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STRUCTURAL DAMAGE DETECTION WITH TRANSFER FUNCTION
PARAMETER CHANGES

SUMMARY

Defects may occur in engineering structures over the years due to use or environmental
effects. In addition, as a result of natural disasters such as earthquakes, buildings may
be forced out of their design philosophies, and as a result, defects appear in the weakest
places. In order to protect the environment and human health, these defects should be
detected as soon as possible, and necessary measures should be taken to increase
building and environmental safety. With the developing technology, it has been
possible to monitor the buildings instantly and to notice possible changes in a short
time. The new work area, in which changes in behavior are constantly monitored for
the building to serve safely, is called Structural Health Monitoring.

Structural Health Monitoring studies are aimed to examine the behavior of buildings.
Since any change occurring in the structure will affect the building's behavior, the
building's behaviors can be obtained with the data collected from certain parts of the
building. Thus, when any damage occurs in the structure, it is inevitable that the
damage will be detected with the changes in the data obtained.

Today, the behavior of engineering structures is widely studied on vibration-based.
Both recording, sorting, and analyzing the obtained data is an engineering process in
itself. It is necessary to work with an optimum number of data to carry out Structural
Health Monitoring work quickly. Trying to detect damage using too much data will
not be economical and will require unnecessary labor force usage. Therefore, the most
important need for Structural Health Monitoring study is to establish a statistical model
representing the relationship between damage and building behavior in the most
accurate way. As a result, when starting the building health study, the most appropriate
sensor placements should be planned for the structure to be monitored, and it should
be ensured that the sensors are used effectively.

In this thesis, determination of structural damage by changes in the parameters of the
transfer functions of the structure, which is one of the Vibration-Based Damage
Detection methods. In order to determine both the location and the intensity of
structural damage in building-type structures, two analytical studies were conducted.

The first analytical study was carried out on the finite element model of a five-story
building-type structure with laboratory dimensions. In this model, floors were
represented by plastic sheets and columns with reinforcements. Both the unit step
function and the earthquake record were affected from one direction to the model, and
the story displacements of the model were obtained. The transfer functions
representing the first three modes in the direction of motion of each floor were obtained
using these excitations and displacements.

As a result of the first study, a relationship could be created between transfer function
changes and the story damage. It was found that story damages can be detected using
transfer function changes in both single and multi-story damage cases. In addition, it

XXV



was determined that the numerator change of the transfer function obtained from the
damaged floor and the numerator change of the transfer function obtained from a lower
floor are in opposite directions. This relationship made it possible to identify the
damaged floor for all damage levels.

Another issue examined in the first study is determining the level of damage on the
story with transfer function parameter changes. Two different relationships were
accepted between the changes in the numerator values of the transfer functions and the
level of story damage. The first relation acceptance is that the numerator change of the
transfer function is linear when the damage level is up to 60%. Second, the numerator
change of the transfer function is linear when the damage level is up to 80%.

In the case of single story damage, it was revealed that the parameter changes
belonging to the first mode of the transfer function obtained from the first floor are the
most effective parameters in determining the damage of all stories.

In the case of multiple story damage, it was observed that the parameter changes of
the first mode of the transfer function obtained from the first floor were insufficient in
detecting the damaged stories. It was necessary to examine the changes of transfer
functions obtained from other floors according to the location of the damaged story.

In the second study, the analytical model of a ten-story building with a reinforced
concrete core in the center and a reinforced concrete frame system around it was used.
This study aimed to determine the damages that may occur in high rise buildings
during the earthquake by transfer function changes.

It turned out that the transfer functions obtained from the lower floors are more
sensitive in detecting damage, as in the first study. It was also seen that the damage
level and the percentage change of the numerators of the transfer functions are directly
proportional. On the other hand, parameter changes of the transfer functions obtained
from the middle floors were found to be low-level and even insensitive to all damage
situations.

In case there is no difference in the signs of the changes in the transfer function
parameter changes, the rates of change in the transfer functions of successive floors
are examined. It was found that the ratio between the change in the transfer function
numerator of the damaged floor and the change in the transfer function numerator of
the lower floor can be used to determine the damaged floor.

As a result, it was found that damage assessment can be made for both single story
damage and multi story damage scenarios in the building-type structures with transfer
function parameter changes. The method proposed here can be shown as an important
development in Structural Health Monitoring studies, as it can detect both the severity
of the damage and the damaged story using a minimum number of sensors.
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TRANSFER FONKSiYONU PARAMETRE DEGIiSIMLERI iLE YAPISAL
HASAR TESPIiTI

OZET

Miihendislik yapilarinda yillar igerisinde kullanimdan veya cevresel etkilerden
kaynakli birtakim kusurlar ortaya cikabilir. Ek olarak deprem gibi dogal afetler
sonucunda yapilarin tasarim felsefeleri disinda zorlanabilir ve bunun sonucunda en
zayif yerlerinde kusurlar kendini gosterir. Cevre ve insan sagligini korumak amaciyla
ortaya ¢ikan bu kusurlarin en kisa siire igerisinde tespit edilmesi ve yap1 ve gevre
giivenligini arttirmak amaciyla gerekli Onlemlerin alinmasi gereklidir. Gelisen
teknoloji ile birlikte yapilarin durumlarmin anlik olarak takip edilmesi ve olasi
degisimlerin kisa bir siire igerisinde fark edilebilmesi miimkiin olmustur. Yapinin
giivenli bir sekilde hizmet etmesi i¢in davraniglarindaki degisikliklerin siirekli olarak
takip edildigi yeni calisma alanina Yapisal Saglik izleme ad1 verilir.

