector r from the 

second set of modal vectors. 

𝐶𝑂𝑀𝐴𝐶(𝑝) gives the information of the two vectors, with the vector entries being the 

coefficients of the two sets of matched modal vectors at location p. 

An experimental study done by Chang and Kim (2016) indicates that if a sufficient 

number of modes are considered, MAC and COMAC values refer to damage location 

and severity in bridge-type structures [17]. 

2.2.1.3 Other modal assurance criteria 

The most common assurance criteria in the literature are briefly explained below. 

With a subset of the total modal vector, partial modal assurance criterion (PMAC) was 

developed as a spatially limited version of the MAC. The subset is selected either DoF 

from part of the modal vector or a certain dominant sensor direction (horizontal, 

longitudinal, or vertical) [18]. 

The modal assurance criterion (MACSR) square root is developed to be more 

consistent with the orthogonality and pseudo-orthogonality calculations using an 

identity weighting matrix. This approach aims to refer to the square root of the MAC 

calculation, which are generally very small non-diagonal terms [19]. 

The scaled modal assurance criterion (SMAC) is a weighted modal assurance criterion. 

The weighting matrix aims to balance the transitional and rotational degrees of 

freedoms contained in the modal vectors. Various data types are involved in the same 

modal vector to normalize the magnitude differences in the vectors. Because MAC is 
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heavily influenced by large values and decreases the squared errors, this process is 

required [20]. 

The modal assurance criterion using reciprocal modal vectors (MACRV) is the 

comparison of reciprocal modal vectors with analytical modal vectors as similar to a 

pseudo-orthogonality check. The reciprocal modal vectors are utilized in control 

applications as modal filters. The mode isolation provided by each reciprocal modal 

vector compared to analytical modes expected can be controlled with MACRV [21]. 

Modal assurance criterion with frequency scales (FMAC) is a type of MAC that 

presents a means of displaying the mode shape correlation, the degree of spatial 

aliasing, and the frequency comparison in one graph synchronously [22]. 

The enhanced coordinate modal assurance criterion (ECOMAC) is an extended 

version of MAC to consider the calibration-scaling errors and sensor orientation 

mistakes that are the main problems in determining modal vectors [23].  

The mutual correspondence criterion (MCC) is a modal assurance criterion that is 

applied to vector measures of acoustic information (velocity, pressure, intensity, etc.). 

The formulation of MCC includes a transpose and only proper with real-valued vectors 

[24]. 

Modal correlation coefficient (MCC) is one of the critical modified versions of MAC. 

Making MAC more sensitive to determine minor magnitude changes in the modal 

vectors is the primary purpose of MCC [25]. 

Inverse modal assurance criterion (IMAC) is another approach that targets increasing 

the sensitivity of MAC to determine small mode shape changes. Hence, this approach 

utilizes the inverse of modal coefficients; they could differ from zero [26].  

Frequency Response Assurance Criterion (FRAC) is a technique that compares 

predicted frequency response functions with calculated frequency response functions 

of any structure. Generally, FRAC is used for the system identification process [27]. 

Complex Correlation Coefficient (CCF) is a derivation of FRAC. CCF is calculated 

without squaring the numerator values and has the same magnitude as FRAC. 

However, CCF indicates phase lag or lead that is present between two FRFs. 

Generally, CCF is used to solve experimental signal conditioning problems [28]. 
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Different frequency shifts can be calculated with the frequency domain assurance 

criterion (FDAC), which is a variation of FRAC. In addition, FDAC can be considered 

as a MAC in the frequency domain [29]. 

Coordinate orthogonality check (CORTHOG) examines the contribution of each 

physical degree of freedom of the mode vectors obtained analytically and 

experimentally to the total orthogonality relationship. Correlation between modal 

vectors is easier to understand with the CORTOG method [30]. 

Shi et al. (2000) present a sensitivity-based method which is an extension of the 

multiple damage location assurance criterion (MDLAC) to localize damage by direct 

use of incomplete mode shapes. They analyzed a plane trust structure numerically to 

compare the performance of the proposed method [31]. 

The purpose of different modal assurance criteria used in the literature is listed below 

[32].  

 Validation of experimental modal models. 

 Correlation with analytical modal models. 

 Correlation with operating response vectors. 

 Mapping matrix between analytical and experimental modal models. 

 Modal vector error analysis and Modal vector error averaging. 

 Experimental modal vector completion and expansion 

 Weighting for model updating algorithms 

 Modal vector consistency/stability in modal parameter estimation algorithms. 

 Repeated and pseudo-repeated root detection. 

 Structural fault/damage detection. 

 Quality control evaluations. 

 Optimal sensor placement. 
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2.2.2 Mode shape curvature 

In many studies, it is seen that the mode shapes obtained from the displacement data 

are not as effective as expected in damage detection. Mode Shape Curvatures (MSC) 

emerges as a study to enhance the consistency of damage detection experiment results. 

Pandey et al. (1991) is the first study to present that MSC  is a highly sensitive method 

to identify and localize the damage in a structure. They showed that absolute MSC 

change indicates the damage location. In addition, MSC changes are directly 

proportional with the severity of the damage. They calculated MSC using a central 

difference approximation as given in equation (2.3) [33]. 

 
ϑ𝑖
′′ =

ϑ𝑖+1 − 2ϑ𝑖 + ϑ𝑖−1
h2

 

 

(2.3) 

where ϑi is the modal displacement at i-th point and h is the distance between measured 

points. 

Wahab et al. (1999) present MSC technique applied to a real bridge for higher mode 

shapes. They found that modal curvature changes of the lower modes are more 

accurate than higher modes for damage localization [34]. 

Frans et al. (2017) present a comparative study of MSC and damage locating vector 

methods on beam, truss, and shear-type structures for damage detection. They indicate 

MSC is not an appropriate method for truss structure since MSC is calculated from the 

displacements at the nodes [35]. 

2.2.3 Natural frequency 

Natural frequencies provide essential information about the vibration characteristics 

of the structures thus, natural frequency changes have been investigated from many 

types of research in damage assessment studies from past to present. When the natural 

frequency of a structure changes with any damage, it results from stiffness, mass, or 

any other parameter changes in the structure. Natural frequency changes can be 

measured quickly and cheaply using classical vibrational measurement techniques 

from a few points on the structure. Moreover, resonant frequencies can be measured 

with high accuracy at one point of the structure and independent of the position; 

besides, the impreciseness of these measurements can be eradicated with proper 

experimental conditions. However, only natural frequency change is not enough for 
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structural damage detection, especially for symmetrical buildings. In addition, the 

sensitivity of natural frequency change is an insufficient indicator for minor damage 

detection. 

Cawley and Adams (1979) present a method that detects, locates, and quantifies the 

damage in the structure with natural frequency changes measured from single point 

measurement. This method uses a sensitivity concept that treats frequency changes are 

a function of the damage location only if stiffness changes are not caused by damage. 

Calculated and compared frequency shifts are investigated to locate the damage. The 

authors have done this experiment on a different plate structure. However, they 

allegate that method can be applied to all systems suitable for FE analysis [36]. 

An experimental study done by Ju and Mimovich (1987) presents a fracture damage 

assessment with frequency changes of a beam. Fracture damages can be localized with 

a 3% error of the length when the theoretical end condition is used on the beam. On 

the other hand, if the built-in end of the beam is represented with a torsional spring, 

damage localization error decreased to less than 1%. The authors used the first four 

modes in this experiment, and they claimed that if the higher modes can be measurable, 

their variations simplify the detection of damage intensity [37]. 

Liang et al. (1992) present a study that examines the theoretical relationship between 

eigenfrequency changes and crack-induced damage in both simply supported and 

cantilever conditioned beams. Numerical experiments in the FE program were done to 

determine the comparison of the predicted and simulated damage consistency for 

different damage scenarios. Moreover, the authors indicate that crack depth change is 

an ineffective factor in the frequency change ratio [38]. 

Uzgider et al. (1993) present a damage localization method that uses natural frequency 

change to determine the stiffness parameters of the structure. First, vibration modes 

and significantly affected stiffness parameters are selected. By using natural 

frequencies of selected modes, stiffness parameters are identified. Comparing the 

relative magnitude differences between estimates and the specified parameter is used 

to detect the structural damage. The method's efficiency depends on both consistent 

initial stiffness parameter estimates and the use of a complex mathematical model [39]. 

Kim et al. (2003) present a comparative study that uses frequency and mode shapes to 

detect the location and severity of the damage on prestressed concrete beams that only 
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two modal parameter sets are known. Changes in natural frequencies are used to 

generate a damage localization algorithm, and natural frequency perturbations are used 

to formulate a damage sizing algorithm that estimates crack sizes. Authors also note 

that cracks located at the mid-span can be estimated more accurately than cracks 

located at the quarter-span [40]. 

Salawu (1997) presents a review study about structural damage assessment procedures 

with natural frequency changes. This article summarizes many different studies that 

have been performed. As a result, natural frequency alone is not a sufficient indicator 

for damage localization because similar crack lengths in different locations can 

similarly affect the natural frequency. On the other hand, ambient conditions and 

testing procedures are other factors that make it challenging to obtain the accurate 

dynamic response of the structure [41]. 

2.2.4 Modal strain energy 

The modal strain energy method considers fractional modal strain energy changes 

between two structural degrees of freedom. Structural mode shape curvatures are 

related to modal strain energy for beam and plate type structures. Therefore, it can be 

considered a special case of mode shape curvature-based method for the beam type 

structures. 

Stubbs and Kim (1996) and Stubbs et al. (1995) present a developed method based on 

modal strain changes. This method assumes that if a beam is divided into sub-regions 

and damage is localized in one sub-region, fractional strain energy will remain 

relatively constant in sub-regions. Bending stiffness, EI is assumed to be constant for 

both damaged and undamaged modes for beam-type structures. Damage Index (DI) 

can be found in a sub-region j followed by equation (2.4)[42,43]. 

 
𝛽𝑗 =
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(2.5) 

Where Fij and Fij
* are the fractional strain energy of undamaged and damaged beam 

for the i-th mode at sub-region j; 𝜅𝑖 and 𝜅𝑖
∗ are the curvature mode shapes of 
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undamaged and damaged beam for the i-th mode, respectively, and m is the number 

of measured bending modes. Curvature mode shapes are the third-order differential of 

displacement mode shapes. Then, it is assumed that DI has a normal distribution and 

normalized damage index (NDI) can found for sub-region j with equation (2.6) 

 
𝑍𝑗 =

𝛽𝑗 − 𝛽̅

σ𝛽
 

 

(2.6) 

Where 𝛽̅ and σ𝛽 represent the mean and standard deviation of the damage indices, 

respectively. Generally, NDI can be set as larger than two [44]. 

Cornwell et al. (1999) present a developed version of the strain energy method from 

structures which has one-dimensional mode shape curvature to two-dimensional 

curvature. One advantage of the method is that mass normalization of mode shape is 

not necessary for both undamaged and damaged structures under ambient excitation. 

In addition, the developed algorithm is successful in locating even 10% damage by 

using few modes [45].  

Shi et al. (2000) present a strain energy-based damage detection study on a single-bay, 

two-story portal steel frame structure. The authors indicate that only analytical mode 

shapes, incomplete measured mode shapes, and system matrices are required for their 

approach. Moreover, in the study, single and multiple damage localization is 

performed. However, multiple damaged results are not consistent due to the noise 

effect [46]. 

Alvandi and Cremona (2006) present an experimental study comparing four damage 

detection methods: strain energy, mode shape curvature, change in flexibility, and 

change in flexibility curvature on a simply supported beam. According to the results, 

the strain energy method is the most accurate method regarding the noise effect. 

Although all methods have difficulties locating the multiple damages, which are close 

to supports, the strain energy method gives more accurate results for detecting the 

second damaged area by reducing the threshold level. In addition, the threshold level 

approach is general and independent of the type of structure because the strain energy 

method uses normalized damaged index [47]. 
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2.2.5 Frequency response function (FRF) 

The frequency response function shows the relationship between excitation force and 

the response of a structure in the frequency domain. When there is any damage on the 

structure, the natural frequencies of the structure will change. Location and severity of 

the damage are detected by analyzing the frequency response function changes of the 

structure. Since this method is based on the comparison between the measured 

structural response of the undamaged and damaged structure, it generally does not 

require a FE model. However, the noise effect in measurements makes the applicability 

of this method difficult. In addition, the frequency response function is an efficient 

method for structural health monitoring. Response of a structure can be story 

displacement, velocity or acceleration.  

Equation (2.7) represents the equation of motion for complex type of structure.  

 𝑀𝑥̈ + 𝐶𝑥̇ + 𝐾𝑥 = 𝑓(𝑡) (2.7) 

Where 𝑥 is the vector of nodal degrees of freedom of the structure, t is the time instant. 

𝑀, 𝐶 and 𝐾 are the mass, damping, and stiffness matrices, respectively. 𝑓(𝑡) represents 

the excitation, and the dot represents the derivative with respect to time. 

Under the harmonic excitation, force and response vectors can be defined as 

 𝑓(𝑡) = 𝐹𝑒𝑖𝑤𝑡 (2.8) 

 𝑥(𝑡) = 𝑋𝑒𝑖𝑤𝑡 (2.9) 

where 𝑤 is the forcing frequency and 𝐹 is the amplitude of the forcing vector. Then 

equation (2.7) can be written as equation (2.10). 

 (−𝜔2𝑀+ 𝑖𝜔𝐶 + 𝐾)𝑋 = 𝐹 (2.10) 

Relation between response 𝑋(𝜔) and excitation 𝐹(𝜔) at each frequency is given by 

 𝑋(𝜔) = 𝐻(𝜔)𝐹(𝜔) (2.11) 

where 𝐻(𝜔) defines the receptance matrix of the system or the frequency response 

function matrix that is given by 
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𝐻(𝜔)  = (−𝜔2𝑀+ 𝑖𝜔𝐶 + 𝐾)−1 (2.12) 

Frequency response function 𝐻𝑖𝑗(𝜔) which represents the relation between response 

at i-th coordinate 𝑋𝑖(𝜔) and excitation at j-th coordinate 𝐹𝑗(𝜔) at each frequency can 

be written as 

𝐻𝑖𝑗(𝜔)  =
𝑋𝑖(𝜔)

𝐹𝑗(𝜔)
 

 

(2.13) 

Hwang and Kim (2004) present a numerical study that determines damage location 

and severity using only a subset of vectors from all FRFs for a few frequencies on a 

cantilever beam and a helicopter rotor blade. In the study, change in stiffness is 

calculated, and the stiffness matrix is updated using frequency function changes. 

Frequency measurements for the damaged structure are correct, with a range of 0-10% 

noise. However, there may be less than a 2% error probability. For this reason, it is 

suggested by the authors that the noise ratio is kept within 5% to obtain accurate 

results[48]. 

Park and Park (2005) propose a method to decrease the workload for the damage 

estimation experiments by analyzing the FRFs changes in a substructure. Two 

experiments were done on the plate and joined structure. It is mentioned that 

optimization techniques are used in the study. Moreover, only FRFs and reduced 

stiffness matrices are enough for the damage estimation process [49]. 

Hsu and Loh (2013) present a damage detection method with FRF change in a six-

story shear building under a ground excitation. The stiffness matrix of intact structure 

is estimated with measured to reduce the analytical model necessity. Using FRFs that 

are closed to natural frequencies of the structure is suggested by authors to decrease 

noise contamination. It is mentioned that modal unbiased and bias error results from 

model parameter error and noise, respectively [50]. 

Kao et al. (2020) present a displacement FRF-based damage localization approach on 

building types of structures. Damage localization index SubFRFDI which is utilizable 

with sub-structure FRF measurements is improved with another damage localization 

index CurveFRFDI. Displacement responses are measured with a digital camera, and 

digital image correlation techniques are applied. In conclusion, CurveFRFDI has 

higher sensitivity to localization of damage, and CurveFRFDI results are independent 
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of damage severity. Authors indicate that both damage identification techniques can 

not locate the multiple damages precisely [51]. 

Huang et al. (2012), Shadan et al. (2016), Sanayei et al. (2012) present different 

structural modal updating approaches to damage determination using FRF data [52-

54]. 

Researches have used not only direct FRF data but also the derivatives of FRF such as 

FRF curvatures, FRF differences, or compressed FRFs. The large size and complexity 

of FRF data are challenging factors of FRF based damage detection studies. In 

addition, FRFs are very sensitive to noise and environmental conditions. Therefore 

consistency of results highly dependent on these factors [55]. 

2.2.6 Transfer function 

A transfer function (TF) is a mathematical representation of the relation between input 

and output of a linear time-invariant (LTI) system. For the civil engineering structures, 

excitations represent the inputs. In addition, measured responses on any structure's 

location from these excitations, such as displacements, velocities, and accelerations 

represent the outputs. Both FRF and TF represent the ratio of input and output. Unlike 

the frequency response function, the transfer function is the ratio of output to input in 

a Laplace domain. Mathematical representation of TF is given by followed [56] 

𝐻(𝑠) =
𝑌(𝑠)

X(𝑠)
 

 

(2.14) 

Generally, civil engineering structures have the second degree of the differential 

equation such as equation (2.7), and it can be rearranged to take forms  

𝑎2
𝑑2y(𝑡)

𝑑𝑡2
+ α1

𝑑y(𝑡)

𝑑𝑡
+ 𝑎0y(𝑡) = 𝑏x(𝑡) , 𝛼2 ≠ 0, 𝑦(0) = 𝑦′(0) = 0 

 

  (2.15) 

 

𝜏2
𝑑2y(𝑡)

𝑑𝑡2
+ 2𝜏

𝑑y(𝑡)

𝑑𝑡
+ y(𝑡) = 𝐾x(𝑡) 

 
 

(2.16) 

or 

𝑑2y(𝑡)

𝑑𝑡2
+ 2𝜔𝑛

𝑑y(𝑡)

𝑑𝑡
+ 𝜔𝑛

2y(𝑡) = 𝐾𝜔𝑛
2x(𝑡) 

 

(2.17) 
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where 𝜏2 =
𝑎2

𝑎0
 , 2𝜏 =

α1

𝑎0
, 𝐾 =

𝑏

𝑎0
 and 𝜔𝑛 =

1

𝜏
 

The corresponding Laplace transform is  

𝐻(𝑠) =
𝑌(𝑠)

X(𝑠)
=

𝐾

𝜏2𝑠2 + 2𝜏𝑠 + 1
=

𝐾𝜔𝑛
2

𝑠2 + 2𝜔𝑛𝑠 + 𝜔𝑛2
 

 
 

 

(2.18) 

where 𝜏 is the time constant (natural period of oscillation), 𝜔𝑛 is the natural 

(undamped) frequency,  is the damping ratio, and 𝐾 is the steady-state gain. 

Lew (1995) presents a numerical study to damage detection of a nine-bay truss 

structure with transfer function paramere changes. The author first examines the 

transfer function changes to determine if there is any damage and then localizes the 

damage with a coherence approach. This coherence approach includes comparing the 

direction of parameter change vectors between intact and damaged structures and the 

ratio of parameter changes of damaged structures to possible damage cases. Moreover, 

the author observes that the direction of external excitation is a substantial topic to 

determine the damage location process with TF changes for symmetric structures. 