Yapisal Saglik Izleme calismalari yaygin olarak yiiksek binalar, kopriiler, bazi
karayollari, havaalanlari, tarihi eserler gibi 6nemli miihendislik yapilarin1 korumak,
hasarlar1 diisiik seviyede iken tespit ederek yapi giivenligini siirdiirmek i¢in 6nlem
almak amaciyla gerceklesmektedir. Ote yandan deprem, hortum, tusunami gibi dogal
afetlerden etkilenmis yapilarda oncelikli olarak meydana gelen hasarin varliginin,
sonrasinda ise hasarin siddetinin ve konumunun tespitinin yapilmasi Yapisal Saglik
Izleme calismalarinin en 6nemli amaclarindan biridir.

Yapisal Saglik izleme calismalari, temelde yapilarin davranislarmi incelemeyi
hedeflemistir. Yapida meydana gelen her tiirli degisim yapt davranisina etki
edeceginden, yapinin belirli bolgelerinden toplanan veriler ile yapiya ait davraniglar
elde edilebilir. Boylece yapida herhangi bir hasar meydana geldiginde elde edilen bu
verilerdeki degismeler ile hasarin tespit edilebilecek olmasi muhtemeldir.

Gilinltimiizde miihendislik yapilarinin davranislar1 yaygin olarak titresim tabanli olarak
incelenmektedir. Yapi1 {iizerinde belirlenmis lokasyonlara koyulacak sensorler
sayesinde yapinin hem dogal hemde uyarilma sirasindaki davranislari kolaylikla elde
edilebilir. Literatiirde Titresim Tabanli Hasar Tespit Yontemleri olarak gecen
caligmalarda dogru sonuca ulagmak i¢in yapilmasi gereken en dnemli igin yapiya ait
titresimlerin dogru bir sekilde elde edilmesi oldugu bilinmektedir. Ciinkii yapiya ait
titresimlerin kayit edilmesi sirasinda yapinin igerisinde isletimden kaynakl, riizgar
gibi dogal kuvvetlerden kaynakli veya gevresel giiriiltii kaynakli bir ¢ok unsur kaydin
dogru bir sekilde elde edilmesinin Oniine ge¢cmektedir. Ortadan kaldirilabilecek
unsurlarin ¢alismalara baglamadan ortadan kaldirilmasi, digerlerinin etkisinin ise yap1
veya yapinin dogrulanmis analitik modeli tizerinde kontrollii olarak gerceklestirilecek
deneyler sonucunda 6grenilmesi ve géz Oniine alinmasi énemlidir.

Elde edilen datalarin hem kayit edilmesi hemde ayiklanarak analiz edilmesi bash
basina bir miihendislik siirecidir. Hizl1 bir sekilde Yapisal Saglik izleme ¢alismasim
gerceklestirebilmek icin optimum sayida data ile calisilmas: gerekmektedir.
Gereginden fazla data kullanarak hasar tespiti yapmaya ¢alismak hem ekonomik
olmayacak hemde gereksiz isgiicii kullanimina ihtiya¢ duyacaktir. Dolayisiyla hasar
ile yapt davramis1 arasindaki iligkiyi en dogru sekilde temsil edebilen istatistiksel
modelin kurulabilmesi Yapisal Saglik izleme g¢aligmasinin en &nemli ihtiyacidir.
Sonug olarak yap1 sagligi izleme galismasina baglanirken, izlenecek yap1 i¢in en uygun
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sensoOr yerlesimleri planlanmali ve sensorlerin etkili bir sekilde kullanildigindan emin
olunmalidir.

Yapi ilizerinde meydana gelmis hasarlarin tespitinde kullanilabilecek birgok titresim
tabanli yontem vardir. Bu yoOntemlerin ortak Ozellikleri genel olarak yapinin
titresimlerini inceleyerek hasar tespiti yapmak olsa da birbirlerine gore avantajlari
veya dez avantajlar1 bulunmaktadir. Genel olarak maliyet, zaman, hassasiyet ve
uygulama kolaylig1 bu avantaj ve dezantajlarin kapsami olarak sdylenebilir. Ayni
zamanda incelenecek yapinin tiirii de hasar tespiti yapmak icin segilecek yontemin
belirlenmesinde 6nemli bir rol oynar.

Bu tezde titresim tabanli hasar tespit yontemlerinden biri olan yapiya ait transfer
fonksiyonlarinin parametrelerindeki degisimler ile yapisal hasarin tespiti yapilmistir.
Bina tiirii yapilarda yapisal hasarin hem lokasyonunun hem de siddetinin belirlenmesi
i¢in yapiya ait katlardan elde edilen transfer fonksiyonu degisimlerinin incelendigi iki
analitik ¢alisma yapildi.

Ik analitik calisma laboratuvar boyutlarinda bes katli bir bina tipi yapinimn sonlu
elemanlar modeli tizerinde gergeklestirildi. Bu modelde katlar plastik levhalar ile
kolonlar donatilar ile temsil edildi. Modele hem birim basamak fonksiyonu hemde
1940 El Centro deprem kaydi tek yonden etkitildi ve modele ait kat deplasmanlari
kaydedildi. Her bir katin hareket dogrultusundaki ilk i¢ modunu temsil eden transfer
fonksiyonlari, bu etkiler ve meydana gelen kat deplasmanlar: kullanilarak bulundu.

Transfer fonksiyonlar1 elde edildikleri katin karakteristik bir 6zelligini yansittigindan,
girdi olarak birim basamak fonksiyonunun veya deprem kaydinin kullanilmasi sonucu
degistirmedi ve kata ait transfer fonksiyonlariin her iki durum igin de ayni oldugu
ortaya ¢ikti.

[k modelde her bir kata ait kolonlarin atalet momentleri %10 ile %80 seviyesi arasinda
azaltilarak katlarda meydana gelen hasar durumlar1 temsil edildi. Ayrica birden fazla
katin ayn1 anda hasarli olmasi durumunu yansitmak i¢in belirli seviyelerde ¢oklu kat
hasar1 durumu da calisildi.

Ik calisma sonucunda transfer fonksiyonlar1 degisimleri ile hasarli kat arasinda bir
iliski kurulabildi. Bunun sonucunda hem tekil hemde ¢oklu kat hasar1 durumlarinda
transfer fonksiyonu degisimleri kullanilarak kat hasarlarinin tespit edebilecegi ortaya
cikt1. Hasarli kattan elde edilen transfer fonksiyonunun pay degisimi ile bir alt kattan
elde edilen transfer fonksiyonunun pay degisiminin birbirine zit ydonde olduklari tespit
edildi. Bu iligki tekil kat hasar1 durumunda tiim hasar seviyeleri i¢in hasarli katin
tespitini miimkiin kildi.

Coklu kat hasar1 durumlarinda hasar tespitinde, ilgili durumda hasarli olan katlarin
transfer fonksiyonunun pay degisimleri lineer olarak toplanarak toplam degisime
yakin bir sonug elde edildi ve arada kalan bu fark ile lineerlik katsayisinin ¢arpilmasi
ile yapilan hata ytizdece bulundu.

[k ¢aligmada incelenen bir diger konu ise katta meydana gelen hasar seviyesinin
transfer fonksiyonlarinin parametre degisimleri ile tespit edilmesidir. Transfer
fonksiyonlarmin pay degerlerinin degisimleri ile kat hasarinin seviyesi arasinda iki
farkli iliski kabulii yapildi. ilk iliski transfer fonksiyonunun pay degisiminin, kat
hasarinin %60 seviyesine kadar oldugu durumda lineer olmasidir. ikincisi ise transfer
fonksiyonunun pay degisiminin, kat hasarinin %80 seviyesine kadar oldugu durumda
lineer olmasidir.
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Tekil kat hasarlari, transfer fonksiyonlarinin pay degerlerinin degisiminin %60
seviyesindeki hasara kadar lineer kabul edildigi iliski kullanilarak daha az hata ile
tespit edilebildi. Ote yandan transfer fonksiyonlarinin pay degerlerinin degisiminin
%80 seviyesindeki hasara kadar lineer kabul edildigi iliski kullanilarak, ¢oklu kat
hasarlari, ilk iliskiye gére daha diisiik hata orani ile tespit edebildi. Sonug olarak, iliski
daha disiik seviyelere kadar lineer kabul edilirse tekil kat hasarlari, daha yliksek
seviyelere kadar lineer kabul edilirse ¢oklu kat hasarlar1 etkili bir sekilde tespit
edilebildi.

Tekil kat hasar1 durumunda birinci kattan elde edilen transfer fonksiyonunun birinci
moduna ait olan parametre degisimlerinin tiim katlarin hasarlarini tespit etmede en
etkili parametreler oldugu ortaya ¢ikti.

Coklu kat hasar1 durumunda ise yanlizca birinci kattan elde edilen transfer
fonksiyonunun birinci moduna ait parametre degisimlerinin hasarli katlar1 tespitinde
yetersiz kaldig1 goriildi. Hasarli katlarin yerine gore diger katlardan elde edilen
transfer fonksiyonlarinin degisimlerinin incelenmesi gerekti.

Ikinci ¢alismada tastyic1 sistemi merkezde betonarme gekirdek ve etrafinda betonarme
gerceve sistem olan on katli bir binanin analitik modeli kullanildi. Bu calismada
deprem sonrasi yiiksek binalarda meydana gelebilecek hasarlarin transfer fonksiyonu
degisimleri ile tespiti amaglandi. Bu ¢alismada transfer fonksiyonunun girdisi 1999
Kocaeli Depremi’nin kuzey-giiney ivme kaydi olurken, ¢iktist kat deplasmanlart oldu.

Model iizerinde kiris, kolon ve ¢ekirdek hasarlar1 incelendi. Hasarli eleman sayilar1 ve
elemanlarin hasar seviyeleri degistirilerek farkli durumlar sonucunda transfer
fonksiyonu degisimleri arastirildi. Eleman hasarlar1 kirislerde plastik mafsal
tanimlanarak, kolonlarda atalet momenti diisiiriilerek, perde duvarda ise kat yiiksekligi
boyunca tanimlanan sonlu elamanin elastisite modiilii azaltilarak temsil edildi.

Alt katlardan elde edilen transfer fonksiyonlarinin, ilk ¢alismada oldugu gibi, kat
hasarlarinin tespitinde daha hassas oldugu ortaya cikti. Ayrica hasar seviyesi ile
transfer fonksiyonlarinin paylariin yiizde degisiminin dogru orantili oldugu goriildii.
Ote yandan, orta katlardan elde edilen transfer fonksiyonlarinmn, tiim hasar
durumlarina karsi diisiik seviyede duyarli oldugu hatta bazen duyarsiz kaldig1 goriildii.
Ayrica, st katlardan elde edilen transfer fonksiyonlarinin parametreleri tiim hasar
durumlarn incelendiginde, alt katlardan elde edilenlerden daha az degissede orta
katlardan elde edilenlere gore daha fazla degisim gosterdi.