Suppose the coherence values of symmetrical elements are close to each other while 

detecting the damage. In that case, the direction of the applied force is changed so that 

elements take different forces, and the correct result is achieved with new coherence 

values [57]. 

Lew (1998) presents a damage detection method using transfer function parameter 

changes by applying a correlation approach of a cantilever beam. The transfer function 

in this study is the ratio of excitation acceleration to response acceleration. This 

correlation approach facilitates the detection of characteristic property changes such 

as stiffness. The author determines the damage by using the direction of the weighted 

parameter change vector. In addition, the correlation approach requires a few sensors. 

Thus, the location of sensors becomes essential [58].  

Viyanak et al. (2010) present a damage detection study on a four-story shear building 

from transfer function changes. First, the model is updated with experimentally found 

frequencies and mode shapes. Then, TFs are calculated for intact and damaged 

structures. The last twelve seconds of an earthquake acceleration used as an input, and 

the displacement values are calculated with Newmark's method from measured 

acceleration values taken from accelerometers at each floor are used as the output of 
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TF. The authors focus on the ratio of TF of damaged structure to undamaged structure. 

Since the TF's ratio of the intact and damaged structure are used for damage 

assessment, the initial conditions are accepted zero. Consequently, the TF changes of 

the first two-story detect the damage better than other stories. Consistency decreases 

when multiple floor damage. The higher the noise level, the worse the results [59]. 

2.2.7 Dynamically measured flexibility 

The flexibility matrix is used to predict changes in the static behavior of the structure 

by dynamically measuring. The flexibility matrix is the inverse of the static stiffness 

matrix. Therefore, the flexibility matrix relates to the structural displacement caused 

by the applied static force. The columns of the elastic matrix represent displacements 

that occur in each DOF corresponding to a unit force. Mass normalized measured mode 

shapes and frequencies are used for estimating the flexibility matrix. The obtained 

flexibility matrix with this method is an approximate matrix since a few modes of 

structure are used in these estimation processes. The exact flexibility matrix can be 

obtained with the contribution of all modes. In this method, the damage is detected by 

comparing the estimated flexibility matrix of the damaged structure with measured 

mode shapes and the flexibility matrix found using the FE model of the undamaged 

structure. The measured flexibility matrix is the most sensitive change in lower modes 

because of the inverse relationship with the square of the modal matrix [60]. 

Pandey and Biswas (1994) present one of the first studies to indicate not only damage 

localization but also damage detection can be done by utilizing flexibility matrix 

changes of a structure. With the help of several low-frequency modes, the elasticity 

matrix can be estimated accurately. It has been verified that the flexibility changes give 

consistent results in damage detection and localization by studies on a simple 

analytical beam [61]. 

Toksoy and Aktan (1994) present an experimental study on real three-span reinforced 

concrete highway bridge. Authors concentrate on change in flexibility matrix 

estimated from measured deflection profiles with and without baseline data set. They 

point out deflection profile differences can indicate damage [62]. 

Aoki and Byon (2001) compare generalized flexibility formulation in three different 

flexibility methods that are substructural displacement-based, elemental deformation-

based, and elemental strain-based to detect interior damage in composite pipe and 
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shell. Although stiffness change is determined correctly by all three methods, most 

accurate results are obtained with the strain-based method [63]. 

2.2.8 Neural network 

Neural network (NN) is an increasingly popular artificial damage detection method in 

the structural analysis due to its nonlinear mapping ability. NN consists of three layers: 

an input layer, a hidden layer, and an output layer. Determining network structure, 

choosing network parameters, normalizing learning instances, giving initial weight 

value, and detecting structural damage are the main steps for NN-based damage 

detection methods for structural damages. First, NN has to be trained with known 

inputs and known outputs. These inputs and outputs include the damage information 

utilize as a train to constructed NN. Damage information can be obtained with FE 

model analysis or experimental data. When the training sample is well educated, the 

real structural damage feature index can be entered into NN, and the output is the 

location and severity of the structural damage [64]. NN can be used with different 

VBDD methods. 

Viyanak et al. (2010) present an NN-based damage assessment study utilizing the 

frequency change ratio that is FRF of damaged to FRF of intact structure as an input 

for NN and damage combinations as an output. Authors add various levels of noise to 

the input signal and examine the effect of noise on the consistency of NN [59]. 

Rhim and Lee (1995) present an NN-based structural damage determination study 

consisting of learning and diagnosis stages on a composite beam. In the training part 

of NN, parameters collected from damaged structures in different regions are grouped 

according to the location and severity of the damage. Then system identification is 

made to determine structural system properties that are transfer functions. These 

functions are fed into multi-layer perception (MLP) as input models for training. MLP 

refers to the closest classifier. In the diagnosis phase, the damage is classified 

according to damage in the nearest group, and it is designated as that of the class [65]. 

Kao and Hung (2003) present a two-stage NN-based approach as a system 

identification and damage detection study. In the first stage, a NN is established to 

define the structural system. In the second stage, free vibration response at the same 

initial conditions or impulse response of the structure is obtained using trained NN. In 
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this study, changes of periods and amplitudes of free vibration response of structure 

refer to structural damage [51]. 

Lee et al. (2005) present an element-level NN-based damage identification study using 

the model properties. Authors utilize the mode shape ratios or curvatures instead of 

mode shapes because mode shapes are more sensitive to modeling error than their 

ratios or curvature. Two numeric examples made on simple beam and multi-girder 

bridge indicate that this method is consistent and effective in damage detection [66].   

2.2.9 Wavelet technique 

Wavelet analysis is a very suitable method in the analysis of non-stationary signals. 

Thus, it is frequently used in signal processing in damage detection to determine the 

feature index of structural damage. Singular signal detection, signal to noise 

separation, and frequency band analysis are the main wavelet analysis applications in 

structural damage detection. Damage existence can be confirmed with the spectrum 

graph obtained using wavelet transform [64]. 

Liew and Wang (1998) present the first application of the wavelet method to determine 

the crack propagations in beam-type structures. Wavelet expression in the space 

domain and eigentheory solution are used for the comparison of the results. Results 

show that eigentheory applications are challenging to solve compare with wavelet 

analysis. In addition, for eigentheory solutions, major eigenvalue differences can be 

observable in higher modes, and accurate determination of higher modes is not an easy 

task. However, this problem is not encountered in the wavelet analysis method [67]. 

Lu and Hsu (2002) present a method based on wavelet transform that can detect not 

only the presence of defects but also their locations and numbers as well. Vibration 

signals of both intact and damaged structures are recorded first. Then comparing the 

discrete wavelet transforms of these two signals, structural defects can be determined. 

Defects are described with attached mass and springs at several points in the original 

structure. Authors emphasize that vibration signals obtained from intact and minor 

localize damaged structures are normally too small to be noticed. On the other hand, 

it appears as a distinct difference in wavelet coefficients [68]. 

Solis et al. (2013) present a combined-wavelet analysis method for crack determination 

of beam-type structures using mode shape differences. Wavelet transform is applied 

to the difference between the mode shape of the damaged and intact structure. Wavelet 
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results of each mode are added up to get the final value that remarks the crack location. 

While adding process, wavelet results of each mode are weighted with the frequencies 

of each mode. Then coefficients are normalized. It is proven that this method is 

sensitive to detect minor damages [69]. 

Quinones et al. (2015) compare continuous wavelet transform (CWT) and fast wavelet 

transforms (FWT) to determine damage in different types of engineering structures. 

Under an earthquake excitation, different stiffness loss of the first floor is examined at 

a five-story shear building with different noise levels. The authors indicate that the 

amplitude of FWT spikes is related to the location of the damage. Stiffness loses below 

20% can not be detected even noise-free condition and the higher the noise level, the 

higher the stiffness reduction required to detect damage [70]. 
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 DETERMINATION OF TRANSFER FUNCTION 

The transfer function is a mathematical function that theoretically models the device's 

output for each possible input in the Laplace domain. In a two-dimensional graph, this 

function shows the response of an independent scalar input to the dependent scalar 

output called the transfer curve or characteristic curve [71]. Transfer function 

components are generally used in electronics and control theory to design and analyze 

systems. In civil engineering, since the characteristic features of the structure can be 

expressed with transfer functions, it has been observed that it is possible to determine 

structural damage by transfer function parameter changes. Mathematical 

representation of transfer function represented in equation (2.14) 

The transfer function H(s) can be defined by using the output function Y(s) and the 

input function X(s). The block diagram of a transfer function is shown in figure (3.1). 

 

Figure 3.1 : Block diagram of a transfer function. 

Transfer functions of a system can be derived with Cross Power Spectral Density 

(CPSD) of input and output signal divided by Auto Power Spectral Density (APSD) 

of the input signal, and equation (3.1) represents the mathematical expression.  

 
𝑇𝐹 =

𝐶𝑃𝑆𝐷

𝐴𝑃𝑆𝐷
 

 

(3.1) 

In order to obtain the behavior of a system, the transfer functions of all modes of the 

system can be collected linearly. Equation (3.2) represents the summation of transfer 

functions of all modes.  

 
 𝑇𝑇𝐹= ∑

𝐾𝑖𝜔𝑖𝑛
2

𝑠2+2𝜔𝑖𝑛𝑠+𝜔𝑖𝑛
2

𝑘

𝑖=1
 

 

(3.2) 
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Where 𝐾𝑖 and 𝜔𝑖𝑛 are the steady-state gain and natural frequency of ith mode, 

respectively.  is the damping ratio, 𝑘 is the mode number. 

If the numerators of the transfer function of two consecutive modes are of the same 

sign, there will be an antiresonance at one frequency between these two modes' natural 

frequencies. On the other hand, if they are of opposite sign, there will be no 

antiresonance, only a frequency range where they are at a minimum value. Figure (3.2) 

represents the antiresonance that occurs because the numerators of the two successive 

modes' transfer functions are of the same sign. On the other hand, it is seen in figure 

(3.3) that there is no antiresonance between two modes that have the numerators are 

the opposite sign [72].  

 

Figure 3.2 : FRF plot of two consecutive same signed modes. 

 

Figure 3.3 : FRF plot of two consecutive opposite signed modes. 
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 Components of The Transfer Function 

3.1.1 Poles and zeros 

The poles of a transfer function are the function's denominator values, which cause the 

transfer function to become infinite. The zeros of a transfer function are the function's 

nominator values, which cause the transfer function to become zero. For instance, if 

the transfer function is 
5𝑠

𝑠2+9
, denominators are 3𝑖 and −3𝑖 and nominator is zero. 

3.1.2 Time constant 

The time for the step response to rising to 63% of its final value can be defined as the 

time constant. Time response characteristics of the transfer function are examined in 

part (3.7). 

 Transfer Function of First Order Systems 

The first-order system is the name given to systems whose input-output relationship 

and dynamic behavior can be described with a first-order differential equation. The 

order of the differential equation represents the number of energy storage elements in 

a system. Therefore first-order systems have only one energy storage element. Mass-

damper systems and mass-heating systems are common first-order systems. Besides, 

if sufficient consistency is provided, higher-order systems can often be represented 

with their first mode as a first-order system. The first-order system's general 

mathematical formulation and transfer function are described by the following 

equations (3.3) and (3.4). 

𝜏
𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑦(𝑡) = 𝑥(𝑡) 

 

(3.3) 

𝐻(𝑠) =
𝑌(𝑠)

X(𝑠)
= 𝐾

1

𝜏𝑠 + 1
 

 

(3.4) 

Where, K is the gain and 𝜏 is the time constant of the system. 

Gain is the parameter that represents the relation between the magnitudes of the input 

and output signal at steady-state. The time constant is a measure of how quickly a first-

order system responds to a unit step input. In practice, the smaller the time constant of 

the system, the faster the system responds. 
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 Responses of First Order Systems 

This part contains general response behaviors of first-order systems due to impulse, 

step, and ramp function inputs and summarized from [73]. 

3.3.1 Impulse response of first order systems 

Impulse function is a special function whose value is 1 at 𝑡 = 0 and 0 for all other 𝑡 

values. When the input function of a system is impulse, the system's response is equal 

to the transfer function. Thus, the impulse response of any first-order system can be 

obtained by taking the inverse Unit impulse function, response function, and Laplace 

transform of the transfer function are defined in equations (3.5), (3.6), and (3.7), 

respectively. 

𝑋(𝑠) = 𝛿(𝑠) = 1 (3.5) 

𝑌(𝑠) = 𝐻(𝑠) = 𝐾
1

𝜏𝑠 + 1
 

(3.6) 

 

y(𝑡) = ℒ−1 {𝐾
1

𝜏𝑠 + 1
} =

𝐾

𝜏
𝑒−

𝑡
𝜏 

 

 

(3.7) 

y(𝑡) is the impulse response of any first-order system in the time domain. Figure (3.4) 

represents a unit impulse function, and figure (3.5) represents the impulse response 

function of a first-order system where the transfer function is 
2

2𝑠+1
. 

 

Figure 3.4 : Unit impulse function. 
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Figure 3.5 : The unit impulse response of a first-order TF: 𝐻(𝑠) =  
2

2𝑠+1
. 

The response function takes the value of 𝐾 𝜏⁄  at 𝑡 = 0, and its tangent at 𝑡 = 0 cuts 

the time axis at 𝑡 =  𝜏/𝐾.  

3.3.2 Step response of first order systems 

In order to obtain the step response of the first-order system, inverse Laplace transform 

is applied to the product of transfer function and step function. Unit step function, 

response function, and Laplace transform of the response function are defined in 

equations (3.8), (3.9), and (3.10), respectively. 

𝑋(𝑡) = 1 → 𝑋(𝑠) =
1

𝑠
 

 

(3.8) 

𝑌(𝑠) = 𝑋(𝑠).𝐻(𝑠) =
1

𝑠
. 𝐾

1

𝜏𝑠 + 1
 

 

  (3.9) 

y(𝑡) = ℒ−1 {
1

𝑠
. 𝐾

1

𝜏𝑠 + 1
} = 𝐾𝑒−

𝑡
𝜏 

 

  (3.10) 

Figure (3.6)  represents the unit step function, and figure (3.7) represents the step 

response function of a first-order system when the transfer function is 
2

2𝑠+1
. 



34 

 

 

Figure 3.6 : Unit step function. 

 

Figure 3.7 : Unit step response of a first-order TF: 𝐻(𝑠) =
2

2𝑠+1
. 

The response function takes the value of 0 at 𝑡 = 0, and its tangent cuts the 𝑦 = 𝐾 axis 

at 𝑡 = 𝜏.  

Figure (3.8) represents the first order system's step response using different time 

constants versus the same gain ratio. Figure (3.9) represents the first-order system's 

step response using different gain ratios versus the same time constant. 



35 

 

 

Figure 3.8 : Step response behaviors with different time constant values. 

 

Figure 3.9 : Step response behaviors with different steady-state gains values. 

3.3.3 Ramp response of first order systems 

In order to obtain the ramp response of the first-order system, inverse Laplace 

transform is applied to the product of transfer function and a ramp function. Ramp 

function, response function, and Laplace transform of the response function are 

defined in equations (3.11), (3.12) and (3.13), respectively. 
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𝑋(𝑡) = 𝑡 → 𝑋(𝑠) =
1

𝑠2
 

 

(3.11) 

𝑌(𝑠) = 𝑋(𝑠).𝐻(𝑠) =
1

𝑠2
. 𝐾

1

𝜏𝑠 + 1
 

 

(3.12) 

y(𝑡) = ℒ−1 {
1

𝑠2
. 𝐾

1

𝜏𝑠 + 1
} = 𝐾𝑡 − 𝜏 + 𝜏𝑒−

𝑡
𝜏 

 

(3.13) 

As shown in equation (3.14), 𝑦 = 𝑡 − 𝜏 line is the asymptote of 𝑦(𝑡) and when the 

system reaches its asymptote value, 𝑟(𝑡) − 𝑦(𝑡) = 𝜏 as seen in figure (3.10). This 

difference is named as the dynamic error. 

lim
𝑡→∞

𝑑𝑦(𝑡)

𝑑𝑡
= lim
𝑡→∞

1 − 𝑒−
𝑡
𝜏 = 1 

 

(3.14) 

Figure (3.10) represents the unit ramp impulse function and ramp response function of 

a first-order system where the transfer function is 
1

1𝑠+1
. 

 

Figure 3.10 : Ramp impulse and response of a first-order TF: 𝐻(𝑠) =
1

1𝑠+1
 . 

 Transfer Functions of Second Order Systems 

The second-order system is the name given to systems whose input-output relationship 

and dynamic behavior can be described using the second-order differential equation in 

equation (2.16). Damping ratio and time constant are two parameters that are used to 
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characterize second-order systems. The transfer function of a second-order system can 

be described with equation (2.18). 

Response of any second-order system differs depending on the damping ratio. Three 

different system response occurs, and system responses are described in table (3.1). 

Table 3.1 : System responses with different damping coefficients. 

0 <  <  1 Underdamped system 

 = 1 Critical damped system 

 > 1  Overdamped system 

 

System responses of second-order systems are examined below in detail for both of 

these three damping conditions.  

 Responses of Second Order Systems 

This part contains general response behaviors of second-order systems due to impulse, 

step, and ramp function inputs and summarized from [73]. In the following equations 

given in this section, the steady-state gain 𝐾, is ignored. In order to obtain actual 

system responses, calculated results must be multiplied with steady-state gain. 

3.5.1 Impulse response of second order systems 

Impulse response of any second-order system is equal to the transfer function as in 

first-order systems. Inverse Laplace transformation of equation (2.18) gives the time 

response of a second-order system. However, the system response can be in three 

different forms depending on the damping ratio.  

Figure (3.11) represents the unit impulse responses of the second-order systems with 

different damping ratios. All responses approach to 𝑦 = 0 asymptote at t → ∞. The 

time response of critically and overdamped systems does not exceed the asymptote. 

However, underdamped systems' response takes values both above and below the 

asymptote, and the amount of oscillation varies according to the damping ratio. 
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Figure 3.11 : Unit impulse response of a second-order system. 

3.5.1.1 Impulse response of underdamped second order systems 

When the damping ratio is between 0 and 1, the second-order system's response has 

two conjugate poles, and equation (3.15) represents the system's impulse response in 

the time domain. The oscillation frequency of the system is sin𝜔𝑛√1 − 2 , denoted 

by 𝜔𝑑 and named as the natural frequency of the damped system. 

𝑦(𝑡) =
𝜔𝑛

√1 − 2
𝑒−𝜔𝑛𝑡 sin𝜔𝑛√1 − 2𝑡 

 

(3.15) 

Without the sin𝜔𝑛√1 − 2𝑡 part of the equation (3.15) gives the equation of the curve 

that limits the system's oscillation. If the system is undamped,  = 0, system response 

is; 

𝑦(𝑡) = 𝜔𝑛 sin𝜔𝑛 𝑡 (3.16) 
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3.5.1.2 Impulse response of critically damped second order systems 

When the damping ratio is equal to 1, a second-order system's impulse response has 

two repeated roots. In that case, equation (2.18) can be rewritten as  

𝐻(𝑠) = 𝑌(𝑠) =
𝜔𝑛

2

(𝑠 + 𝜔𝑛)2
 

 

(3.17) 

Inverse Laplace transform of equation (3.17) gives the unit impulse response of a 

critically damped second order system in the time domain as the following equation 

𝑦(𝑡) = 𝜔𝑛
2𝑡𝑒−𝜔𝑛𝑡 (3.18) 

3.5.1.3 Impulse response of overdamped second order systems 

When the damping ratio is greater than 1, a second-order system's impulse response 

has two different real roots. In that case, equation (3.16) can be rewritten as  

𝐻(𝑠) = 𝑌(𝑠) =
𝜔𝑛

2

(𝑠 + 𝜔𝑛 −√
2 − 1𝜔𝑛)(𝑠 + 𝜔𝑛 +√

2 − 1𝜔𝑛)

 

 

(3.19) 

Inverse Laplace transform of equation (3.19) gives the unit impulse response of an 

overdamped second-order system in the time domain as the following equation 

𝑦(𝑡) =
𝜔𝑛

2√2 − 1

𝑒
−(−√2−1)𝜔𝑛𝑡

−
𝜔𝑛

2√2 − 1

𝑒
−(+√2−1)𝜔𝑛𝑡

 

 

(3.20) 

3.5.2 Step response of second order systems 

Step input is defined in equation (3.17), and the system response is defined in the 

following equation.  

𝑌(𝑠) = 𝑋(𝑠).𝐻(𝑠) =
1

𝑠

𝜔𝑛
2

𝑠2 + 2𝜔𝑛𝑠 + 𝜔𝑛2
 

 

(3.21) 

As with the impulse response, the second-order system's step response is seen in three 

different ways depending on the damping ratio. 
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Figure (3.12) represents the step responses of the second-order systems with different 

damping ratios. All responses approach to 𝑦 = 1 asymptote at t → ∞. The time 

response of critically and overdamped systems does not exceed the asymptote. 

However, underdamped systems' response takes values both above and below the 

asymptote, and the amount of oscillation varies according to the damping ratio. 

 

Figure 3.12 : Unit step response of second order systems with different damping 

behaviors. 

3.5.2.1 Step response of underdamped second order systems 

Response of an underdamped second-order system has two conjugate poles, and 

equation (3.22) represents the system's step response in the time domain. The 

oscillation frequency of the system is the same as the impulse response that 

is sin𝜔𝑛√1 − 2 , denoted by 𝜔𝑑 and named as the natural frequency of the damped 

system. 

𝑦(𝑡) = 1 − 𝑒−𝜔𝑛𝑡

(

 cos𝜔𝑑𝑡 +


√1 − 2
sin𝜔𝑑𝑡

)

  

 

 

(3.22) 

If the system is undamped, the system response is; 

𝑦(𝑡) = 1 − cos𝜔𝑛𝑡 (3.23) 
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3.5.2.2 Step response of critically damped second order systems 

Step response of a critically damped second order system has two repeated roots. In 

that case, equation (3.17) multiplies with 1/𝑠, and it represents the step response of 

the system. 

𝑌(𝑠) =
𝜔𝑛

2

𝑠(𝑠 + 𝜔𝑛)2
 

 

(3.24) 

Inverse Laplace transform of equation (3.24) gives the step response of critically 

damped second order system in the time domain as equation (3.25). 

y(𝑡) = ℒ−1 {
𝜔𝑛

2

𝑠(𝑠 + 𝜔𝑛)2
} = 1 − (1 + 𝜔𝑛𝑡)𝑒

−𝜔𝑛𝑡 

 

(3.25) 

3.5.2.3 Step response of overdamped second order systems 

Step response of an overdamped second-order system has two different real roots. In 

that case, equation (3.19) is multiplied by 1/𝑠. Thus, the step response of the system 

is obtained. The result is shown by equation (3.26). 

𝑌(𝑠) =
𝜔𝑛

2

𝑠 (𝑠 + 𝜔𝑛 −√
2 − 1𝜔𝑛)(𝑠 + 𝜔𝑛 +√

2 − 1𝜔𝑛)

 

 

(3.26) 

Inverse Laplace transform of equation (3.26) gives the step response of critically 

damped second order system in the time domain as equation (3.27). 

𝑦(𝑡) = 1 +
𝑒
−(+√2−1)𝜔𝑛𝑡

2√2 − 1( +√2 − 1)

−
𝑒
−(+√2−1)𝜔𝑛𝑡

2√2 − 1( −√2 − 1)

 

 

 

(3.27) 

 Bode Plot 

Bode plot represents the gain and phase of a system as a function of frequency. The 

horizontal axis is logarithmic and represents frequency. The vertical axis is the 

amplitude in the dB unit. The system's phase angle is also shown linearly versus the 

logarithm of the frequency [73]. 
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3.6.1 Bode plot of first order systems 

The magnitude of the transfer function of the first-order system, which is given its 

general form in equation (3.4) determined by letting 𝑠 → 𝑗𝜔 is shown in equation 

(3.28). (𝜏 is assumed to be 1). 

|𝐻(𝑗𝜔)| = √𝜔2 + 1 (3.28) 

As can be clearly seen from figure (3.13), the magnitude functions of first-order 

systems are pretty different above and below the 𝜔 = 1 point. Below the 𝜔 = 1 the 

function is constant and equal to 0 dB. On the other hand, above the 𝜔 = 1 magnitude 

of the transfer function decreases as −20 log𝜔 in dB as a straight line. The two straight 

line meets at a frequency corresponding to the pole location named as the breakpoint. 

The magnitude of the transfer function is equal to -3 dB at this point. 

 

Figure 3.13 : Magnitude plot of a first-order TF: 𝐻(𝑠) =
1

𝑠+1
. 

The phase angle of a transfer function is as important as the magnitude. It shows the 

phase change of sine waves that as they pass through the network. Phase versus 

frequency plot constitutes the second part of bode plots named as the bode phase plots. 

The phase of a first order transfer function can be found with equation (3.29) 

𝐻(𝑗𝜔) = − tan−1(𝜔) (3.29) 
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Figure (3.14) represents the phase plot of a first-order transfer function. Phase plot has 

an asymptotic behavior at 𝜔 = 1 line. Below the 𝜔 = 1 the phase change of the 

function starts from 0° to -45°. On the other hand, above the 𝜔 = 1 phase change of 

the transfer function starts from -45° to -90°. 

 

Figure 3.14 : Phase plot of a first-order TF: 𝐻(𝑠) =
1

𝑠+1
. 

3.6.2 Bode plot of second order systems 

This section focuses only on second-order underdamped systems. Poles location of 

equation (3.18) can be described as ; 

𝑠 = −𝜔𝑛 ± 𝜔𝑛√
2 − 1 

 

(3.30) 

When the second-order system is underdamped, the frequency response's amplitude is 

given in equation (3.31). 

|𝐻(𝑗𝜔)| =
𝜔𝑛

2

|𝜔𝑛2 − 𝜔2 + 𝑗2𝜔𝑛𝜔|
=

1

𝜔𝑛2√(𝜔𝑛2 − 𝜔2)2 + 4
2𝜔𝑛2𝜔2

 

 

(3.31) 

Figure (3.15) represents the amplitude of second-order underdamped transfer 

functions with different damping ratios. Asymptotic behavior can be seen on both sides 

of the 𝜔 = 𝜔𝑛 line. Breaking point 𝜔𝑛 is named as 'corner frequency'. When 𝜔 ≪ 𝜔𝑛, 
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the magnitude of the function is 0. On the other hand, when 𝜔 ≫ 𝜔𝑛, the magnitude 

of the function is equal to −20 log𝜔2. 

 

Figure 3.15 : Magnitude plot of a second-order TF: 𝐻(𝑠) =
𝜔𝑛

2

𝑠2+2𝜔𝑛𝑠+𝜔𝑛2
. 

The phase of a second-order transfer function can be found with equation (3.32) 

𝐻(𝑗𝜔) = − tan−1 (
2𝜔𝑛𝜔

𝜔𝑛2 − 𝜔2
) 

 

(3.32) 

Figure (3.16) represents the phase plot of a second-order transfer function. The phase 

angle for the second-order transfer functions starts from 0° and ends with -180°. As 

the damping factor decreases, the slope starts to increase, and the plot becomes parallel 

to the asymptote. Moreover, all curves pass the mid-point of the phase jump regardless 

of damping values. 
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Figure 3.16 : Phase plot of a second-order TF: 𝐻(𝑠) =
𝜔𝑛

2

𝑠2+2𝜔𝑛𝑠+𝜔𝑛2
. 

 Time Response Characteristics 

This section contains essential time response characteristics of an underdamped 

second-order transfer function. The response is drawn, and common terms are listed 

below in figure 3.17 [74]. 

 

Figure 3.17 : Time response characteristics of an underdamped second-order system. 
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1. Delay time (td) is the time required to reach 50% of its final value by a time 

response signal during the first cycle of oscillation. 

2. Rise time (tr) is the time required to reach its final value for an underdamped 

system by a time response signal during the first cycle of oscillation. If the 

system is overdamped, the rise time is defined as the time it takes to reach from 

10% to 90% of its final value.  

3. Peak time (tp) is the time required for the first peek or first overshot by a time 

response signal. 

4. Maximum overshoot (Mp) is the difference between the magnitude of the peak 

of time response and the magnitude of its steady-state. Maximum percent 

overshoot is defined by 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 =
𝑐(𝑡𝑝) − 𝑐(∞)

𝑐(∞)
 

 

(3.33) 

5. Settling time (ts) is the time required to reach and limit within 2% and 5% of 

its final value by a time response. 

6. Steady-state error (ess) is the difference between actual output and desired 

output at the infinite range of time as defined in equation (3.34). 

𝑒𝑠𝑠 = lim
𝑡→∞

[𝑟(𝑡) − 𝑐(𝑡)] (3.34) 
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 NUMERICAL STUDY 

Two different finite element models were created in SAP2000 for the numerical study. 

The first one is a model whose dimensions and story weights are adjusted to represent 

a model for laboratory tests. The second one is a full-scale model of a 10 story building. 

Relation between story damage and parameter changes in the transfer functions of the 

first three modes were investigated. Section (4.1) and section (4.2) describe the details 

and results of the numerical studies. 

The flowchart showing the operations performed in numerical studies is represented 

in figure (4.1). The correction in step six of this flowchart need not always be made. 

If permanent displacement is obtained as a result of time history analysis, a correction 

must be made. In addition, it can be done to obtain more accurate results during the 

determination of the numerator values of the transfer function. 

 

Figure 4.1 : Flowchart representing the operations performed in numerical studies. 
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 Laboratory Model 

4.1.1 Model properties 

A finite element model that is symmetrical in both X and Y direction of a 5-story 

building was created. Each story has 0.5 m height (h1), 1.5 kg mass and 5 kg additional 

mass (m1). Columns of the undamaged structure are represented by steel bars with a 

diameter of 0.012 m. The distance of the bars to each other in both directions is 0.4 m 

(w1). Steel bars continue 0.1 m more after the top story (h2). Each story has a 0.5 m 

length (w2). Figure (4.2) represents the side view of the FEM model. 

Period values of the first three modes of the intact numerical model are shown in s 

unit, and frequency values in both s-1 and rad·s-1 unit are represented in Table (4.1).   

 

Figure 4.2 : Side view of the FE model. 
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Table 4.1 : Period, frequency and mode participation ratio values of the intact 

structure's first three modes. 

Intact 

Structure 

T f 𝝎 Mode 

Participation 

Ratios 
(s) s-1 rad·s-1 

Mode 1 0.230 4.342 27.28 87.70% 

Mode 2 0.079 12.697 79.78 8.80% 

Mode 3 0.050 20.080 126.17 2.50% 

4.1.2 Input and output data 

The transfer function of each floor has been calculated separately. The input of each 

transfer function is theoritical ground acceleration that is the unit step function for this 

study, and outputs are the story displacements. Figure (4.3) and figure (4.4) represent 

the input and output function for the first floor of the undamaged structure, 

respectively. The unit step function consists of 20-second unit acceleration followed 

by a 10-second stationary period. As a result, while no change was observed in the 

story displacements for the first 10 seconds, an oscillatory motion was monitored for 

the last 20 seconds as expected in second-order systems.  

 

Figure 4.3 : Unit step input. 
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Figure 4.4 : Step response of the first floor. 

4.1.3 Derivation of the transfer function parameters 

In this study, transfer functions for each story's first three modes are derived with Cross 

Power Spectral Density (CPSD) of input and output signal divided by auto power 

spectral density of input signal, as shown in equation (3.1). 

In order to obtain the total behavior of the model, the transfer functions of all modes 

of the model are collected linearly. Since the transfer functions of only the first three 

modes are studied in the model, the sum of these functions results in very close to 

actual behavior. Equation (4.1) represents the summation of transfer functions of the 

first three modes.  

 
 𝑇𝑇𝐹= ∑

𝐾𝑖𝜔𝑖𝑛
2

𝑠2+2𝜔𝑖𝑛𝑠+𝜔𝑖𝑛
2

3

𝑖=1
 

 

(4.1) 

Where 𝐾𝑖 and 𝜔𝑖𝑛 are the steady-state gain (in structural engineering, 𝐾𝑖 is named as 

effective stiffness for the equivalent single-degree-of-freedom system representing 

first vibration mode) and natural frequency of i-th mode, respectively.  is the damping 

ratio. In this study, the damping ratio of all modes was accepted as 2%. This value is 

considered reasonable since steel bars are used to represent columns. 
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While calculating CPSD and APSD, the 'cpsd' command was used in MATLAB. It is 

necessary to specify a certain window length and overlap percentage for this 

command. Transfer function graphs obtained with different window lengths and 

overlap percentage combinations are given in figure (4.5) and figure (4.6). 

The curve fitting toolbox of MATLAB was used to determine the optimum window 

length and overlap percentage. Thus, the values that best fit the transfer function plot 

and had the highest R2 value were selected. In this study, appropriate window length 

and overlap percentage were determined as 800 and %90, respectively.  

 

Figure 4.5 : Logarithmic transfer function graphs with 0%, 25%, 50% and 75% 

overlap when window length is 128. 

  

Figure 4.6 : Logarithmic transfer function graphs with 0%, 25%, 50% and 75% 

overlap when window length is 512. 
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Since the transfer function of a structure represents that structure's characteristic 

property, it is independent of the input function. Transfer functions of the first floor of 

the undamaged structure were obtained using different inputs such as 1940 El Centro 

Earthquake , unit step, and unit impulse. Figure (4.7) represents the logarithmic plot 

of the first three modes of the transfer function obtained from the undamaged 

structure's first floor.  

 

Figure 4.7 : Transfer function plots obtained from the first floor data with different 

inputs. 

Since the frequency range is set to cover the first three modes, only these are visible 

in figure (4.7). The natural frequencies of these modes are 27.28, 79.78, and 126.17 

rad/s. The peaks of the transfer function appear in the places corresponding to these 

frequencies in the figure. The reverse peaks that arise between the modes included in 

the transfer functions indicate that successive transfer functions have the same sign. 

Moreover, the sign of the transfer function's numerator value refers to the difference 

in direction between input and output signal. 

Sine waves of different frequencies were observed spread over transfer functions of 

high-frequency modes. Therefore, it became difficult to determine the transfer 

functions of high-frequency modes accurately. MATLAB's Curve Fitting Toolbox was 

used to find the transfer function parameters. The R2 coefficient was used for the 

consistency of the graph. Figures (4.8), (4.9), and (4.10) represent the parameters 

corresponding to the first three modes of the transfer function obtained from the first 

floor of the undamaged structure using Curve Fitting Toolbox, respectively. 
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Figure 4.8 : Parameter estimation graph of the first mode of the transfer function 

obtained from the first floor of the undamaged structure. 

 

Figure 4.9 : Parameter estimation graph of the second mode of the transfer function 

obtained from the first floor of the undamaged structure. 
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Figure 4.10 : Parameter estimation graph of the third mode of the transfer function 

obtained from the first floor of the undamaged structure. 

While estimating the transfer function parameters reflecting the third mode, the sine 

waves' effect is more than the first two modes. Therefore, the R2 value of the third 

mode is less than the other two modes. When figure (4.10) is examined, independent 

of the transfer function, a sine wave with constant frequency appears. Obtained transfer 

function parameters for the first three modes and R2 values are given in table (4.2). 

Table 4.2 : Calculated transfer functions and R2 values of the first story for the 

undamaged model. 

 

Mode 1st mode  2nd mode 3rd mode 

 

TF 
−0.344

𝑠2 + 1.091𝑠 + 744.2
 

−0.240

𝑠2 + 3.191𝑠 + 6364
 

−0.130

𝑠2 + 5.048𝑠 + 15926
 

 

R2 0.996 0.987 0.709 

4.1.4 Damage cases 

In this numerical study, the effect of both single and multiple story damage cases on 

transfer function parameter changes was investigated. A total of 47 damage cases were 

examined—40 of them to detect single-story damage and 7 of them to detect multi-

story damage.  
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Story damages were represented by an equal reduction in all columns' moment of 

inertia belonging to that story. In single-story damage cases, each story was damaged 

up to 80% individually.  When investigating multi-story damages, the primary purpose 

is to determine the location and level of the damage occurring in the lower stories. The 

damage resulting from the earthquake excitation is expected to be concentrated on the 

building's lower stories. Thus, all multi-story damage combinations were distributed 

among the lower stories. Table (4.3) contains the damage cases investigated in this 

study. 

Table 4.3 : Damage cases. 

Case 

Number 

Story Damage % Case 

Number 

Story Damage % 

1 2 3 4 5 1 2 3 4 5 

1 - - - - - 25 - - 80% - - 

2 10% - - - - 26 - - - 10% - 

3 20% - - - - 27 - - - 20% - 

4 30% - - - - 28 - - - 30% - 

5 40% - - - - 29 - - - 40% - 

6 50% - - - - 30 - - - 50% - 

7 60% - - - - 31 - - - 60% - 

8 70% - - - - 32 - - - 70% - 

9 80% - - - - 33 - - - 80% - 

10 - 10% - - - 34 - - - - 10% 

11 - 20% - - - 35 - - - - 20% 

12 - 30% - - - 36 - - - - 30% 

13 - 40% - - - 37 - - - - 40% 

14 - 50% - - - 38 - - - - 50% 

15 - 60% - - - 39 - - - - 60% 

16 - 70% - - - 40 - - - - 70% 

17 - 80% - - - 41 - - - - 80% 

18 - - 10% - - 42 30% 10% - - - 

19 - - 20% - - 43 30% 30% - - - 

20 - - 30% - - 44 50% 10% - - - 

21 - - 40% - - 45 50% 30% - - - 

22 - - 50% - - 46 30% 20% 10% - - 

23 - - 60% - - 47 50% 30% 10% - - 

24 - - 70% - - 48 20% 20% 20% - - 
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The selected window length and overlap ratio affect the gain rate of the transfer 

functions. In addition, a permanent displacement is observed in the floors as a result 

of the unit step function. In order to reach the closest results to the actual response of 

the model, a story behavior should be obtained by using the transfer functions in table 

(4.2), and this behavior should be compared with the precise response of the relevant 

floor and multiplied by a correction coefficient that reflects the difference between 

them. The correction percentages of the transfer functions found in this study are given 

in table (4.4). Corrected transfer functions of the first story for the undamaged model 

are represented in table (4.5). 