Alt katlardaki diistik seviyeli hasarin bile ilgili katlarin transfer fonksiyonunun pay
degisimlerinin isaret degisiklikleri ile tespit edilebildigi goriildii. Ote yandan {ist
katlarda hasarli eleman sayist ve hasar seviyesi artsa bile bu ydntemle hasarin
varliginin tespit edilebilecegi ancak yerinin tespit edilemeyecegi ortaya cikti.

Betonarme ¢ekirdekte meydana gelen hasarin, tiim katlardan elde edilen transfer
fonksiyonu parametrelerinde, kiris veya kolonlardakilere gore daha dikkat cekici
degisimlere neden oldugu belirlendi. ilk &rnekte oldugu gibi hasarin siddeti ile
parametrelerdeki degisimin seviyesi dogru orantili olarak degisti.

Transfer fonksiyonlarindaki degisimlerin isaretlerinde farklilik olmadigi durum igin
birbirini izleyen katlarin transfer fonksiyonlarinin parametre degisim oranlari
incelendi. Hasarli katin transfer fonksiyonunun parametre degisimi ile bir alt katin
transfer fonksiyonunun parametre degisimi arasindaki oranin hasarli katin
belirlenmesinde kullanilabilecek bir diger metot oldugu tespit edildi.
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Sonug olarak bu tezde transfer fonksiyonunun parametre degisimleri ile bina tiirii
yapilar i¢in hasarin yerinin ve seviyesinin tespitinin yapilabilecegi gosterildi. Burada
Onerilen yontem hem hasarin siddetini hemde hasarli katt minimum sayida sensor
kullanarak tespit edebildigi icin Yap1 Saglig1 izleme galismalarinda 6nemli bir gelisme
olarak gosterilebilir.
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1. INTRODUCTION

1.1 Overview

The importance of the structural damage assessment in terms of environmental and
public health is increasing. The aging of building stocks, the increase in the intensity
of earthquakes, and the weakening of the structures constructed when technology and
engineering knowledge are limited may cause human deaths or environmental
pollution. In order to avoid similar consequences, Structural Health Monitoring (SHM)
studies required to identify existing or potential structural damages have been

accelerated.

One of the highlighted benefits of the developing technology is that instant monitoring
of structure behavior provides information about structure health, just like human
health. Thus, minor defects in the structure can be easily detected, and the safe use of
the structure is maintained with instant interventions. In addition, the ability to make
calculations faster and with minor errors thanks to advanced computers is another

benefit of developing technology for structure health studies.

Governments and private companies recognized the importance of SHM and started
investing in SHM systems. Today, SHM activities are carried out in many bridges,
castles, historical buildings, museums, government buildings, skyscrapers, highways,

and buildings with high human density in or around them.

The increase in engineering knowledge has facilitated the determination of the cause
of the changes in the structure and the consequences that may arise by investigating
the data obtained during SHM more effectively. Moreover, the fact that structural
damages can be detected with emerging methods revealed as a result of academic

researches leads to the widespread use of SHM systems.

SHM studies generally examine the differences occurring in the structure. Since all
kinds of changes occurring in the structure affect the vibration character, most SHM
studies have been performed on Vibration-Based Damage Detection (VBDD)

methods.



1.2 Structural Health Monitoring

SHM can be defined as monitoring the status of all the elements belonging to the
structure, which are the materials that make up the structure and the elements that
represent the structure as a whole, by following the structure throughout its lifetime.
Although conditions such as aging, environmental effects, or accidents affect the
structure, the state of the structure must remain as specified in the design. Since the
monitoring is time-dependent, the data obtained during the monitoring period can
represent all the past situations of the structure. Thanks to the time dependency feature
of the monitoring process, significant information about the structure can be obtained,
such as the evolution of the damage, the level of progress, and the remaining life of
the structure [1].

Monitoring the integrity of a structure in use over time is an outstanding improvement

for the manufacturers, users, and maintenance team. The main advantages of SHM [1]:

Optimal use of structure, minimizing the usage interruption in the structure and

preventing catastrophic failures.
Providing the opportunity to make improvements in the structure instantly.

Changing the working principle of maintenance services. First, SHM aims to perform
periodic maintenance instead of performance-based (long-term) maintenance and
(short-term) reduce the workforce required for maintenance by not taking action for
undamaged products. Second, by significantly minimizing human intervention and
consequently reducing labor, downtime, and human error, thus increasing safety and

reliability.

Although there are many ways to manage the SHM process, as a result of the studies,
the SHM process has been defined in terms of a four-stage statistical pattern

recognition paradigm. This four-step paradigm includes [2]:
i.  operational evaluation,
ii.  data acquisition, normalization and cleansing.
ii.  feature selection and information condensation, and

iv.  statistical model development for feature discrimination.



Although the studies on SHM consist of these steps, few studies involve all of them.
With the help of [3], the steps are explained in detail on the following pages.

1.2.1 Operational system

The operational evaluation consists of four questions that must be answered in the

damage assessment process in SHM.

I.  What are the life safety and/or economic reasons for carrying out structural

health monitoring?

ii.  How is damage defined for the system being investigated, and what situations

are most hazardous for multiple damage cases?

lii.  What are both the operational and environmental conditions when the system

to be monitored is operating?
iv.  What are the limitations on acquiring data in the operational environment?

As a result of the operational evaluation, limitations about what to monitor and how to
monitoring process will continue are determined in the structure. The damage
identification process continues according to the characteristics of the monitored
structure, and it is desired to take advantage of the unique properties of the damage to
be detected.

1.2.2 Data acquisition, normalization and cleansing

The data acquisition part of the SHM process is where the excitation methods, sensor
type, number and location, and techniques such as data collection, storage, and

transmission are decided.

Normalization of data is one of the most important requirements of SHM, as the
conditions when the data are measured constantly change. Data normalization is the
process of separating the effect of the damage on the sensor reading from the effects
caused by operational or environmental changes. One of the most common procedures
is to normalize the responses measured with the measured inputs. When a difference
due to operational or environmental factors is detected, a temporary normalization can
be made by comparing the obtained data with data obtained at another time in a similar
cycle. The source of variability in the system being monitored during the data

collection process should be identified and, if possible, eliminated. Since it is generally



impossible to remove all sources of variability, necessary measurements should be
made to quantify the existing sources. Variability can be caused by environmental and

test conditions, changes in the data reduction process and unit differences.

Data cleansing is the process of selecting data that will and will not be used for feature
detection. The data cleansing process is usually carried out based on information
obtained from experience. For example, when controlling the test setup, it can be
determined that a sensor is loosely set, and the person making the measurement decides
whether the obtained data can be used or not. Moreover, signal processing techniques

such as filtering and resampling are standardly used data cleaning procedures.

1.2.3 Feature extraction and information condensation

Examining the data properties varying between undamaged and damaged structures
constitutes the common point of SHM studies in the literature. Condensation of the
data is the basis of the feature selection process. Therefore, the properties to be

determined for damage assessment are application-based.

Comparison of the measured system responses, such as vibration amplitude or
frequency, with observed system responses, is one of the most commonly used feature
extraction methods. Another feature development method for damage detection is to
apply possible engineering defects or damages to the system and establish
relationships that can reveal which parameters change with these defects and the
interaction between changing parameters and defects. Besides using experimentally
validated finite element models, the advantage of measurements to be made on
defective systems is to reveal whether the amount of change in parameters as a result
of damage is at a detectable level. Analytical tools are generally preferred for
performing numerical studies where defects are created through simulation. Damage
accumulation tests on essential elements of the system effectively determine the
appropriate features if realistic loading conditions are utilized. Part of this process is
to accumulate certain types of damage in an accelerated manner, such as induced-
damage testing, fatigue testing, corrosion growth, or temperature cycling. Appropriate
features can be obtained as a result of experimental or analytical studies as stated

above, and combinations of these studies may also be required.



The operational application and emerging measurement techniques used in SHM
require more data than structural dynamics knowledge. Therefore, the concentration

of many sets of data obtained the entire life of the structure is of great importance.

In addition, robust data reduction techniques should be developed to maintain feature
sensitivity to relevant structural changes in the presence of environmental and
operational variability, as data will be obtained from a structure over an extended
period of time and in an operational environment. The statistical significance of the
features should be characterized by helping to increase the quality of accurate data and

recording standards and should be used in the concentration process.

1.2.4 Statistical model development

Developing a statistical model that distinguishes the damaged and undamaged
structures is another noticeable part of the SHM process in the literature. Statistical
model development is the name given to the process of deriving the algorithms
containing information about the damage utilizing the data obtained from the damaged
and undamaged structure. Statistical model development algorithms can be divided
into two as supervised learning and unsupervised learning. When data can be obtained
from both damaged and undamaged structures, algorithms are developed as a result of
supervised learning. On the other hand, unsupervised learning refers to the algorithms

applied to non-sample data from an undamaged structure.

The study to define the damage status of a system can be defined as a five-step

process[4].
i.  Existence: Is there damage in the system?
ii.  Location: Where is the damage in the system?
iii.  Type: What kind of damage is present?
iv.  Extent: How severe is the damage?
v.  Prognosis: How much useful life remains?

Information on the damage status will gradually increase if these questions are
answered in order. When these questions are applied for an unsupervised learning

mode, models can only provide information about the presence and location of the



damage. On the other hand, in the supervised learning mode, additional knowledge
such as the type and size of the damage and useful life of the structure is obtained.

Statistical models are also used to minimize false signs of damage. Mainly false
damage indicators can be divided into two groups. The first is a false positive sign
(indicator shows damage in the absence of damage). The second is a false negative
sign (indicator shows no damage in case of damage). Errors of the first type cause
unnecessary labor or loss of confidence in the monitoring system, while errors of the
second type lead to worse consequences such as loss of security. In many algorithms,

one type of error is more dominant than the other.

1.3 Present Study

Damage assessment constitutes the most crucial part of the SHM studies. Although
there are weaknesses in engineering structures due to faulty design, over time,
weakening due to use or environmental effects also occurs. The main ones are known
as material deterioration, loss of element strength, or weakening due to ground
movements. The results of this weakening are typical and cause defects in the
structure. Therefore, the structure moves away from its design features and reaches a

level that will endanger human life and environmental health.

Changes that threaten the structure's health can be defined as damage. In general, the
level of changes in the structure and severity of damage in the structure are directly
proportional to each other. When measured changes are significant, it is easy to detect
structural damage visually and measurements obtained from the structure. However,
minor changes can not be detected visually and are very difficult to detect with
measurements. In addition, after detecting damage in the structure, determining the
damage location requires another engineering review. Generally, it is necessary to
examine the other features of the data obtained to determine the location of the damage.
This process is called damage localization. Damage detection and damage localization
are two general purposes of damage detection with SHM studies.

This thesis demonstrates the vibration-based damage detection studies with the
transfer function parameter changes of the building type structures. In this study, using
the data obtained from the floors of the building type structures as outputs and the
ground excitation as inputs, the transfer functions of each floor are derived, and the



relationship between transfer function's parameter changes and damages occurring in

the building was investigated.