Table 4.4 : Correction percentages of the transfer functions. 

Case 

Number 

Story Case 

Number 

Story 

1 2 3 4 5 1 2 3 4 5 

1 6.1% 3.6% 3.5% 4.1% 3.6% 25 8.0% 5.1% 4.0% 3.9% 4.3% 

2 6.4% 4.2% 3.7% 3.8% 4.4% 26 6.7% 3.9% 3.5% 3.7% 3.9% 

3 6.2% 4.3% 3.7% 3.9% 4.3% 27 6.7% 4.4% 3.8% 3.7% 3.9% 

4 5.7% 4.1% 3.9% 3.9% 4.4% 28 6.9% 4.3% 3.8% 3.9% 4.2% 

5 5.5% 4.3% 4.1% 4.1% 4.6% 29 7.2% 4.6% 3.9% 3.7% 4.1% 

6 5.1% 4.1% 3.9% 3.8% 4.3% 30 7.6% 5.0% 4.1% 3.8% 4.4% 

7 4.5% 4.0% 3.8% 4.1% 4.2% 31 9.1% 6.5% 6.3% 5.8% 6.9% 

8 4.5% 3.9% 2.1% 3.8% 5.7% 32 7.8% 5.1% 4.3% 4.0% 4.0% 

9 5.9% 5.4% 5.6% 5.7% 5.6% 33 7.8% 5.2% 4.4% 4.0% 4.1% 

10 7.2% 4.1% 3.6% 3.7% 4.2% 34 6.3% 3.8% 3.1% 3.2% 3.6% 

11 7.3% 4.0% 3.8% 3.7% 4.2% 35 6.7% 3.9% 3.5% 4.6% 3.8% 

12 7.7% 4.2% 4.0% 3.9% 4.6% 36 7.4% 4.2% 3.5% 3.9% 4.2% 

13 7.7% 4.0% 3.9% 3.8% 4.5% 37 7.6% 4.3% 3.8% 3.6% 4.6% 

14 8.0% 3.9% 3.9% 3.8% 4.5% 38 7.8% 4.4% 3.9% 3.5% 4.5% 

15 7.9% 3.9% 4.1% 4.2% 4.9% 39 8.0% 4.7% 3.9% 3.5% 4.4% 

16 8.0% 3.7% 3.8% 4.0% 4.4% 40 8.2% 4.4% 3.8% 3.6% 4.2% 

17 9.0% 4.9% 5.3% 5.4% 5.9% 41 8.9% 5.3% 4.7% 4.4% 4.3% 

18 6.9% 4.2% 3.6% 3.6% 4.2% 42 5.9%         

19 6.9% 4.2% 3.7% 3.8% 4.2% 43 6.4%      

20 7.6% 4.5% 3.7% 3.9% 4.4% 44 5.1%      

21 8.0% 4.8% 1.0% 4.0% 4.6% 45 5.5%      

22 7.6% 4.8% 3.8% 3.9% 4.7% 46 6.7%      

23 7.6% 4.7% 4.0% 4.0% 4.7% 47 5.3%      

24 8.2% 4.9% 3.8% 3.9% 4.4% 48 7.0%      
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Table 4.5 : Corrected transfer functions of the first story for the undamaged model.  

 

Mode 1st mode  2nd mode 3rd mode 

 

TF 
−0.365

𝑠2 + 1.091𝑠 + 744.2
 

−0.255

𝑠2 + 3.191𝑠 + 6364
 

−0.138

𝑠2 + 5.048𝑠 + 15926
 

 

R2 0.996 0.987 0.709 

MATLAB's system identification toolbox was used to determine how accurately the 

transfer function simulates the model's motion. Figure (4.11) compares the first story 

displacement and the displacement behavior represented by the transfer function 

obtained from the undamaged structure's first story. The transfer function reflected the 

displacement behavior of the first story by 97.3%.  

The transfer functions of the second, third, fourth, and fifth stories simulated the 

respective story's displacement behavior at a rate of 97.5%, 98.2%, 98.3%, and 98.8%, 

respectively. 

 

Figure 4.11 : Reflected displacement behavior of the first story. 

It was thought that equalizing the displacements in the final state by adding a number 

instead of multiplying the transfer function with the correction coefficient could better 

represent the story behavior. The required number for the transfer function of the 
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undamaged structure obtained from the first floor was found as 3.1x10-5 and added to 

the first obtained transfer function. In figure (4.12), it is seen that the transfer function 

obtained from the first floor with the added number represents the floor behavior. 

However, it was revealed by comparing the percentages in figure (4.11) and figure 

(4.12) that adding a number to the transfer function does not consistently represent the 

floor behavior. 

 

Figure 4.12 : Reflected displacement behavior with the added number of the first 

story. 

4.1.5 Transfer function parameter changes 

Numerator differences between transfer functions obtained from the undamaged and 

damaged structures are represented by equation (4.2). Since the damping ratio is 

considered constant, it is sufficient to investigate the change in one of the denominator 

values. A mathematical representation of the difference in the denominator for the 

damage cases is given in equation (4.3).  

 

∆𝑁𝑢𝑚𝑖𝑗 =∑𝐾1𝑗𝜔𝑛1𝑗
2 − 𝐾𝑖𝑗𝜔𝑛𝑖𝑗

2

𝑑

𝑖=2

       𝑗 = 1,… ,𝑚 

 

(4.2) 

 

∆𝐷𝑒𝑛𝑖𝑗 =∑2𝜔𝑛1𝑗 − 2𝜔𝑛𝑖𝑗

𝑑

𝑖=2

               𝑗 = 1, … ,𝑚 

 

(4.3) 



59 

Where, m and d are the mode and damage case numbers considered in the studies, 

respectively. 𝐾1𝑗𝜔𝑛1𝑗
2 is the numerator value of the jth mode of the transfer function 

representing the intact model. 𝐾𝑖𝑗𝜔𝑛𝑖𝑗
2 is the numerator value of the jth mode of the 

transfer function representing the ith damage condition. 

In cases where only the first story is damaged up to 80% (From case number 2 to 9), 

numerator values of the first, second, and third modes of the transfer functions 

obtained from each floor are represented in figures (4.13), (4.14), and (4.15), 

respectively. When figure (4.13) is examined, the numerator of the first mode of the 

transfer functions obtained from the first three floors decreases as the damage 

increases, while that of the fourth and fifth floors increases. The change in numerator 

values of the transfer function obtained from the first and second floors is remarkably 

more than the other floors. The numerator values of the second mode of the transfer 

functions obtained from the first floor decreased slightly at first but then increased 

again. On the other hand, while the numerator values of the second mode of the transfer 

function obtained from the second and third floors increase as the damage increases, 

the numerator of the fourth floor's transfer function remains almost constant, and the 

numerator of the fifth floor's transfer function decreases as seen in figure (4.14).  

When the numerator values of the transfer functions representing the third mode are 

examined in figure (4.15), the change in numerators is much less than other modes, 

and the numerator values gradually approach 0 as the final value. It is also found to be 

more wavy changes rather than straight like the first two modes. 
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Figure 4.13 : 1st story damage percentage versus TF numerators of 1st mode.  

 

Figure 4.14 : 1st story damage percentage versus TF numerators of 2nd mode.  
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Figure 4.15 : 1st story damage percentage versus TF numerators of 3rd mode.  

In the cases where only the second story is damaged up to 80% (From case number 10 

to 17), the numerator values of the first, second, and third modes of the transfer 

functions obtained from each floor are given in figures (4.16), (4.17) and (4.18), 

respectively. It is observed that the numerator of the transfer function obtained from 

the first floor increases with damage of the second story as seen in figure (4.16), 

considering the transfer function changes of the first mode, unlike the cases where only 

the first story is damaged. That can be defined as a direction change, an essential 

indicator of the lower story's damage distribution. The other four floors' transfer 

functions' numerators changes similar to when the first floor is damaged. The change 

of the transfer functions' numerators reflecting the second mode is similar to the case 

where the first story is damaged, even when the second story is damaged. When the 

changes of the numerators of the transfer functions reflecting the third mode are 

examined, it is observed that there is a severe change in direction and magnitude of 

the one belonging to the first floor. On the other hand, those belonging to other floors 

do not change with the damage. 
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Figure 4.16 : 2nd story damage percentage versus TF numerators of 1st mode.  

 

Figure 4.17 : 2nd story damage percentage versus TF numerators of 2nd mode.  
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Figure 4.18 : 2nd story damage percentage versus TF numerators of 3rd mode.  

In the cases where the only third story is damaged up to 80% (From case number 18 

to 25), the numerator values of the first, second, and third modes of the transfer 

functions obtained from each floor are given in figures (4.19), (4.20) and (4.21), 

respectively. The cases where only the second and only the third story are damaged 

were compared to examine the transfer functions' numerators' change reflecting the 

first mode. The apparent difference is the direction change of the transfer function's 

numerator obtained from the second floor. It starts to increase with damage, same as 

the nominator of the transfer function obtained from the first floor.  

Moreover, the transfer function's numerator representing the second mode and 

obtained from the second floor is changed its direction and starts to decrease similar 

to obtained from the first floor. When the numerator changes of the transfer function 

representing the third mode are examined, it is quite apparent that there is no 

dependency between change and damage apart from the one obtained from the first 

floor. Numerator value obtained from the first floor decreases as the damage increases. 
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Figure 4.19 : 3rd story damage percentage versus TF numerators of 1st mode.  

 

Figure 4.20 : 3rd story damage percentage versus TF numerators of 2nd mode.  
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Figure 4.21 : 3rd story damage percentage versus TF numerators of 3rd mode.  

In the cases where the only fourth story is damaged up to 80% (From case number 26 

to 33), the numerator values of the first, second, and third modes of the transfer 

functions obtained from each floor are given in figures (4.22), (4.23) and (4.24), 

respectively. When these cases are compared with the previous ones to determine the 

transfer function's numerator reflecting the first mode, the only difference is the 

direction and magnitude change of the numerator of the transfer function obtained 

from the third floor. These changes are directly proportional to the damage. The 

numerators of transfer functions reflecting the second mode and obtained from the first 

three floors decrease as the damage increases. In contrast, numerators of transfer 

functions obtained from the fourth floor increase slightly, the ones obtained from the 

fifth floor do not change. The numerators of transfer functions reflecting the third 

mode obtained from all floors change very limitedly with the damage. Therefore, the 

numerator changes of transfer functions reflecting the third mode are insufficient to 

define the damage's location and level. 
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Figure 4.22 : 4th story damage percentage versus TF numerators of 1st mode.  

 

Figure 4.23 : 4th story damage percentage versus TF numerators of 2nd mode.  
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Figure 4.24 : 4th story damage percentage versus TF numerators of 3rd mode.  

In the cases where the only fifth story is damaged up to 80% (From case number 34 to 

41), the numerator values of the first, second, and third modes of the transfer functions 

obtained from each floor are given in figures (4.25), (4.26) and (4.27), respectively. 

According to figure (4.25), although the transfer functions' numerators representing 

the first mode obtained from all floors change negligibly initially, the first four floors' 

numerator tends to increase as the damage increases. In contrast, the numerator of the 

fifth floor tends to decrease with damage increases. When the numerators of the 

transfer functions representing the second mode are examined, it is seen that while the 

damage increases, the one obtained from the fourth floor decreases, and the one 

obtained from the fifth floor increases. Although there is little change in the transfer 

functions' numerators representing the third mode as in the other damage cases, the 

numerator obtained from the fourth floor tends to increase, unlike the others. 
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Figure 4.25 : 5th story damage percentage versus TF numerators of 1st mode.  

 

Figure 4.26 : 5th story damage percentage versus TF numerators of 2nd mode.  
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Figure 4.27 : 5th story damage percentage versus TF numerators of 3rd mode.  

It can be said that a linear relationship can be constructed between the numerators of 

the transfer functions representing the first mode and the damage percentages of the 

stories, considering all these single-story damage cases described in table (4.5) and the 

changes of the numerators of the transfer functions. In addition, there is a change in 

directions to the numerators representing the first mode of the transfer functions 

obtained from floors below the damaged story. Numerators start to increase, 

considering figures (4.13), (4.16), (4.19), (4.22), and (4.25) together. Thus, when the 

damage occurs in a single story, it is possible to determine the damaged story by 

calculating the numerator change reflecting the first mode of the damaged floor's 

transfer function and the floor below it.  

4.1.6 Linearity between numerator change and damage up to 80% 

The linearity ratio of the transfer function's numerator change with the story damage 

from 0% to 80% is examined and represented in table (4.6). In order to obtain a lower 

error percentage in results, the linearity ratio of more than 90% was determined as a 

priority. As the second priority, it was specified that the coefficient in the linear 

relationship should be higher than a certain level. The higher the linearity coefficient, 

the greater the numerator change as a result of the damage. Therefore 0.5 and 0.2 were 
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determined as essential limits for the coefficient. Table (4.7) shows the coefficients in 

the linearity. In Table (4.6) and Table (4.7), the boxes with numbers that fulfill these 

conditions are colored. The green color represents the case where both the linearity is 

over 90% and the coefficient is greater than 0.5, while the yellow color represents the 

case where the linearity is above 90% and the coefficient is between 0.2 and 0.5. Colors 

represent the same consistency ratio. The difference between the two colors is only the 

level of the numerator change caused by the damage. The green color represents a 

numerator change of more than 50% of the damage in percentage, while the yellow 

color represents numerator change from 20% to 50% of the damage. 

Table 4.6 : Linearity percentages between numerator change and damage from 0% 

to 80%. 

Numerators 
Damaged Story  

1 2 3 4 5 

1st Story 1st Mode TF 94.2% 91.0% 89.0% 80.4% 70.1% 

2nd Story 1st Mode TF 96.9% 94.5% 88.2% 78.9% 69.4% 

3rd Story 1st Mode TF 98.8% 97.7% 95.8% 79.4% 71.7% 

4th Story 1st Mode TF 82.3% 92.6% 72.6% 82.5% 76.0% 

5th Story 1st Mode TF 81.4% 87.3% 67.9% 68.1% 80.8% 

1st Story 2nd Mode TF 45.1% 92.0% 90.3% 65.3% 92.0% 

2nd Story 2nd  Mode TF 90.9% 74.8% 88.3% 80.6% 79.9% 

3rd Story 2nd  Mode TF 96.9% 65.4% 71.9% 84.6% 83.0% 

4th Story 2nd Mode TF -5.0% 28.2% 50.3% 99.6% 87.0% 

5th Story 2nd  Mode TF 79.6% 83.1% 27.7% -24.8% 90.5% 

1st Story 3rd Mode TF 96.7% 87.0% 98.2% 87.6% 70.0% 

2nd Story 3rd  Mode TF 44.5% -83.8% -1.1% -28.8% 77.6% 

3rd Story 3rd Mode TF 91.1% -1.5% 7.4% 93.2% 84.4% 

4th Story 3rd Mode TF 80.5% 73.9% 91.7% 74.1% 97.5% 

5th Story 3rd Mode TF 96.4% -12.0% 22.0% 62.6% 8.0% 

The linearity percentages between the change of the transfer functions' numerators and 

the story damage are given in Table (4.6). While the damages in the first, second, third, 

and fifth stories can be determined using only the first floor data, using the data 

obtained from the third or fourth floors will give the closest result for the possible 

damage situation on the fourth story. Damages on the first and second stories, damages 

on the first and fourth stories, damages on the third, fourth, and fifth stories, and 

damages on the first and fifth stories can be determined with the data obtained from 
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the second, third, fourth, and fifth floor, respectively. In table (4.8), the efficiency of 

the data obtained from the floors is separated by color.  

Moreover, it has been shown that the data obtained from each floor are influential in 

determining which stories are damaged. In this way, it was revealed how consistent 

this method would give results with the floors' data. It was observed that the data 

obtained from the lower floors were more effective when determining the damage.  

Especially utilizing the first floor data, it was observed that seven different linear 

relationships could be established for damage assessment. On the other hand, it was 

seen that no more than three relationships could be established for the other floors' 

data. 

Table 4.7 : Linearity coefficients between numerator change versus damage from 

0% to 80%. 

Linearity Coefficients, a [ΔNum(%) = a x D(%)] 

Numerators 
Damaged Story 

1 2 3 4 5 

1st Story 1st Mode TF -1.204 0.569 0.523 0.380 0.133 

2nd Story 1st Mode TF -0.364 -0.302 0.509 0.365 0.130 

3rd Story 1st Mode TF -0.076 -0.051 -0.072 0.358 0.131 

4th Story 1st Mode TF 0.060 0.071 0.031 -0.064 0.135 

5th Story 1st Mode TF 0.094 0.098 0.049 -0.055 -0.145 

1st Story 2nd Mode TF 0.242 0.690 -0.991 -0.286 0.398 

2nd Story 2nd  Mode TF 0.654 0.302 -1.231 -0.688 0.194 

3rd Story 2nd  Mode TF 0.934 0.299 0.486 -2.316 -0.695 

4th Story 2nd Mode TF -0.024 -0.191 0.299 1.151 -3.064 

5th Story 2nd  Mode TF -0.474 -0.311 -0.115 0.080 0.644 

1st Story 3rd Mode TF 0.889 -2.938 0.892 -0.504 -0.578 

2nd Story 3rd  Mode TF 1.119 0.809 0.377 0.049 -1.973 

3rd Story 3rd Mode TF -0.860 0.197 -0.076 0.449 -0.559 

4th Story 3rd Mode TF -0.853 -0.662 -0.876 -0.678 3.373 

5th Story 3rd Mode TF -0.808 0.294 -0.133 -0.340 -0.109 
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Since we expect the damage to be concentrated on the buildings' lower stories, 

examining the lower stories' transfer function changes by placing accelerometers on 

the lower floors will give the most accurate result for this method.  

Table 4.8 : Efficiency of the transfer functions obtained from the floors. 

(Linearity from 0% to 80%) 

TF obtained 

from 

# of 

equations 

# of 

equations 

Damage 

detectable stories 

1st Floor  6 1 1,2,3,5 

2nd Floor  1 2 1,2 

3rd Floor 2 1 1,4 

4th Floor 3 0 3,4,5 

5th Floor 2 0 1,5 

Numerators of the transfer functions representing the first mode shown in figures 

(4.13), (4.16), (4.19), (4.22), and (4.25) are examined in detail. It was observed that 

when the damage increases to high levels, the relationship becomes far from linear. As 

a result, another study was conducted by reducing linearity assumption from 80% to 

60% in order to detect lower levels of damage more consistently. As expected, a 

significant increase in linearity ratios was observed. Consequently, the damage 

detection efficiency of the obtained data at different floors increased. 

4.1.7 Linearity between numerator change and damage up to 60% 

Table (4.9) represents the linearity ratios between numerator changes and story 

damages from 0% to 60%. Compared to table (4.7), there is an increase in the amount 

of linearity obtained from the lower floors as well as an increase in the linearity ratios 

in general. The linearity ratio between numerators of the first mode of the transfer 

functions obtained from the first and second floor increases in the upper story damages. 