In the first of the two analytical studies included in this thesis, transfer functions are
derived from the floors of a building model in laboratory model dimensions. Using
both unit impulse and earthquake recording as ground excitation, both free vibration
and forced vibration data are utilized for obtaining transfer functions of the model. By
examining both single story and multiple story damage cases, the efficiency of
parameter changes of the transfer functions obtained from floors in detecting damage
was revealed. In addition, a statistical model was established between the severity of
story damage and the level of transfer function parameter changes.

The second analytical study in the thesis was done on the finite element model of a
full-size building. The parameter changes of the transfer functions obtained from the
floors as a result of damage on the structural elements in the building, which has a
reinforced concrete core in the center and the frame system around it, were examined.
The changes in the transfer functions due to damage on the different elements such as
beams, columns, and core elements were compared. In addition to the statistical model
between the damage level and the parameter changes of the transfer function in the
first study, a statistical model was established to detect the damaged story in both

studies.

This thesis aims to determine the damages that occur in the building-type structures
with the parameter changes of the transfer functions obtained from the building floors.
At the same time, it is another goal to increase the sensor efficiency by creating a
statistical model between the parameter changes of the transfer function and the
structural damage. Thus, the number of sensors required for the SHM process

decreases, and studies require fewer data and labor.

1.4 Scope of The Thesis

This thesis consists of two numerical studies of vibration-based damage detection
methods with transfer function parameter changes. The overview of vibration-based
damage determination methods used for structures in the literature is examined in
Chapter 2. The theoretical foundations of the transfer function are in Chapter 3.
Chapter 4 includes two different numerical studies that aim to determine and locate



the structural damage using transfer function parameter changes for the building type
structures. Chapter 5 contained the conclusion and discussion.

1.5 Equipment, Software and Service Acquisition Used

The study includes only the theoretical part; for this reason, only the following
software is required:

I.  SAP2000 to analyze the FE model of the buildings.

ii.  MATLAB to data acquisition and derive relationships.



2. LITERATURE REVIEW

2.1 Overview

Nowadays, building stocks consist of old structures when built-in times of insufficient
technology and regulation. Moreover, many structures built today are flawed, or they
are exposed to external forces such as earthquakes, dynamic vibration from different
sources (caused by vehicles passing by, equipment operating inside buildings, etc.)
and contain invisible damages. The necessity to monitor the damage of the structures
due to unexpected external or operational forces and to take measures if necessary has

created a new engineering field called Structural Health Monitoring (SHM).

SHM s the determination of the changes that occur by following the structural
integrity and the condition of structural elements from the start of use of any
engineering structure until the end of its lifetime. In addition, it is possible to predict
the remaining life of the structures by determining the locations and levels of damage
on the structure. Although SHM is carried out in many engineering fields, recent
researches have accelerated in civil engineering after aeronautical and mechanical

engineering.

Although there are many non-destructive damage detection methods, damage
identification based upon changes in vibration characteristic methods are getting more
popular among researchers nowadays. Vibration-based damage detection (VBDD)
methods mainly focus on the vibration responses of the structure under known
excitations. VBDD methods try to find out how the modal and structural parameters
are affected by the changes in vibration responses due to damage on the structure.
VBDD methods can determine both local and global damages in various types of

structures featly.
Throughout the literature, VBDD methods are divided into three main groups;
I.  Traditional methods using change of basic modal parameters
a. Mode shape

b. Curvature mode shape



c. Natural frequency

d. Modal strain energy

e. Frequency response function (FRF)

f. The transfer function (TF)

g. Dynamically measured flexibility
Il.  Advanced computational methods

a. Neural Network

b. Wavelet technique

Each of the methods grouped above has its advantages and disadvantages, and these

will be mentioned later.

Damage assessments made in structural dynamics are groped in three different ways

according to the type of data used [5].
I.  Linear analysis
Il.  Nonlinear analysis

I1l.  Analysis with transient signals and wavelet transforms.

2.2 Damage Detection Methods

Structural damage detection methods aim to determine the location and severity of the
damage by analyzing different parameter changes in the structure due to damage. The
following parameters focus on the most common vibration-based damage detection

methods in the literature.

2.2.1 Mode shape

Mode shapes reflect characteristic properties of structures. Consequently, the location
and severity of the damage are determined by analyzing the changes in the mode
shapes of the undamaged and damaged structure. Mode shapes contain local
information of the structure, which allows precise determination by directly using the
mode shapes in local damage detection. Mode shapes are obtained from either the
Finite Element Model (FEM) or experimental data analysis. Mode shapes are less

sensitive to environmental influences such as temperature than natural frequency.
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Since mode shapes are location-based, they require measurements from multiple
locations for the solve of consistency.

West (1984) presents one of the first investigations that the location of structural
damages is related to changes in modal shapes without using a prior FE model. The
author uses modal assurance criteria (MAC) to find the correlation of the mode shapes
obtained vibrations from undamaged Space Shuttle Orbiter body flap and the mode
shapes from under acoustic loading. Mode shapes are aggrouped with various

schemes, and changes in MAC are analyzed to localize the damage [6].

Mayes (1992) presents structural translation and rotation error checking technique
(STRECH) to localize two modal model errors. The location of the stiffness difference
in the structure determines as a result of a general comparison between the differences
of the two modes. Additionally, STRECH can be used to compare the results of both
two different tests and one test with FEM [7].

Ratcliffe (1997) presents the damage assessment by the finite difference
approximation of Laplace's differential operator applied to the mode shapes data of a
beam. This method successfully locates the stiffness reduction of more than 10%.
However, when the damage is less severe, further processing of Laplacian output is
required [8].

Hu and Afzal (2006) present a statistical algorithm that works as a damage indicator

by comparing the mode shapes of intact and damaged timber beams [9].

An experimental study on shear building completed by Ghosh and Chaudhuri (2015)
demonstrates the efficiency of higher mode shapes in localizing damage. It is found
that the location of the damage determines the effectiveness of higher mode shapes
and their derivatives in the damage detecting process. Their efficiency is slightly

decreased, especially for shorter buildings [10].

Tatar et al. (2017) present a damage assessment study on a real nine-story reinforced
concrete building before and after seismic retrofitting. Obtained mode shapes from the
forced vibration response of the building are used for calculating MAC (Modal
Assurance Criteria) and COMAC (Co-ordinate Modal Assurance Criteria) values.
They proved that the seismic retrofitting operations are effective, and the response of
the structure is reduced due to rehabilitation and retrofitting [11].
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2.2.1.1 Modal assurance criteria (MAC)

MAC is a static indicator used for damage detection due to mode shape differences
between intact and damaged structures. MAC is generally effective at detecting severe
damages and is not sufficient for minor damage detection. MAC only considers model
shapes, which means that a separate frequency comparison must be used with MAC
values to determine associated mode pairs. Generally, experimentally obtained mode
shapes and those obtained from FE models are compared to MAC. In addition, MAC
does not require any estimation of system matrices such as flexibility or mass. It only

indicates the consistency between mode shapes [12].

The limits of the MAC values are between 0 and 1. 0 means the mode shapes are not
consistent, and 1 means mode shapes are consistent. MAC is calculated as a scalar

product of two-mode shape vectors {¢,} and {@x} [12].

DERCARCIS

- (2.1)
Ehalea) Ehilexd?)

MAC(r,q)

where,
@4 is the mode shape vector of the undamaged structure.
@y is the mode shape vector of the damaged structure.

Kim et al. (1993) present the efficiency of MAC and its different variations in the
location of structural damage. They specify the damaged part with the collaboration of
COMAC and partial modal analysis criterion (PMAC) [13].

Srinivasan and Kot (1992) present a study on the cylindrical shell to determine cracks
with mode shapes and frequency methods. Authors claim that mode shape change
quantified with the change of MAC values is a more sensitive indicator than resonant
frequencies [14].

2.2.1.2 Co-ordinate modal assurance criteria (COMAC)

Lieven and Ewins (1988) present COMAC that is an extension of MAC, and it infers
which degrees of freedom in the structure negatively affects a low MAC value. Both
analytical-analytical or experimental-experimental and analytical-experimental mode
shape data can be used to calculate COMAC values [15]. COMAC method comprises

of two steps. First, two-mode shape vectors are coupled with a method such as MAC.
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Second, correlation values at each node are calculated using all these coupled-mode
pairs as given in equation (2.2) [16].

1| (#pr) (0r) |2 (2.2)

COMAC(p) =
erv=1(¢pr)2 erv=1(¢pr)2

where,

¢pr = Modal coefficient from the degree of freedom p and modal vector r from one

set of modal vectors.

¢pr = Modal coefficient from the degree of freedom p and modal vector r from the

second set of modal vectors.

COMAC (p) gives the information of the two vectors, with the vector entries being the

coefficients of the two sets of matched modal vectors at location p.

An experimental study done by Chang and Kim (2016) indicates that if a sufficient
number of modes are considered, MAC and COMAC values refer to damage location

and severity in bridge-type structures [17].

2.2.1.3 Other modal assurance criteria
The most common assurance criteria in the literature are briefly explained below.

With a subset of the total modal vector, partial modal assurance criterion (PMAC) was
developed as a spatially limited version of the MAC. The subset is selected either DoF
from part of the modal vector or a certain dominant sensor direction (horizontal,

longitudinal, or vertical) [18].

The modal assurance criterion (MACSR) square root is developed to be more
consistent with the orthogonality and pseudo-orthogonality calculations using an
identity weighting matrix. This approach aims to refer to the square root of the MAC

calculation, which are generally very small non-diagonal terms [19].

The scaled modal assurance criterion (SMAC) is a weighted modal assurance criterion.
The weighting matrix aims to balance the transitional and rotational degrees of
freedoms contained in the modal vectors. Various data types are involved in the same

modal vector to normalize the magnitude differences in the vectors. Because MAC is
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heavily influenced by large values and decreases the squared errors, this process is
required [20].

The modal assurance criterion using reciprocal modal vectors (MACRYV) is the
comparison of reciprocal modal vectors with analytical modal vectors as similar to a
pseudo-orthogonality check. The reciprocal modal vectors are utilized in control
applications as modal filters. The mode isolation provided by each reciprocal modal

vector compared to analytical modes expected can be controlled with MACRYV [21].

Modal assurance criterion with frequency scales (FMAC) is a type of MAC that
presents a means of displaying the mode shape correlation, the degree of spatial
aliasing, and the frequency comparison in one graph synchronously [22].

The enhanced coordinate modal assurance criterion (ECOMAC) is an extended
version of MAC to consider the calibration-scaling errors and sensor orientation

mistakes that are the main problems in determining modal vectors [23].

The mutual correspondence criterion (MCC) is a modal assurance criterion that is
applied to vector measures of acoustic information (velocity, pressure, intensity, etc.).
The formulation of MCC includes a transpose and only proper with real-valued vectors
[24].