For example, in the first story damage, the linearity ratio between the numerator of the 

first mode of the transfer function obtained from the first floor and the damage 

increased from 94.2% to 96.8%, besides linear representation of fourth story damage 

increased from 80.4% to 94%. 
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Table 4.9 : Linearity percentages between numerator change and damage from 0% 

to 60%. 

Numerators 
Damaged Story 

1 2 3 4 5 

1st Story 1st Mode TF 96.8% 95.6% 94.5% 94.0% 90.2% 

2nd Story 1st Mode TF 98.2% 97.5% 93.9% 92.7% 86.7% 

3rd Story 1st Mode TF 98.7% 96.6% 95.7% 94.5% 91.5% 

4th Story 1st Mode TF 90.2% 95.2% 37.2% 70.0% 89.2% 

5th Story 1st Mode TF 88.2% 95.0% 78.9% 77.0% 93.1% 

1st Story 2nd Mode TF -0.5% 94.2% 94.9% 66.8% 85.8% 

2nd Story 2nd  Mode TF 92.8% 79.7% 94.7% 90.0% 74.1% 

3rd Story 2nd  Mode TF 94.3% 68.4% 58.5% 94.1% 88.8% 

4th Story 2nd Mode TF -40.2% -14.8% 86.2% 99.5% 83.9% 

5th Story 2nd  Mode TF 76.8% 94.4% -7.9% 52.0% 91.9% 

1st Story 3rd Mode TF 95.6% 90.0% 97.1% 83.0% 58.6% 

2nd Story 3rd  Mode TF 61.2% 38.4% -50.2% -86.1% 65.6% 

3rd Story 3rd Mode TF 98.9% 74.4% -8.3% 97.7% 80.7% 

4th Story 3rd Mode TF 66.5% 70.1% 85.6% 66.0% 99.0% 

5th Story 3rd Mode TF 94.3% 98.2% -76.0% 45.8% -18.7% 

Table 4.10 : Linearity coefficients between numerator change versus damage from 

0% to 60%. 

Linearity Coefficients, a        ΔNum (%) = a x D (%) 

Numerators 
Damaged Story 

1 2 3 4 5 

1st Story 1st Mode TF -1.027 0.460 0.409 0.257 0.077 

2nd Story 1st Mode TF -0.327 -0.259 0.392 0.239 0.072 

3rd Story 1st Mode TF -0.078 -0.047 -0.064 0.237 0.078 

4th Story 1st Mode TF 0.044 0.062 0.023 0.060 0.089 

5th Story 1st Mode TF 0.067 0.074 0.025 -0.069 -0.100 

1st Story 2nd Mode TF 0.022 0.571 -0.793 -0.153 0.366 

2nd Story 2nd  Mode TF 0.527 0.193 -0.955 -0.483 0.204 

3rd Story 2nd  Mode TF 0.892 0.161 0.300 -1.712 -0.521 

4th Story 2nd Mode TF 0.155 -0.183 0.416 1.146 -2.402 

5th Story 2nd  Mode TF -0.312 -0.219 0.055 0.146 0.553 

1st Story 3rd Mode TF 0.815 -2.246 0.850 -0.402 -0.324 

2nd Story 3rd  Mode TF 1.373 1.323 0.190 0.401 -1.343 

3rd Story 3rd Mode TF -0.682 0.454 0.158 0.506 -0.425 

4th Story 3rd Mode TF -0.817 -0.389 -0.864 -0.419 3.047 

5th Story 3rd Mode TF -0.745 0.547 0.086 -0.138 0.255 
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When table (4.11) and table (4.8) are compared, it is seen that a more linear 

relationship can be establish with the data obtained from all floors except the fourth 

floor, which can be used in damage assessment. Simultaneously, with the data 

observed from the first and second floors, it is discovered that the single-story damages 

that occurred in the first four stories can be determined. Besides, it is seen that the fifth 

story damage can be determined with the data obtained from the fourth and fifth floors. 

When it is assumed that the relationship between the damage and the numerator change 

is linear up to 60% damage, it is determined that the relations with higher linearity 

percentages can be established, especially for the data obtained from the lower floors. 

Table 4.11 : Efficiency of the transfer functions obtained from the floors. 

(Linearity from 0% to 60%) 

TF obtained 

from 

 # of 

equations 

 # of 

equations 

Damage 

detectable stories 

1st Floor  6 3 1,2,3,4 

2nd Floor  2 5 1,2,3,4  

3rd Floor 4 1 1,4 

4th Floor 2 0 4,5 

5th Floor 3 1 1,2,5 

4.1.8 Damage estimation utilizing linearity between numerator change and 

damage up to 80% 

Table (4.12) represents the transfer function that can best detect each story’s damage 

and the linearity parameters belonging to the relationship between that function and 

damage. The rows marked with blue have been added in table (4.12) for further 

calculation in multi-story damage cases. Each linear relationship in table (4.12) was 

examined one by one. The maximum errors for each story’s damage assessment are 

represented, starting from table (4.13) to (4.20), respectively. 
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Table 4.12 : Critical transfer functions, linearity ratios, and coefficients utilized in 

determining story damage. 

Linearity assumed from 0% to 80% damage 

Damaged Floor TF/Mode Linearity a 

1 1st  Floor / 1st Mode 94.20% -1.204 

1 2nd Floor / 1st Mode 96.90% -0.364 

2 1st Floor / 1st Mode 91.00% 0.569 

2 2nd Floor / 1st Mode 94.50% -0.302 

3 1st Floor / 1st Mode 89.00% 0.523 

3 1st Floor / 3rd Mode 98.20% 0.892 

4 4th Floor / 2nd Mode 99.60% 1.151 

5 4th Floor / 3rd Mode 97.50% 3.373 

Table (4.13) represents the error differences between the calculated damage 

percentage and the real damage percentage, assuming the change of the numerator of 

the first mode of the transfer function obtained from the first floor as linear up to 80% 

damage, for damage case from 2 to 9. While a damage percentage less than the actual 

value was calculated for damages up to 60%, values higher than the real value were 

calculated for damages greater than 60%. The maximum negative error was detected 

as 8.8% when the real damage was 40%, while the maximum positive error was 

detected as 13.5% when the real damage was 80%. 

Table 4.13 : Error between real and calculated first story damage using linearity 

between damage and numerator change of the 1st mode of the 1st floor’s transfer function 

1st Story Damage 1st Floor / 1st Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

-7.0% 10.0% 5.8% -4.2% 

-15.8% 20.0% 13.1% -6.9% 

-25.7% 30.0% 21.3% -8.7% 

-37.5% 40.0% 31.2% -8.8% 

-51.7% 50.0% 42.9% -7.1% 

-68.3% 60.0% 56.8% -3.2% 

-88.9% 70.0% 73.8% 3.8% 

-112.6% 80.0% 93.5% 13.5% 

The best linearity ratio utilized in detecting first story damage belongs to the first mode 

of the transfer function obtained from the second floor. Percentage errors between 

calculated with this relation and real damages are shown in table (4.14).  
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The error percentage’s behavior was similar to table (4.13), while the error was 

negative up to 60% damage and then turned positive for higher damage percentages. 

While maximum negative and positive errors were again calculated at the exact real 

damage percentages, their values were 6.5% and 8.7%, respectively. 

Table 4.14 : Error between real and calculated first story damage with using best 

linearity. 

1st Story Damage 2nd Floor / 1st Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

-2.6% 10.0% 7.0% -3.0% 

-5.6% 20.0% 15.2% -4.8% 

-8.6% 30.0% 23.5% -6.5% 

-12.2% 40.0% 33.5% -6.5% 

-16.4% 50.0% 45.1% -4.9% 

-21.2% 60.0% 58.2% -1.8% 

-26.7% 70.0% 73.4% 3.4% 

-32.3% 80.0% 88.7% 8.7% 

Table (4.15) represents the numerator changes and error differences between the 

calculated damage percentage and the real damage percentage for second story damage 

cases (cases 10 to 17). As in the above results, up to 60% damage was detected lower, 

while after 60% damage, it was detected more than its real value. For the second story 

damage cases, the maximum negative error was detected as 11.0% when the actual 

damage was 40%. In comparison, the maximum positive error was detected as 18.5% 

when the real damage was 80%. When compared with the percentage of error in the 

first story’s damage detection, it was determined that both negative and positive error 

percentages were higher for the second story than the first story. 

Table 4.15 : Error between real and calculated second story damage using linearity 

between damage and numerator change of the 1st mode of the 1st floor’s transfer function. 

2nd Story Damage 1st  Floor / 1st  Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

3.1% 10.0% 5.5% -4.5% 

6.8% 20.0% 11.9% -8.1% 

11.2% 30.0% 19.7% -10.3% 

16.5% 40.0% 29.0% -11.0% 

22.8% 50.0% 40.0% -10.0% 

31.4% 60.0% 55.2% -4.8% 

42.0% 70.0% 73.8% 3.8% 

56.1% 80.0% 98.5% 18.5% 
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The best linearity ratio utilized in detecting second story damage belongs to the first 

mode of the transfer function obtained from the second floor. Percentage errors 

between calculated with this relation and real damages are shown in table (4.16). 

Damages up to 60% were detected with negative error, while more severe damages 

were detected with positive error. The maximum negative error was 8.6%, and the 

maximum positive error was 13.6%. They correspond to the second story being 40% 

and 80% damaged, respectively. 

Table 4.16 : Error between real and calculated second story damage with using best 

linearity. 

2nd Story Damage 2nd Floor / 1st Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

-2.0% 10.0% 6.6% -3.4% 

-4.2% 20.0% 13.8% -6.2% 

-6.6% 30.0% 22.0% -8.0% 

-9.5% 40.0% 31.4% -8.6% 

-13.0% 50.0% 43.1% -6.9% 

-17.0% 60.0% 56.3% -3.7% 

-22.1% 70.0% 73.1% 3.1% 

-28.3% 80.0% 93.6% 13.6% 

Table (4.17) represents the numerator changes and error differences between the 

calculated damage percentage and the real damage percentage for third story damage 

cases (cases 18 to 25). As in the first and second story damage detection results, up to 

60% damage was detected lower, while after %60 damage, it was detected more than 

its actual value. The maximum negative error was 12.8%, and the maximum positive 

error was 21.3%. They correspond to the third story being 40% and 80% damaged, 

respectively. 

Table 4.17 : Error between real and calculated third story damage using linearity 

between damage and numerator change of the 1st mode of the 1st floor’s transfer function. 

3rd Story Damage 1st Floor / 1st Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

2.7% 10.0% 5.2% -4.8% 

6.0% 20.0% 11.4% -8.6% 

9.5% 30.0% 18.2% -11.8% 

14.2% 40.0% 27.2% -12.8% 

20.4% 50.0% 39.0% -11.0% 

28.4% 60.0% 54.2% -5.8% 

38.6% 70.0% 73.9% 3.9% 

53.0% 80.0% 101.3% 21.3% 
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The best linearity ratio utilized in detecting third story damage belongs to the third 

mode of the transfer function obtained from the first floor. Percentage errors between 

calculated with this relation and real damages are shown in table (4.18). Although the 

determination of the parameters belonging to the third mode of the transfer function 

was more difficult than the first two modes, it could detect the third story’s damage 

with a minor error. The maximum negative error was 5.3%, and the maximum positive 

error was 6.5%. Unlike the results calculated with linearity, which best represents the 

other story damages, damages with maximum negative and positive errors correspond 

to 30% and 10% damage, respectively. 

Table 4.18 : Error between real and calculated third story damage with using best 

linearity. 

3rd Story Damage 1st Floor / 3rd Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

14.7% 10.0% 16.5% 6.5% 

16.3% 20.0% 18.2% -1.8% 

22.0% 30.0% 24.7% -5.3% 

32.7% 40.0% 36.6% -3.4% 

43.8% 50.0% 49.1% -0.9% 

51.6% 60.0% 57.9% -2.1% 

63.9% 70.0% 71.6% 1.6% 

75.0% 80.0% 84.0% 4.0% 

Since there is no combination of fourth and fifth stories in case of multi-story damages 

to be examined, only the best linearities for these stories are represented in this part. 

The best linearity ratio utilized in detecting fourth story damage belongs to the second 

mode of the transfer function obtained from the fourth floor. Percentage errors between 

calculated (DC) with this relation and real damages (DR) are shown in table (4.19). 

When calculating the fourth story’s damage by utilizing best linearity, an error of more 

than 2.4% was not made in considering both negative and positive errors. The 

maximum negative error was 1.9%, and the maximum positive error was 2.4%. They 

correspond to the fourth story being 40% and 80% damaged, respectively. As the 

linearity was as high as 99.6%, calculated errors remained at such small levels. On the 

other hand, the frequent change of the error sign corresponds to increased damage level 

can be explained by the high linearity. 
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Table 4.19 : Error between real and calculated fourth story damage with using best 

linearity. 

4th Story Damage 4th Floor / 2nd Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

14.3% 10.0% 12.4% 2.4% 

21.7% 20.0% 18.9% -1.1% 

36.7% 30.0% 31.8% 1.8% 

43.9% 40.0% 38.1% -1.9% 

56.8% 50.0% 49.4% -0.6% 

69.2% 60.0% 60.2% 0.2% 

83.1% 70.0% 72.2% 2.2% 

90.4% 80.0% 78.5% -1.5% 

The best linearity ratio utilized in detecting fifth story damage belongs to the third 

mode of the transfer function obtained from the fourth floor. Percentage errors between 

calculated with this relation and real damages are shown in table (4.20). Calculated 

maximum negative and positive errors correspond to the real damage levels of 50% 

and 70%, respectively, and their values were 6.0% and 6.6%. 

Table 4.20 : Error between real and calculated fifth story damage with using best 

linearity. 

5th Story Damage 4th Floor / 3rd Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

15.6% 10.0% 4.6% -5.4% 

57.4% 20.0% 17.0% -3.0% 

89.6% 30.0% 26.6% -3.4% 

125.4% 40.0% 37.2% -2.8% 

148.5% 50.0% 44.0% -6.0% 

188.2% 60.0% 55.8% -4.2% 

258.3% 70.0% 76.6% 6.6% 

287.7% 80.0% 85.3% 5.3% 

In cases of multi-story damage, these are cases from 42 to 48, only the linear 

relationship between damage and numerator change of the first mode of the transfer 

function obtained from the first floor was used. In order to associate the numerator 

change of the relevant mode of the transfer function as a result of the measurements 

with the damage on the stories, estimated damage percentages of each story are 

multiplied by the linearity coefficient to find the effect of that floor on the total 

numerator change and the total change was calculated by adding the effect of all floors 
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one by one. The difference between calculated and measured numerator change is 

given in Table (4.21) for the case where linear relation is accepted between numerator 

change and up to 80% damage. Regardless of the damage distribution between stories, 

it is seen that the error increases as the total damage percentage increases on the 

structure. An exception to this situation is the last case (case 48), where the first three 

stories are damaged by 20%. Even though the total damage was less than the case 

numbers 45 and 47, the error was more. Fortunately, the case where each story is 

equally damaged is not one of the expected damage scenarios for the building due to 

a possible earthquake effect. 

Table 4.21 : Error between real and calculated numerator change in multi-story 

damage cases where the relationship between damage up to 80% and the numerator 

change assumed as linear. 

Multi-Story Damage Cases 

Damage  

Case 

Damage Observed 

Numerator 

Change (%) 

Linearly 

Summed 

Numerator 

Change (%) 

Error 

(%) 1st 

Floor 

2nd 

Floor 

3rd 

floor 

42 30% 10% 0% -29.6% -30.4% 0.8% 

43 30% 30% 0% -20.0% -19.0% -1.0% 

44 50% 10% 0% -57.4% -54.5% -2.9% 

45 50% 30% 0% -47.0% -43.1% -3.8% 

46 30% 20% 10% -22.8% -19.5% -3.3% 

47 50% 30% 10% -44.2% -37.9% -6.3% 

48 20% 20% 20% -9.5% -2.2% -7.3% 

Table (4.22) represents the story damage distribution when the calculated numerator 

change in multi-story damages is equal to the measured one. In Table (4.22), while 

numerator changes are equalized, only the first story damage percentage has been 

changed. When only the numerator change was utilized for the damage determination 

and this change was balanced by adjusting the first story’s damage percentage, the 

largest error between the real and estimated damage of the first story was 6% for all 

multi-story damage cases. For all damage cases except for 42, estimated damage 

percentages were higher than the real percentage. 
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Table 4.22 : Error between real and estimated damage for the first story in multi-

story damage cases where observed and linearly summed numerator changes are equal. 

Multi-Story Damage Cases 

Damage 

Case 

Real Damage Estimated Damage Error between 1st 

Story Damage 

(%) 
1st 

Floor 

2nd 

Floor 

3rd 

Floor 

1st 

Floor 

2nd 

Floor 

3rd 

floor 

42 30% 10% 0% 29.3% 10.0% 0.0% -0.7% 

43 30% 30% 0% 30.8% 30.0% 0.0% 0.8% 

44 50% 10% 0% 52.4% 10.0% 0.0% 2.4% 

45 50% 30% 0% 53.2% 30.0% 0.0% 3.2% 

46 30% 20% 10% 32.7% 20.0% 10.0% 2.7% 

47 50% 30% 10% 55.3% 30.0% 10.0% 5.3% 

48 20% 20% 20% 26.0% 20.0% 20.0% 6.0% 

Table (4.23) also represents the story damage distribution when the calculated 

numerator change in multi-story damages is equal to the measured one. In Table (4.23), 

while numerator changes are equalized, only the second story damage percentage has 

been changed. When only the numerator change was utilized for the damage 

determination and this change was balanced by adjusting the second story’s damage 

percentage, the largest error between the real and estimated damage of the second story 

was 12.8% for all multi-story damage cases. Unlike Table (4.22), estimated damage 

was smaller than the real damage for all cases except for case 42. 

Table 4.23 : Error between real and estimated damage for the second story in multi-

story damage cases where observed and linearly summed numerator changes are equal. 

Multi-Story Damage Cases 

Damage 

Case 

Real Damage Estimated Damage Error between 

2nd Story 

Damage (%) 
1st 

Floor 

2nd 

Floor 

3rd 

Floor 

1st 

Floor 

2nd 

Floor 

3rd 

floor 

42 30% 10% 0% 30.0% 11.5% 0.0% 1.5% 

43 30% 30% 0% 30.0% 28.3% 0.0% -1.7% 

44 50% 10% 0% 50.0% 5.0% 0.0% -5.0% 

45 50% 30% 0% 50.0% 23.2% 0.0% -6.8% 

46 30% 20% 10% 30.0% 14.2% 10.0% -5.8% 

47 50% 30% 10% 50.0% 19.0% 10.0% -11.0% 

48 20% 20% 20% 20.0% 7.2% 20.0% -12.8% 
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Table (4.24) contains the damage combinations with the third story. It represents the 

situation in which the measured numerator changes are equalized with those calculated 

by changing the damage percentage of the third story in case of multi-story damage. 

Damage percentage smaller than real value was estimated for all damage cases. In 

addition, when the numerator equalized for the 47th case, the estimated damage 

percentage was found to be -2%. However, as it was not possible, estimated damage 

was accepted as 0%. 

Table 4.24 : Error between real and estimated damage for the third story in multi-

story damage cases where observed and linearly summed numerator changes are equal. 

Multi-Story Damage Cases 

Damage 

 Case 

Real Damage Estimated Damage Error between  

3rd Story 

Damage (%) 
1st 

Floor 

2nd 

Floor 

3rd 

Floor 

1st 

Floor 

2nd 

Floor 

3rd 

floor 

46 30% 20% 10% 30.0% 20.0% 3.6% -6.4% 

47 50% 30% 10% 50.0% 30.0% 0.0% -10.0% 

48 20% 20% 20% 20.0% 20.0% 6.1% -13.9% 

4.1.9 Damage estimation utilizing linearity between numerator change and 

damage up to 60% 

The linearity coefficient used in determining the first story damage is higher than that 

of the second and third stories. When we equalized the numerator changes by changing 

the estimated first story’s damage percentage, it was determined that the error between 

estimated and the real damage was the lowest compared to the other stories, as 

expected. 

Damage percentages were calculated lower than the actual damage level up to 60% 

when the relationship between change in the numerator of the first mode of the transfer 

function obtained from the first floor and damage is considered linear up to 80% 

damage. On the other hand, when the actual damage was more than 60%, it was 

realized that calculated damage percentages were higher than the real damage. This 

situation revealed that the study, which was carried out assuming that the relationship 

was linear up to 60% damage, should give better results in determining single-story 

damage. Table (4.25) represents the highlighted transfer functions, linearity 

coefficients, and linearity percentages found in the study where the linear relationship 

is accepted up to 60% damage. Compared with Table (4.12), while a significant 
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increase was observed in all the linearity percentages found by using the parameter 

changes of the first mode of the transfer function obtained from the first floor, other 

percentages were improved generally. On the other hand, since this change was made 

to increase the accuracy of the damage detection in lower damage situations, the 

linearity coefficients’ magnitude decreased as expected. Despite this decrease, the 

coefficients were still above the specified level. 

Table 4.25 : Critical transfer functions, linearity ratios, and coefficients utilized in 

determining story damage. 

Linearity assumed from 0% to 60% damage 

Damaged Floor TF/Mode Consistency a 

1 1st Floor / 1st Mode 96.80% -1.027 

1 2nd Floor / 1st Mode 98.20% -0.327 

2 1st Floor / 1st Mode 95.60% 0.460 

2 2nd Floor / 1st Mode 97.50% -0.259 

3 1st Floor / 1st Mode 94.50% 0.409 

3 1st Floor / 3rd Mode 97.10% 0.850 

4 4th Floor / 2nd Mode 99.50% 1.146 

5 4th Floor / 3rd Mode 99.00% 3.047 

Table (4.26) represents the errors between the calculated damage percentage and the 

real damage percentage, assuming the change of the numerator of the first mode of the 

transfer function obtained from the first floor as linear up to 60% damage, for first 

story damage cases that are from 2 to 9. Maximum negative and positive errors were 

5.0% and 6.5%, respectively. If the results in Table (4.26) are compared with Table 

(4.13), it is clear that damage up to 50% was calculated with less error. It is also seen 

that the sign of the error changed at a lower damage level. On the other hand, while 

the minimum error in Table (4.13) corresponds to approximately 65% real damage 

(found by linear interpolation), the minimum error in Table (4.26) corresponds to 49% 

damage. 
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Table 4.26 : Error between real and calculated first story damage using linearity 

between damage and numerator change of the first mode of the transfer function obtained 

from the first floor. 

1st Story Damage 1st Floor / 1st Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

-7.0% 10.0% 6.8% -3.2% 

-15.8% 20.0% 15.4% -4.6% 

-25.7% 30.0% 25.0% -5.0% 

-37.5% 40.0% 36.5% -3.5% 

-51.7% 50.0% 50.3% 0.3% 

-68.3% 60.0% 66.5% 6.5% 

Table (4.27) represents the calculated damage using the transfer function numerator 

changes that best detect the first story’s damage and the error between real damage. 

Numerator change of the first mode of the transfer function obtained from the second 

floor has the highest linearity rate in determining first story damage. The maximum 

negative and positive errors were 3.9% and 4.8%, respectively. After %50 real 

damage, calculated damage was higher. 

Table 4.27 : Error between real and calculated first story damage with using best 

linearity. 

1st Story Damage 2nd Floor / 1st Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

-2.6% 10.0% 7.8% -2.2% 

-5.6% 20.0% 17.0% -3.0% 

-8.6% 30.0% 26.1% -3.9% 

-12.2% 40.0% 37.3% -2.7% 

-16.4% 50.0% 50.2% 0.2% 

-21.2% 60.0% 64.8% 4.8% 

Table (4.28) represents the errors between the calculated damage percentage and the 

real damage percentage, assuming the change of the numerator of the first mode of the 

transfer function obtained from the first story as linear up to 60% damage, for second 

story damage cases that are from 10 to 17. Maximum negative and positive errors were 

5.7% and 8.3%, respectively. When the results in Table (4.28) and Table (4.15) are 

compared, it is seen that the damage up to 50% is calculated with a minor error. 

Moreover, the sign of the error changed again at a lower damage level. On the other 

hand, while the minimum error in Table (4.15) corresponds to approximately 64% real 

damage (found by linear interpolation), the minimum error in Table (4.28) corresponds 

to 51% damage. 



85 

Table 4.28 : Error between real and calculated second story damage using linearity 

between damage and numerator change of the first mode of the first floor’s transfer 

function. 

2nd Story Damage 1st Floor / 1st Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

3.1% 10.0% 6.8% -3.2% 

6.8% 20.0% 14.7% -5.3% 

11.2% 30.0% 24.3% -5.7% 

16.5% 40.0% 35.9% -4.1% 

22.8% 50.0% 49.5% -0.5% 

31.4% 60.0% 68.3% 8.3% 

Numerator change of the third mode of the transfer function obtained from the fifth 

floor has the highest linearity rate in determining second story damage. While 

estimating the third mode components in an experimental study, it is difficult to 

separate the effect of noise from the building’s behavior, as the signal-to-noise ratio 

(SNR) will be quite large. Therefore, since it is difficult to determine the third mode 

parameters in practice, the first mode of the transfer function obtained from the second 

floor was selected as the function that gives the highest linearity between transfer 

function parameter changes and second story damage. Moreover, the linearity 

percentage of that transfer function is close to the third mode of the transfer function 

obtained from the fifth floor. Table (4.29) represents the errors between the calculated 

damage percentage and the real damage percentage for the second story damage case. 

Maximum negative and positive errors were 4.4% and 5.7%, respectively. As in other 

cases, calculated damage was higher after about %50 real damage.  

Table 4.29 : Error between real and calculated second story damage with using best 

linearity. 

2nd Story Damage 2nd Floor / 1st Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

-2.0% 10.0% 7.7% -2.3% 

-4.2% 20.0% 16.1% -3.9% 

-6.6% 30.0% 25.6% -4.4% 

-9.5% 40.0% 36.6% -3.4% 

-13.0% 50.0% 50.3% 0.3% 

-17.0% 60.0% 65.7% 5.7% 
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Table (4.30) represents the numerator changes and error differences between the 

calculated damage percentage and the real damage percentage for third story damage 

cases (cases 18 to 25). As in the first and second story damage detection results, up to 

50% damage was detected lower, while after 50% damage, the damage was detected 

more than its real value. The maximum negative error was 6.7%, and the maximum 

positive error was 9.3%. They correspond to 30% and 60% damage for the third story 

damage case, respectively. If Table (4.30) compared with Table (4.17), it is the fact 

that errors for the damage up to 50% decreased on average by 40%. 

Table 4.30 : Error between real and calculated third story damage using linearity 

between damage and numerator change of the first mode of the first floor’s transfer 

function. 

3rd Story Damage 1st Floor / 1st Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

2.7% 10.0% 6.7% -3.3% 

6.0% 20.0% 14.6% -5.4% 

9.5% 30.0% 23.3% -6.7% 

14.2% 40.0% 34.8% -5.2% 

20.4% 50.0% 49.9% -0.1% 

28.4% 60.0% 69.3% 9.3% 

Table (4.31) represents the calculated damage using the transfer function numerator 

changes that best detect the third story’s damage and the error between real damage. 

Numerator change of the third mode of the transfer function obtained from the first 

floor has the highest linearity rate in determining the first third damage. Maximum 

negative and positive errors were 4.1% and 7.3%, respectively. In this calculation, 

unlike the previous ones, even with 10% real damage, a damage calculation of 17.3% 

was made. The reason for this difference is that parameter change of the third mode of 

the transfer function is utilized when detecting third story damage. It can be said that 

even though the biggest error was calculated for 10% real damage, errors at other levels 

remained quite acceptable. 
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Table 4.31 : Error between real and calculated third story damage with using best 

linearity. 

3rd Story Damage 1st Floor / 3rd Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

14.7% 10.0% 17.3% 7.3% 

16.3% 20.0% 19.1% -0.9% 

22.0% 30.0% 25.9% -4.1% 

32.7% 40.0% 38.4% -1.6% 

43.8% 50.0% 51.6% 1.6% 

51.6% 60.0% 60.7% 0.7% 

In case the relation between damage and numerator change is accepted as linear up to 

60% damage, the best linearity that can be used in detecting fourth story damage 

belongs to the second mode of the transfer function obtained from the fourth floor. 

Percentage errors between calculated with this relation and real damages are shown in 

table (4.32). The maximum negative error was 1.7%, and the maximum positive error 

was 2.5%. In Table (4.32), similar to table (4.13), these maximum errors correspond 

to 40% and 10% damage for the fourth story. The linearity percentage was also at a 

high level of 99.5%. Therefore, as the real damage percentage increases, the error 

sign’s change indicates that the consistency of the linear relationship is high. 

Table 4.32 : Error between real and calculated fourth story damage with using best 

linearity. 

4th Story Damage 4th Floor / 2nd Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

14.3% 10.0% 12.5% 2.5% 

21.7% 20.0% 18.9% -1.1% 

36.7% 30.0% 32.0% 2.0% 

43.9% 40.0% 38.3% -1.7% 

56.8% 50.0% 49.6% -0.4% 

69.2% 60.0% 60.4% 0.4% 

The best linearity ratio used in detecting fifth story damage belongs to the third mode 

of the transfer function obtained from the fourth floor. Percentage errors between 

calculated with this relation and real damages are shown in table (4.33). Calculated 

maximum negative and positive errors correspond to the real damage levels of 10% 

and 60%, respectively. Moreover, their values were 4.9% and 1.8%. When Table 

(4.33) and Table (4.31) are examined together, there is a similarity in the percentage 
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of errors. The highest absolute error percentages were obtained at the 10% actual 

damage level. The only common point of the errors in the two tables is that they are 

found by using the linearity between parameter change of the third mode of the transfer 

function and damage. 

Table 4.33 : Error between real and calculated fifth story damage with using best 

linearity. 

5th Story Damage 4th Floor / 3rd Mode 

ΔNumerator (%) DR (%) DC (%) Error (%) 

15.6% 10.0% 5.1% -4.9% 

57.4% 20.0% 18.8% -1.2% 

89.6% 30.0% 29.4% -0.6% 

125.4% 40.0% 41.2% 1.2% 

148.5% 50.0% 48.7% -1.3% 

188.2% 60.0% 61.8% 1.8% 

Table (4.34) represents the error between observed and calculated numerator changes 

with utilizing linearity in multi-story damage cases. Unlike Table (4.21), the numerator 

change was found in Table (4.34) by utilizing the linearity in which the relationship 

between numerator change of the transfer function and the damage is considered linear 

up to 60% linear. When the error percentages in Table (4.34) are compared with those 

in table (4.21), it can be said that the calculated error for each case except for the 48th 

case was significantly higher. However, the calculated error decreased for the 48th 

case. 

Table 4.34 : Error between real and calculated numerator change in multi-story 

damage cases where the relationship between damage up to 60% and the numerator 

change assumed as linear. 

Multi-Story Damage Cases 

Damage  

Case 

Damaged Floor Observed 

Numerator 

Change (%) 

Linearly Summed 

Numerator 

Change (%) 

Error 

(%) 1st 

Floor 

2nd 

Floor 

3rd 

Floor 

42 30% 10% 0% -29.6% -26.2% -3.4% 

43 30% 30% 0% -20.0% -17.0% -3.0% 

44 50% 10% 0% -57.4% -46.8% -10.6% 

45 50% 30% 0% -47.0% -37.6% -9.4% 

46 30% 20% 10% -22.8% -17.5% -5.3% 

47 50% 30% 10% -44.2% -33.5% -10.8% 

48 20% 20% 20% -9.5% -3.2% -6.4% 
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The error between the real and estimated first story’s damage percentages in the case 

of equalization of the observed and calculated numerator changes is represented in 

Table (4.35), similar to Table (4.22). While in numerator changes equalization process 

in Table (4.34), only damage percentage of the first story has been changed. When the 

results are compared with Table (4.22), it was observed that there was a significant 

increase in the error percentages for all cases except for the 48th case. Besides, the 

maximum error percentage increased from 6% to 10.5%. 

Table 4.35 : Error between real and estimated damage for the first story in multi-

story damage cases where observed and linearly summed numerator changes are equal. 

Multi-Story Damage Cases 

Damage  

Case 

Real Damage Estimated Damage Error between 

1st Story 

Damage (%) 
1st 

Floor 

2nd 

Floor 

3rd 

Floor 

1st 

Floor 

2nd 

Floor 

3rd 

Floor 

42 30% 10% 0% 33.3% 10.0% 0.0% 3.3% 

43 30% 30% 0% 32.9% 30.0% 0.0% 2.9% 

44 50% 10% 0% 60.4% 10.0% 0.0% 10.4% 

45 50% 30% 0% 59.2% 30.0% 0.0% 9.2% 

46 30% 20% 10% 35.1% 20.0% 10.0% 5.1% 

47 50% 30% 10% 60.5% 30.0% 10.0% 10.5% 

48 20% 20% 20% 26.2% 20.0% 20.0% 6.2% 

Story damage distribution and error between real and estimated second story damages 

are represented in Table (4.36) when the calculated numerator change in the case of 

multiple damages is equal to the measured one. In Table (4.36), while numerator 

changes are equalized, only the second story damage percentage has been changed. 

The maximum error between real and estimated damage of the second story was 23.4% 

for all multi-story damage cases. In addition, when the numerator change is equalized 

for the 47th case, the estimated damage percentage was found to be -13.2%. However, 

as it was not possible in reality, estimated damage was accepted as 0%. If the error 

percentages in Table (4.36) are compared with those in Table (4.23), it is noticed that 

the error percentage increases for each multi-story damage case. 
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Table 4.36 : Error between real and estimated damage for the second story in multi-

story damage cases where observed and linearly summed numerator changes are equal. 

Multi-Story Damage Cases 

Damage  

Case 

Real Damage Estimated Damage Error between 

2nd Story 

Damage (%) 
1st 

Floor 

2nd 

Floor 

3rd 

Floor 

1st 

Floor 

2nd 

Floor 

3rd 

Floor 

42 30% 10% 0% 30% 2.6% 0.0% -7.4% 

43 30% 30% 0% 30% 23.5% 0.0% -6.5% 

44 50% 10% 0% 50% 0.0% 0.0% -10.0% 

45 50% 30% 0% 50% 9.4% 0.0% -20.6% 

46 30% 20% 10% 30% 8.6% 10.0% -11.4% 

47 50% 30% 10% 50% 6.6% 10.0% -23.4% 

48 20% 20% 20% 20% 6.2% 20.0% -13.8% 

Table (4.37) includes the combinations where the third story is damaged. The error 

between real and estimated third story damage was found by equalizing the obtained 

and linearly summed numerator changes by changing only third story damage 

percentage in multi-story damage conditions. As in Table (4.24), damage percentage 

smaller than real value was estimated for all damage cases. Moreover, when the 

numerator is equalized for the 46th and 47th cases, the estimated damage percentage 

was -3% and -16.3%, respectively. However, since the damage percentage could not 

be negative, the estimated damage was accepted as 0%.  

It is seen that the error percentages in Table (4.37) are higher for all damage cases 

when compared with those in Table (4.24), considering the percentages in case of 

negative estimation of the damage. 

Table 4.37 : Error between real and estimated damage for the third story in multi-

story damage cases where observed and linearly summed numerator changes are equal.  

Multi-Story Damage Cases 

Damage 

 Case 

Real Damage Estimated Damage Error between 

3rd Story 

Damage (%) 
1st 

Floor 

2nd 

Floor 

3rd 

Floor 

1st 

Floor 

2nd 

Floor 

3rd 

Floor 

46 30% 20% 10% 30% 20% 0,0% -10,0% 

47 50% 30% 10% 50% 30% 0,0% -10,0% 

48 20% 20% 20% 20% 20% 4,5% -15,5% 
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It is favorable to have the opposite sign of the linearity coefficients of the first mode 

of the transfer function obtained from the first floor while determining the distribution 

of the damage between the first and second stories. However, after a certain point, 

numerator change alone is insufficient in detecting multi-story damages. Because the 

coefficients are of opposite sign and the floors’ effects are summed up linearly, 

damages in another percentage can also make the exact change on the total numerator 

change. In this case, another parameter change should be utilized for the damage 

determination. This parameter change is the denominator change of the transfer 

function’s relevant mode obtained from the relevant floor. Since the damping is 

considered constant as 2% in this study, it does not matter which parameter change in 

the denominator is utilized. The only factor affecting the denominator’s values is the 

natural frequency of the structure. The denominator change mentioned in the following 

sections is the change of 2𝜔𝑛 value. 

Table (4.38) represents the first mode of the transfer function’s denominator changes 

obtained from the first floor for four cases where only the first story was damaged by 

15.8% and the first and second story were damaged together. Calculated numerator 

changes were equal in all comparisons, and valued as -19%. The numerator changes 

were the same despite the increase in the percentage of damage because the linearity 

coefficients utilized to calculate first and second story damage were opposite signs.  

When the denominator changes obtained due to the damage of the first story and the 

damage combinations of the first two stories are examined in Table (4.38), it is seen 

that the difference between obtained and calculated denominator changes can be used 

in determining actual damage. The smaller the difference, the more accurately the 

actual damage is detected. 

Table 4.38 : Comparison of the first mode of the transfer function’s denominator 

change in multi-story damage cases where numerator changes obtained from the first 

floor are equal. 

Multi-Story Damage Case Denominator Comparison 

Comp. 

Name 

Real Damage Obt. 

Den. 

(%) 

Est. 

Den. 

(%) 

Estimated Damage 

1st 

Floor 

2nd 

Floor 

3rd 

Floor 

1st 

Floor 

2nd 

Floor 

3rd 

Floor 

DM1 15.8% - - -3.1% -11.4% 30.0% 30.0% - 

DM2 15.8% - - -3.1% -8.2% 25.0% 19.5% - 

DM3 15.8% - - -3.1% -5.3% 20.0% 9.0% - 

DM4 15.8% - - -3.1% -3.8% 18.0% 4.7% - 
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In addition to the numerator changes, denominator changes should also be used in 

determining the levels of multi-story damage. As shown in the estimated damage part 

in Table (4.38), the numerator changes of different damage combinations can be equal. 

In this case, the denominator changes reflect the level of actual damage.  

When the comparison named DM5 in Table (4.39) is examined, it is seen that although 

both the numerator and denominator changes of the first mode of the transfer function 

obtained from the first floor are very close, there is a difference in the real and 

estimated damage distribution between the second and third stories. In addition, in the 

comparison named DM6, single-story damage levels on the second and third stories 

were compared. While the numerator changes were equal, it was observed that 

denominator changes were very close. It was determined that this change was not 

sufficient to determine the correct damage distribution between the second and third 

stories. Therefore, it can be said that the parameter changes of the first mode of the 

transfer function obtained from the first floor are insufficient in determining the 

distributions of the second and third story damages. 

Table 4.39 : Comparison of the first mode of the transfer function’s denominator 

change in multi-story damage cases where numerator changes obtained from the first 

floor are equal. 

Multi-Story Damage Case Denominator Comparison 

Comp. 

Name 

Real Damage Obt. 

Den. 

(%) 

Est. 

Den. 

(%) 

Estimated Damage 

1st 

Floor 

2nd 

Floor 

3rd 

Floor 

1st 

Floor 

2nd 

Floor 

3rd 

Floor 

DM5 50.0% 30.0% - -17.8% -17.7% 50.0% 20.0% 10.9% 

DM6 - 17.6% - -3.1% -2.3% - - 19.1% 

4.1.10 Relation between TTF coefficients and story damages 

During the investigation to find the relationship between damage and the transfer 

function parameters of each mode one by one, the idea that the coefficients of the 

equation obtained by summing the transfer functions representing the first three modes 

can be used to determine the damage. When equation (3.2) is written in the long-form, 

the numerator of the TTF has five coefficients and seven in its denominator. In this 

section, the relationship between the story damages and the coefficients in the 

numerator has been examined. 
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Figure (4.28) shows the relationship of the five coefficients in the numerator of the 

TTF obtained from five floors with the first floor damage. As the first story damage 

increased, all coefficients obtained from the first floor decreased. On the other hand, 

the first coefficients obtained from the other four floors did not show a significant 

change with first story damage, while the other four coefficients increased. 
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Figure 4.28 : Numerator coefficients of the TTF in the case where the 1st story is 

damaged; a: 1st coefficient change, b: 2nd coefficient change, c: 3rd coefficient change, d: 

4th coefficient change, e: 5th coefficient change. 
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Figure (4.29) represents the change of the TTF coefficients obtained from all floors in 

case the second story is damaged. Unlike figure (4.28), it can be said that the change 

of the first coefficient obtained from all floors is not related to the second story 

damage. It is observed that as the second story damage increases, the four coefficients 

obtained from all floors increase. 

Figures (4.30), (4.31), and (4.32) represent the change of the TTF coefficients obtained 

from all floors in cases where the third, fourth, and fifth stories are damaged, 

respectively. The coefficient changes of the TTF seen in these figures are similar to 

figure (4.29).  

The increasing tendency of the coefficient values of TTF is thought to be due to the 

fact that the frequencies are decreasing as the damage increases, decreasing the 

denominator coefficients of the transfer functions. Since the coefficients in the 

denominator of the transfer function representing each mode decrease, when these 

modes are summed linearly, the coefficients in the numerator decreased and 

approached zero. 

As a result, when examining all cases except the case where the first story was 

damaged, the coefficient changes of the TTF are not a parameter that can be used in 

determining the story damages for building type structures. 
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Figure 4.29 : Numerator coefficients of the TTF in the case where the 2nd story is 

damaged; a: 1st coefficient change, b: 2nd coefficient change, c: 3rd coefficient change, d: 

4th coefficient change, e: 5th coefficient change. 
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Figure 4.30 : Numerator coefficients of the TTF in the case where the 3rd story is 

damaged; a: 1st coefficient change, b: 2nd coefficient change, c: 3rd coefficient change, d: 

4th coefficient change, e: 5th coefficient change. 
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Figure 4.31 : Numerator coefficients of the TTF in the case where the 4th story is 

damaged; a: 1st coefficient change, b: 2nd coefficient change, c: 3rd coefficient change, d: 

4th coefficient change, e: 5th coefficient change. 
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Figure 4.32 : Numerator coefficients of the TTF in the case where the 5th story is 

damaged; a: 1st coefficient change, b: 2nd coefficient change, c: 3rd coefficient change, d: 

4th coefficient change, e: 5th coefficient change. 

 



100 

 Full Scale Model 

4.2.1 Model properties 

A finite element model with 20 m length in X direction and 15 m length in Y direction 

of a 10-story building was created. Each story has 3 m in height. 12 kN/m2 dead load 

and 3.5 kN/m2 live load were distributed on each story. Column and beam dimensions 

of the undamaged structure are 0.6x0.6 m and 0.4x0.7 m, respectively. The building's 

static system consists of a Reinforced Concrete (RC) core in the center and RC frames 

around it. The thickness of the shear wall is 0.3m. Figures (4.33) and (4.34) represent 

the plan and profile views of the FE model, respectively. 

 

Figure 4.33 : Plan view of the FEM model. 
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             a                                 b 

Figure 4.34 : Profile views of the FE model. a) X-Z view b) Y-Z view. 

In this study, the first mode in the X direction was examined. The period and the 

frequency value of the intact model are shown in table (4.40).  

Table 4.40 : Period and frequency value of the first mode of the intact model. 

Intact 
Structure 

T f 𝝎 Mode 
Participation 

Ratio (s) s-1 rad·s-1 

Mode 1_X 0.482 2.073 13.03 73.30% 

4.2.2 Input and output data 

The base excitation affecting the numerical model is the North-South acceleration 

record of the 1999 Kocaeli Earthquake. Since one of the ultimate purposes of this study 

was to determine the location and the level of the damage in the building during the 

earthquake, the entire earthquake record was not used. Instead, in addition to the last 

20 seconds of the Kocaeli Earthquake recording, a 10-second stationary period was 

added to create a 30-second acceleration record in total. Thus, the damage caused to 

the building as a result of the destructive effect of the earthquake was tried to be 
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determined when the impact of the same earthquake was relatively less with the 

transfer function changes in the building. Figure (4.35) represents the entire Kocaeli 

Earthquake record and the record created for use in this study. 

 

Figure 4.35 : 1999 Kocaeli N-S EQ record and created input acceleration. 

The outputs utilized to obtain the transfer functions of each floor are the story 

displacements caused by the effect of this 30-second acceleration record on the 

building. Figure (4.36) shows the story displacements of the intact structure. 

 

Figure 4.36 : Story displacements of the intact structure. 
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4.2.3 Derivation of the transfer function parameters 

Transfer functions of each story are derived with the ratio of CPSD of the input and 

output data to APSD of the input data as shown in equation (3.1). In this study, the 

window length was 850, and the overlap ratio was 50% to derive the transfer functions. 

Choosing a low overlap ratio did not negatively affect the results, as the transfer 

functions of the higher frequency modes were not examined and the peak values can 

be obtained correctly. Figure (4.37) represents the transfer function plots of each story 

of the intact model. 

 

Figure 4.37 : Transfer functions of each story of the intact model. 

Using the curve fitting toolbox of MATLAB, The transfer function parameters 

belonging to the relevant mode were found for both the intact and damaged models. 

Figure (4.38) represents the parameter estimation graph of the intact model's first 

stories transfer function. The R2 coefficient for the estimated transfer function is 

96.96%. 
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Figure 4.38 : Parameter estimation graph of the transfer function obtained from the 

first floor of the intact structure. 

Since only one mode's transfer function is examined, the ratio of the obtained transfer 

function to represent the building's behavior is proportional to the mode's mass 

participation ratio. The mass participation ratio of the first mode in the X direction of 

the undamaged model is 73.3%. The transfer function of the first floor was able to 

reflect the behavior of the floor at a rate of 77.4%, close to the mass participation ratio. 

Figure (4.39) represents the comparison of the actual and reflected displacement 

behavior of the intact structure's first story. 

 

Figure 4.39 : Reflected displacement behavior of the first story. 
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Transfer function parameters of the intact model are represented in Table (4.41). As 

expected, the numerator value of the transfer function for the upper stories was higher 

since the higher floors' displacements will be higher than the lower floors. 

Table 4.41 : Transfer function parameters of the intact structure 

1st TF 2nd TF 3rd TF 4th TF 5th TF 

−0.095

𝑠2 + 1.303𝑠 + 169.8
 

−0.260

𝑠2 + 1.303𝑠 + 169.8
 

−0.467

𝑠2 + 1.303𝑠 + 169.8
 

−0.700

𝑠2 + 1.303𝑠 + 169.8
 

−0.940

𝑠2 + 1.303𝑠 + 169.8
 

6th TF 7th TF 8th TF 9th TF 10th TF 

−1.180

𝑠2 + 1.303𝑠 + 169.8
 

−1.408

𝑠2 + 1.303𝑠 + 169.8
 

−1.620

𝑠2 + 1.303𝑠 + 169.8
 

−1.812

𝑠2 + 1.303𝑠 + 169.8
 

−1.984

𝑠2 + 1.303𝑠 + 169.8
 

4.2.4 Damage cases 

In this numerical study, the effect of damage on the different structural elements was 

investigated. Firstly, it was studied whether the beam damage has an impact on the 

parameters of the transfer function. In cases where it is difficult or impossible to detect 

the beam damage with the transfer function parameter changes, in addition to the 

beams, the cases where the columns are damaged at certain levels were examined. On 

the other hand, in circumstances where all beams on the floor are damaged is easily 

detected, the number of damaged beams was reduced, and the relation between the 

transfer function parameters and the number of damaged beams was examined. 

Finally, the cases where the core between the ground and the first floor were damaged 

at certain levels were examined because damage is expected at the bottom levels of the 

core in the event of possible earthquake damage in structures with a reinforced 

concrete core in the center. Beam damages were represented by defining plastic hinges 

at both ends of the respective beams. Column damages were described by reducing the 

moment of inertia of all columns in the relevant story. Moreover, core damage was 

characterized by reducing the elasticity modulus of the material defined in the core. 

Table (4.42) represent the total of 17 damage cases, including only single-story 

damage, that was examined. In Table (4.42), a row of inner beams means four beams 

in the X direction and line with the core, while two rows of inner beams represent eight 

beams in the same direction aligned with the core. On the other hand, one row of outer 

beams means five beams in the X direction and on an axis without a core, while two 
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rows of outer beams represent ten beams on axes without a core in the same direction. 

All beams mean all beams in the X direction, which is equal to the sum of two rows 

of inner and two rows of outer beams. 

Table 4.42 : Damage cases. 

Case 

Number 

Damaged 

Story 
Damaged Elements 

1 1 One row of inner beams 

2 1 Two rows of inner beams 

3 1 One row of outer beams 

4 1 Two rows of outer beams 

5 1 All beams 

6 2 Two rows of inner beams 

7 2 Two rows of outer beams 

8 2 All beams 

9 3 All beams 

10 3 All Beams + All colums 20% damaged 

11 3 All Beams + All colums 50% damaged 

12 3 All Beams + All colums 80% damaged 

13 4 All Beams + All colums 50% damaged 

14 4 All Beams + All colums 80% damaged 

15 1 All core elements 33% damaged 

16 1 All core elements 66% damaged 

17 1 All core elements 80% damaged 

4.2.5 Transfer function parameter changes 

Equation (4.2) represents the numerator changes between the undamaged model and 

the damaged model. The damping ratio in equation (4.2) is considered constant, and 

its value is 5% because concrete is selected in the modeling process of the FE model. 

One of the main differences between the first and this numeric study is the utilized 

mode number to determine the structural damage. Instead of the first three modes of 

the transfer function parameters, only the first mode of the X-direction parameter 

changes was studied. Besides, since the case of multi-story damage was not examined 

in this study, there was no need to investigate the denominator changes of the transfer 

function. 
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The changes in the transfer function's numerators obtained from all floors due to the 

various damages at the first-floor level are shown in figure (4.37). Regardless of the 

severity of the damage, the change in the transfer functions obtained from the first 

three floors appears to be more pronounced than those obtained from the upper floors. 

In addition, in the first and second cases where the inner row beams were damaged, 

the numerator change in the transfer functions of the other floors except the first three 

floors was minimal. In fact, there was no change in the transfer functions of the 6th 

floor in the first case, and the 8th and 9th floors in the second case.  

In the damage cases shown in figure (4.40), four, eight, five, ten, and eighteen beams 

are damaged, respectively. In the first case, where the number of damaged beams is 

the least, the change in the transfer function of none of the floors is not positive. On 

the other hand, in the fifth case, where the number of damaged beams is the most, the 

transfer function change of the top five floors is positive. At the same time, the 

percentage of the change in the transfer functions of all floors increased in proportion 

to the level of the damage.  

When the first and third, or second and fourth damage cases are compared in figure 

(4.40), it is seen that the change in the all floors transfer function is more remarkable 

when the beams in the outer row are damaged than when the beams in the inner row 

are damaged. 

The directions of the transfer function changes of successive floors should be 

investigated in order to detect the damaged story. When the figure (4.40) is examined, 

it can be said that the first story has the damage in all five cases since the numerator 

change in the transfer function of successive floors does not change from positive to 

negative. 

If the damage cases in figure (4.40) are examined in terms of sensor efficiency, it can 

be said that the transfer functions of the middle floors have minor changes with 

damage. 

In the first case, where four beams were damaged, the numerator change percentages 

of the first and second floors were 1.3% and 1.2%, respectively, while in the fifth case, 

where eighteen beams were damaged, the numerator changed percentages these floors 

were 6.3% and 4.6%. As the number of damaged beams increased, the percentage 

change of the transfer function obtained from the first floor increased more than that 
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obtained from other floors. It turned out that the transfer function obtained from the 

first floor is more sensitive to the first story damage and can give more consistent 

results in damage detection than the transfer functions of the other floors. 

 

Figure 4.40 : TF numerator change versus 1st story damage cases. 

The relationships between the transfer function's numerator change and the second 

story damage are shown in figure (4.41). In all damage cases examined for the second 

story, although the transfer function change of the second floor, which was the 

damaged story, was negative, the transfer function change of the first floor was 

positive. This transfer function change between the first and second floors reveals that 

the structural damage is at the second story. 

When the numerator changes in figure (4.41) are examined, as the number of damaged 

beams increases, the difference in the numerators of the transfer functions obtained 

from other floors increases, except for the transfer functions obtained from middle 

floors. The transfer function's numerators of the middle floors either did not change or 

changed at a minimum level with the damage. 

It is seen that the transfer function of the first floor is the most sensitive function to 

define the second floor damage when the numerator change percentages in figure 

(4.41) are investigated considering the sensor efficiency. In addition, although the 
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transfer functions of the lower and upper floors remained at approximately the same 

levels, the most significant difference was in the transfer function of the first floor with 

3%. 

When the numerator changes of the sixth and seventh damage cases in figure (4.41) 

were compared, similar results were obtained, unlike the cases where the first story 

was damaged. Therefore, it has been revealed that the locations of the damaged beams 

cannot be determined by numerator changes of the transfer function utilized in this 

study. In addition, although two more beams were damaged in the seventh case than 

in the sixth case, the transfer function's numerator changes did not even increase 1% 

more than in the sixth case. As a result, it was found that when the second story was 

damaged, the number of damaged beams and the transfer function's numerator changes 

had a weaker relationship than when the first story was damaged. 

In all three cases in figure (4.41), where beam damages were examined on the second 

floor, the transfer function changes in the upper floors were positive, just as the case 

five which all beams on the first floor were damaged. Therefore, the transfer function 

changes obtained from the upper floors were insufficient to determine whether the 

damaged beams were on the first or second floor. 

 

Figure 4.41 : TF numerator change versus 2nd story damage cases. 
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Fıgure (4.42) represents the change in the numerators of the transfer functions obtained 

from all floors as a result of cases where all beams and columns at the third story are 

damaged at a certain level. When all beams on the first and second floor were damaged, 

this damage can be detected by the direction changes in the transfer function changes 

of relevant floors. On the other hand, when all beams on the third floor were damaged, 

there was no direction change in the transfer function changes of the relevant floors. 

In addition to the ninth case, in the tenth and eleventh damage cases, the direction 

change in the numerator change of the transfer functions obtained from the floors did 

not appear. While there was a positive change in the numerators of the transfer 

functions obtained from all floors except the fourth floor, there was no change in the 

numerator obtained from the fourth floor. In the twelfth case, where all the columns 

were 80% damaged in addition to all the beams, the transfer function's numerator 

changes of the first two floors are positive. On the other hand, the numerator changes 

of the transfer functions obtained from the third and fourth floors were negative. This 

sign change between the transfer function changes of the first two floors and the third 

floor reveals that the structural damage is on the third floor. 

When the numerator changes against the damage cases in figure (4.42) are examined, 

the numerator changes of the transfer functions obtained from the middle floors were 

less compared to the lower and upper floors. Therefore, similar to the results when the 

first two stories are damaged, the transfer functions obtained from the middle floors 

are the least capable of detecting the third story damage. 

In all cases where the third story was damaged, the numerator changes of the transfer 

functions obtained from the first two floors were more than obtained from the other 

floors. Thus, it turned out that the transfer functions obtained from the first two floors 

have higher efficiency to determine the third story damage than the other floors. 

In the first three damage cases investigated in figure (4.42), it was determined that 

although there was damage on the third story, there was no change of direction in the 

transfer function changes. However, the difference between the numerator changes of 

the transfer functions expected to have a direction change was higher than the changes 

in the numerators of the other functions. Based on these sudden changes, shown in 

figure (4.42), it was necessary to conduct a study examining the percentages of the 

numerator changes of the transfer functions obtained from successive floors when 

there is no change in direction. The results are shown on the following pages. 
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Figure 4.42 : TF numerator change versus 3rd story damage cases. 

Figure (4.43) represents two cases where the fourth story is damaged. The numerator 

change of the transfer functions obtained from all floors was positive for both damage 

cases. Therefore, the damaged floor could not be determined by examining the 

direction change of the numerator changes of the transfer functions obtained from the 

damaged floor and floor below. As in the three cases where the third story was 

damaged, it was found that there was a significant difference between the changes in 

the transfer function's numerators obtained from the third and fourth floors, although 

there was no change of the direction. For both cases where the fourth story was 

damaged, this change was examined and shown in the following pages. 

As seen in figure (4.43), when the fourth floor was damaged, the transfer function's 

numerators' changes were more remarkable than when the other floors were damaged. 

In addition, although the change in transfer functions obtained from the first three 

floors is more than obtained from the other floors, it was determined that the most 

effective change that utilizes in damage determination was the change in the numerator 

of the transfer function obtained from the first floor.  

As in the previous figures, it is seen that the transfer functions obtained from middle 

floors show the minor change with damage in figure (4.43). In the results where the 

fourth story was damaged, it was revealed that the transfer functions obtained from 

middle floors on damage assessment would be minimal. 
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Figure 4.43 : TF numerator change versus 4th story damage cases. 

Figure (4.44) represents the numerator changes of the transfer functions obtained from 

all floors in cases where the reinforced concrete core in the center was damaged from 

the ground to the first floor level. As in the fourth and fifth cases in figure (4.40), where 

the damage was more significant than the first three cases, numerator changes of the 

transfer functions obtained from the lower floors were negative. In contrast, the 

numerator changes of the transfer functions obtained from the upper floors were 

positive. 

Similar to the results obtained for other cases, it was found that the numerator changes 

of the transfer functions obtained from the middle floors were less susceptible to 

damage compared to those obtained from the other floors. 

When figure (4.44) is examined, it can be revealed that as the damage level in the core 

increases, the changes in the numerators of the transfer functions obtained from all 

floors increases. However, the most significant change occurred in the transfer 

function obtained from the first floor. The numerator of the transfer function obtained 

from the first floor has changed by 20%, 51.6%, and 65%, in cases where the core had 

33%, 66%, and 80% damages, respectively. 

When the numerator changes of the transfer functions obtained from successive floors 

are utilized to determine the damaged floor by examining figure (4.44), the negative 

change in the first floor's numerator indicates that the damage is at the first story.  
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Other indicators that show the damage was on the first floor are: 

 After a positive change in the numerator of the transfer function obtained from 

any floor, there was no negative change in the one obtained from the upper 

floor. 

 There was no positive change at a much lower level in any floor's transfer 

function after a huge positive change in the numerator of the transfer function 

obtained from the floor below. 

 

Figure 4.44 : TF numerator change versus core damage cases. 

It was seen in figure (4.42) that the numerator change of the transfer function obtained 

from the second floor and the numerator change of the transfer function obtained from 

the third floor has the same direction. However, it was noticed that although the 

changes have the same sign, their ratio to each other is significant.  

It was aimed to use the ratio of the transfer function's numerator changes to detect the 

damaged floor when the numerator changes of the damaged floor and the lower floor 

has the same sign. As a result of the study done to understand whether this ratio can 

determine the damaged floor, the ratios of the changes according to each other are 

shown in figure (4.45). 
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As a result of the nine, tenth, and eleventh damage cases in figure (4.45), the rate of 

the transfer function's numerator change obtained from the second and third floors was 

much higher than that of all the other rates. In addition, it has been revealed that the 

sign change of the transfer function's numerator change in the twelfth case enables to 

determine the damaged story. At the same time, it is proved that the damaged story 

also can be found by using the transfer function change ratios. 

The ratios of the transfer function's numerator changes obtained from some of the 

floors do not appear in figure (4.45) because there was no change in the transfer 

function's numerator of any of the two floors used when obtaining the ratio. 

 

Figure 4.45 : Rate of TF numerator change versus 3rd story damage cases. 

Figure (4.46) represents the ratio of the transfer function's numerator change 

percentages obtained from the floors to the ones obtained from the lower floors for 

cases where the fourth story was damaged. While examining figure (4.43), the 

damaged story could not be detected because there was no sign change between the 

numerator changes of the successive transfer function. However, when the changes in 

the numerators of the transfer functions were compared as in figure (4.46), it was seen 

that the ratio of the third and fourth floor's numerator changes is greater than the ratio 

of all other floors. It was sufficient to detect the damaged story in both cases, although 

the rate of change was not more significant than the others. 
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Figure 4.46 : Rate of TF numerator change versus 4th story damage cases. 
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 CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 

 Conclusions and Discussions 

This study aimed to locate and determine the structural damage by using the transfer 

functions' parameter changes obtained from the floors of a building type structure. In 

this study, two FEM of a building type structures were examined. The story 

displacements that changed as a result of the damage in the building and the ground 

acceleration affecting the building were utilized to obtain the transfer functions of the 

floors. Linear time series analyzes were performed while the parameter changes of the 

transfer functions were investigated for both analytical models. 

In the first study, a FEM of a five-story shear building was prepared for the laboratory 

scale model. Transfer functions of each floor were obtained using the unit step function 

as an input and the story displacements corresponding to this input as output. 

Even if the different base excitements affecting the structure produce different story 

displacements, there is no change in the transfer functions obtained from the floors of 

the structure because the transfer function is a characteristic feature that reflects the 

behavior of the floor which it is received. In the first study, each floor's transfer 

functions were obtained using the 1940 El Centro Earthquake record, unit step 

function, and unit impulse force as inputs and the story displacements as outputs. As 

a result, all transfer functions obtained from the same floor were proved to be identical, 

regardless of the input function. 

It was observed that the selected window length or overlap ratio influences the 

numerator value of the transfer function. If the input affecting the structure causes a 

permanent story displacement, the resulting numerator value of the transfer function 

must be multiplied by a correction factor to obtain the correct numerator value. The 

difference in percentage between the actual story displacement when the building 

reached the steady-state and the displacement obtained using the transfer function was 

selected as the correction coefficient. It was examined that adding with a number 

instead of multiplying with a coefficient was also possible. However, it was seen that 
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there was no significant change in the percentage of the transfer function representing 

the floor's behavior. 

In the first numerical study, the transfer functions' parameter changes reflecting the 

first three modes of the structure were examined in single or multi-story damage. 

Parameter change of the first mode of the transfer function is more effective in both 

localizing and determining the level of story damage than the parameter changes of 

the second and third modes. In addition, parameter changes of the transfer functions 

obtained from the lower floors provided more consistent results in determining 

structural damage in building type structures. 

Single and multi-story damage cases were examined in the first study. It was revealed 

that detecting the damaged floors in both single and multi-story damage cases is 

possible with parameter changes of the transfer functions. 

Two assumptions were made in which the relationship between story damage and the 

transfer function's numerator change were considered linear up to 80% and 60% 

damage. According to the results, when the relationship between numerator change of 

the transfer function and story damage was considered linear up to 60% damage, 

single-story damages were detected with more minor errors. On the other hand, the 

error level was relatively higher in multi-story damage cases. It can be said that the 

acceptance of linearity up to a lower damage percentage is more efficient in 

determining single-story damages. On the other hand, the acceptance of linearity up to 

more severe damage yields better results in detecting multi-story damage. 

In the case of single-story damage, the damaged story can be determined by examining 

the numerator changes of the first mode of the transfer functions obtained from 

successive floors. The numerator of the first mode of the transfer function obtained 

from the damaged story changed in the opposite direction with the lower story's 

numerator. It was observed that the numerator of the transfer function of a lower floor 

increased while the numerator of the transfer function of the damaged floor decreased. 

In the case of multi-story damage, numerator change of the first mode of the transfer 

function obtained from the first floor alone is not sufficient to determine the damage 

distribution between the first and second stories. Because different levels of damages 

on stories may result in an equal numerator change, change in the transfer function's 

denominator should also be examined. Damage distribution in the first two stories can 
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be estimated by the parameter changes of the first mode of the transfer function 

obtained from the first floor, considering both numerator and denominator changes. 

However, the first floor's transfer function parameters are insufficient to detect the 

multi story damage which include second and third stories' damage distribution. It is 

thought that parameter changes of the first mode of the transfer function obtained from 

the second floor should precisely estimate the damage distribution between the second 

and third stories. 

Damage determination with the parameter changes of the total transfer function 

obtained with transfer functions belonging to the first three modes was investigated. 

The fact that the parameters in the transfer function's denominator decreased with 

damage caused a reduction in the parameters of the total transfer function, regardless 

of the damage cases. Therefore, it was observed that damage determination could not 

be made by summing the transfer functions representing each floor's first three modes 

of behavior. 

In the second study, a FEM of a ten-story building with an RC core in the center was 

prepared. In this study, it was aimed to determine the damages that may occur in high 

rise buildings during the earthquake by transfer function changes. Transfer functions 

of each floor were obtained using the 1999 Kocaeli EQ record as an input and the story 

displacements corresponding to this input as output. 

It was revealed that the transfer functions obtained from the lower floors are more 

sensitive in detecting the damages. In addition, it was observed that the percentage 

change of the numerators of the transfer functions increased with the increase in the 

damage level. On the other hand, the transfer functions obtained from the middle floors 

were insensitive or slightly sensitive in all damage cases.  

Beam damages in the first two floors can be determined by the difference in the sign 

of the numerator change of the transfer functions, while beam damages in the upper 

floors did not cause a change in sign. Column damages in addition to the beams on the 

third story affected the sign of the change of the transfer function's numerators. 

However, it was observed that there was no sign change in the transfer function 

numerators with beam and column damages in the upper stories. As a result, even the 

low-level damage in the lower stories could be detected by the sign changes of the 

transfer function's numerator changes of the relevant floors. On the other hand, even 
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if there are high-level damages on the upper stories, the severity of the damage can be 

determined but can not be localized with sign change. 

In case there was no difference in the signs of the changes in the transfer function 

numerators, the rates of the changes in the transfer function's numerators of the 

successive floors have been examined. It has been found that the ratio between the 

transfer function's numerator changes of the damaged floor and the lower floor can be 

used in the determination of the damaged story. 

It was found that the damage occurring in the RC core caused more remarkable 

changes in the transfer function parameters obtained from all floors than those in the 

beams or columns. 

As a result, it was found that damage determination can be made for building type 

structures with transfer function parameter changes. The relationships established here 

can be shown as a significant development in Structural Health Monitoring studies. 

Transfer function parameter changes can detect both the severity of the damage and 

the damage location using a minimum number of sensors. 

 Recommendation for Future Research 

Damage detection with transfer function parameter changes can be used when the 

number of sensors is limited since very few sensors are required. In order to detect the 

damaged story, it is recommended to place a sensor on the floor that is expected to be 

damaged floor and the floor below. On the other hand, placing sensors on lower floors 

can be said as the most appropriate sensor placement to detect the severity of the 

damage. 

Even if the story damages were detected in the studies carried out, it is thought that the 

transfer functions that can represent the movements in two directions should be 

examined to localize the damaged elements. In addition, transfer functions obtained 

from rotational modes can help the damage localization on structures. 

It can be possible to detect the damaged elements with different intensities on the same 

floor by investigating the transfer function parameter changes obtained from 

movement in two directions in building type structures. 
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In an experimental study, while estimating the higher modes' transfer function 

parameters, it is difficult to separate the effects of the building's behavior and the noise, 

as the SNR ratio will be greater than the first modes. Therefore, it is hard to derive the 

transfer function parameters belonging to the higher modes. 

The relationship between denominator changes of the transfer function and the damage 

can be detailed by working on the cases where the damping ratio is not constant. 

Supporting the results obtained in this study with experimental studies to be carried 

out in the field or the laboratory in the future is essential in proving the consistency of 

the results. 
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APPENDIX A  

A.1 Fourier Series 

Fourier series are used to separate a periodic function into sinusoidal functions. Fourier 

series is a type of Fourier transformation for periodic functions. 𝑓(𝑡)  is a periodic 

function of time, if this condition can be satisfied for all t; 

Where, T is the fundamental period. 

Equation (A.1) means after every T seconds passed, the value of 𝑓(𝑡) must be same. 

Fourier series can represent all periodic continuous functions. Moreover, the Fourier 

series can be written as the sum of an infinite number of sine and cosine functions, and 

each has an integer multiple of 1/𝑇 frequency.  

Equation (A.2) is the general formula of the Fourier series. 𝑎0 is the average of the 

function, am and 𝑏𝑛 are the optimal coefficients for sinusoidal functions from zero to 

T, m, and n are the integer between 1 and positive infinity.   

From the equation (A.2), the unknown Fourier coefficients a0, am and 𝑏𝑛 can be found 

with the following equations, which show general formulas for the coefficients 𝑎0, 𝑎𝑚 

and 𝑏𝑛. 

 𝑎0 =
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡
𝑇

0

 

 

(A.3) 

First term of the Fourier equation is constant. Best value for 𝑎0 is the average value of 

the function. Hence equation (A.3) is the mathematical representation of averaging. 

 𝑎𝑚 =
2

𝑇
∫ 𝑓(𝑡) cos (

2𝜋𝑚𝑡

𝑇
)𝑑𝑡

𝑇

0

 

 

 

(A.4) 

 

 
𝑏𝑛 =

2

𝑇
∫ 𝑓(𝑡) sin (

2𝜋𝑛𝑡

𝑇
) 𝑑𝑡

𝑇

0

 

 

(A.5) 

 𝑓(𝑡 + 𝑇) = 𝑔(𝑡) (A.1) 

 
𝑔(𝑡) = 𝑎0 + ∑ 𝑎𝑚

∞

𝑚=1

cos (
2𝜋𝑚𝑡

𝑇
) +  ∑𝑏𝑛sin (

2𝜋𝑛𝑡

𝑇
)

∞

𝑛=1

 

 

(A.2) 
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Equations (A.4) and (A.5) are the mathematical representation of the correlation 

process between 𝑓(𝑡) and sinusoidal functions for determining the coefficients 𝑎𝑚 and 

𝑏𝑛. [75] 

A.2 Complex Fourier Coefficients 

In engineering, sometimes complex numbers provide more understandable solutions 

than real ones. Complex coefficients can be used by using the well-known Euler 

equation when creating the Fourier series. The complex exponential base is used to 

reach the complex Fourier coefficients. Complex Fourier series have a complex 

exponential basis.  

 
𝑔(𝑡) = ∑ 𝑐𝑛

∞

𝑛=−∞

𝑒𝑖
2𝜋𝑛𝑡
𝑇  

 

(A.6) 

Equation (A.6) is the general representation of the complex Fourier series. Only the 𝑐𝑛 

coefficient is unknown. Euler equations (A.7) and (A.8) can be used to find this 

coefficient. This complex exponential consists of sinusoidal functions since equation 

(A.9) is provided. 

 
cos 𝑡 =

𝑒𝑖𝑡 + 𝑒−𝑖𝑡

2
 

 

(A.7) 

 
sin 𝑡 =

𝑒𝑖𝑡 − 𝑒−𝑖𝑡

2𝑖
 

 

(A.8) 

 𝑒𝑖𝑡 = cos 𝑡 + 𝑖 sin 𝑡 (A.9) 

An optimal value for the unknown coefficient 𝑐𝑛 can be found using equation (A.10).  

 𝑐𝑛 =
1

𝑇
∫ 𝑓(𝑡)e−𝑖

2𝜋𝑛𝑡
𝑇

𝑇

0

𝑑𝑡 

 

(A.10) 

Complex functions may not always result in complex coefficients. Sometimes real 

coefficients can also be found. The resultant function 𝑔(𝑡) is an authentic function if 

equation (A.11) is provided [75].  

𝑐𝑛
∗ = 𝑐−𝑛 

(A.11) 

In equation (A.11), * sign refers to the complex conjugate. 
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A.3 Fourier Transform  

Fourier series can transform any periodic function to sinusoidal functions. However, 

Fourier transform is more comprehensive method that can also transform non-periodic 

functions. 

Fourier Transform (FT) is a name of mathematical operation that defines a waveform 

as a combination of sinus and cosine functions. Almost everything (a function or a 

signal dependent on time, sound waves, stock market price changes, etc.) can be 

defined as a waveform. FT is a powerful method that shows how a wave is formed by 

merging different frequency waves. The transformation takes place from the time 

domain data to frequency domain data. Therefore questions that are hard to solve in 

the time domain can be solved simply in the frequency domain.  

ℱ{𝑔(𝑡)} = 𝐺(𝑓) = ∫ 𝑔(𝑡)
∞

−∞

𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡 

 

 

(A.12) 

Equation (A.12) shows a Fourier Transform for any 𝑔(𝑡) function. The result of this 

equation is frequency. 𝐺(𝑓) is the power of the frequency and generally called as a 

spectrum. Fourier transform is a two directional transformation, so 𝑔(𝑡) can be 

obtained with the inverse of 𝐺(𝑓) as seen in the equation (A.13) [76].  

ℱ−1{𝐺(𝑓)} = ∫ 𝐺(𝑓)
∞

−∞

𝑒2𝜋𝑖𝑓𝑡𝑑𝑓 = 𝑔(𝑡) 

 

 

(A.13) 

A.4 Laplace Transform 

Laplace transform is an integral transform like Fourier transform. The Laplace 

transform of a function is a complex function of a complex variable, while the Fourier 

transform of a function is a complex function of a real variable (frequency). The 

Laplace transform is useful in solving ordinary linear differential equations. Therefore 

they are often used in the analysis of electrical circuits. The transform converts an 

equation from time-domain to Laplace domain that is represented with 𝑠. The Laplace 

transform is defined in equation (A.14). [77] 

𝐹(𝑠) = ℒ{𝑓(𝑡)} = ∫ 𝑓(𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡 

 

(A.14) 

Where 𝑓 is a function of 𝑡 and defined for all 𝑡 ≥ 0.[78] 
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Laplace transform is a two directional transformation. Inverse Laplace transform 

converts a function from Laplace domain to time domain and defined in equation 

(A.15). 

𝑓(𝑡) = ℒ−1{𝐹(𝑠)} =
1

2𝜋𝑖
∫ 𝑒𝑠𝑡
𝑐+𝑖∞

𝑐−𝑖∞

𝐹(𝑠)𝑑𝑠 

 

(A.15) 

Laplace transform can only be applied under the following conditions [79]: 

1. The system or signal is analog. 

2. The system or signal is linear. 

3. The system or signal is Time-invariant. 

4. The system or signal is casual. 

The main properties of Laplace transform can be listed as follows 

If ℒ{𝑓(𝑡)} = 𝐹(𝑠), 

1. Linearity 

ℒ{𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)} = 𝑎ℒ{𝑓(𝑡)} + 𝑏ℒ{𝑔(𝑡)} 
 

(A.16) 

2. Frequency Shifting 

ℒ{𝑒𝑎𝑡𝑓(𝑡)} = 𝐹(𝑠 − 𝑎) 
 

(A.17) 

3. Time Shifting 

Laplace transformation of 𝑓(𝑡) after the delay of time, T is equal to the product of 

Laplace Transform of 𝑓(𝑡) and 𝑒−𝑠𝑡 that is 

ℒ{𝑓(𝑡 − 𝑇)𝑢(𝑡 − 𝑇)} = 𝑒−𝑠𝑡𝐹(𝑠) 
(A.18) 

where 𝑢(𝑡) is the step function. 

4. Time Scaling 

ℒ{𝑓(𝑎𝑡)} =
1

𝑎
𝐹 (
𝑠

𝑎
) (A.19) 

5. Differentiation 

ℒ {
𝑑

𝑑𝑡
𝑓(𝑡)} = 𝑠𝐹(𝑠) − 𝑓(0) (A.20) 
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6. Integration 

ℒ {∫ 𝑓(𝑡)
𝑡

0

} =
1

𝑠
𝐹(𝑠) +

𝑓′(0)

𝑠
 (A.21) 

7. Multiplication 

ℒ{𝑓(𝑡)𝑔(𝑡)} =
1

2𝜋𝑖
lim
𝑇→∞

∫ 𝐹(𝜔)𝐺(𝜔)𝑑𝜔
𝑐+𝑖𝑇

𝑐−𝑖𝑇

 (A.22) 
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