Modal correlation coefficient (MCC) is one of the critical modified versions of MAC.
Making MAC more sensitive to determine minor magnitude changes in the modal

vectors is the primary purpose of MCC [25].

Inverse modal assurance criterion (IMAC) is another approach that targets increasing
the sensitivity of MAC to determine small mode shape changes. Hence, this approach

utilizes the inverse of modal coefficients; they could differ from zero [26].

Frequency Response Assurance Criterion (FRAC) is a technique that compares
predicted frequency response functions with calculated frequency response functions

of any structure. Generally, FRAC is used for the system identification process [27].

Complex Correlation Coefficient (CCF) is a derivation of FRAC. CCF is calculated
without squaring the numerator values and has the same magnitude as FRAC.
However, CCF indicates phase lag or lead that is present between two FRFs.

Generally, CCF is used to solve experimental signal conditioning problems [28].
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Different frequency shifts can be calculated with the frequency domain assurance
criterion (FDAC), which is a variation of FRAC. In addition, FDAC can be considered
as a MAC in the frequency domain [29].

Coordinate orthogonality check (CORTHOG) examines the contribution of each
physical degree of freedom of the mode vectors obtained analytically and
experimentally to the total orthogonality relationship. Correlation between modal
vectors is easier to understand with the CORTOG method [30].

Shi et al. (2000) present a sensitivity-based method which is an extension of the
multiple damage location assurance criterion (MDLAC) to localize damage by direct
use of incomplete mode shapes. They analyzed a plane trust structure numerically to

compare the performance of the proposed method [31].

The purpose of different modal assurance criteria used in the literature is listed below
[32].

e Validation of experimental modal models.

e Correlation with analytical modal models.

e Correlation with operating response vectors.

e Mapping matrix between analytical and experimental modal models.
e Modal vector error analysis and Modal vector error averaging.

e Experimental modal vector completion and expansion

e Weighting for model updating algorithms

e Modal vector consistency/stability in modal parameter estimation algorithms.
e Repeated and pseudo-repeated root detection.

e Structural fault/damage detection.

e Quality control evaluations.

e Optimal sensor placement.
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2.2.2 Mode shape curvature

In many studies, it is seen that the mode shapes obtained from the displacement data
are not as effective as expected in damage detection. Mode Shape Curvatures (MSC)

emerges as a study to enhance the consistency of damage detection experiment results.

Pandey et al. (1991) is the first study to present that MSC is a highly sensitive method
to identify and localize the damage in a structure. They showed that absolute MSC
change indicates the damage location. In addition, MSC changes are directly
proportional with the severity of the damage. They calculated MSC using a central
difference approximation as given in equation (2.3) [33].

9 = Vi1 —29; +9;4 (2.3)
i = h2

where 9; is the modal displacement at i-th point and h is the distance between measured

points.

Wahab et al. (1999) present MSC technique applied to a real bridge for higher mode
shapes. They found that modal curvature changes of the lower modes are more

accurate than higher modes for damage localization [34].

Frans et al. (2017) present a comparative study of MSC and damage locating vector
methods on beam, truss, and shear-type structures for damage detection. They indicate
MSC is not an appropriate method for truss structure since MSC is calculated from the

displacements at the nodes [35].

2.2.3 Natural frequency

Natural frequencies provide essential information about the vibration characteristics
of the structures thus, natural frequency changes have been investigated from many
types of research in damage assessment studies from past to present. When the natural
frequency of a structure changes with any damage, it results from stiffness, mass, or
any other parameter changes in the structure. Natural frequency changes can be
measured quickly and cheaply using classical vibrational measurement techniques
from a few points on the structure. Moreover, resonant frequencies can be measured
with high accuracy at one point of the structure and independent of the position;
besides, the impreciseness of these measurements can be eradicated with proper

experimental conditions. However, only natural frequency change is not enough for
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structural damage detection, especially for symmetrical buildings. In addition, the
sensitivity of natural frequency change is an insufficient indicator for minor damage

detection.

Cawley and Adams (1979) present a method that detects, locates, and quantifies the
damage in the structure with natural frequency changes measured from single point
measurement. This method uses a sensitivity concept that treats frequency changes are
a function of the damage location only if stiffness changes are not caused by damage.
Calculated and compared frequency shifts are investigated to locate the damage. The
authors have done this experiment on a different plate structure. However, they
allegate that method can be applied to all systems suitable for FE analysis [36].

An experimental study done by Ju and Mimovich (1987) presents a fracture damage
assessment with frequency changes of a beam. Fracture damages can be localized with
a 3% error of the length when the theoretical end condition is used on the beam. On
the other hand, if the built-in end of the beam is represented with a torsional spring,
damage localization error decreased to less than 1%. The authors used the first four
modes in this experiment, and they claimed that if the higher modes can be measurable,

their variations simplify the detection of damage intensity [37].

Liang et al. (1992) present a study that examines the theoretical relationship between
eigenfrequency changes and crack-induced damage in both simply supported and
cantilever conditioned beams. Numerical experiments in the FE program were done to
determine the comparison of the predicted and simulated damage consistency for
different damage scenarios. Moreover, the authors indicate that crack depth change is

an ineffective factor in the frequency change ratio [38].

Uzgider et al. (1993) present a damage localization method that uses natural frequency
change to determine the stiffness parameters of the structure. First, vibration modes
and significantly affected stiffness parameters are selected. By using natural
frequencies of selected modes, stiffness parameters are identified. Comparing the
relative magnitude differences between estimates and the specified parameter is used
to detect the structural damage. The method's efficiency depends on both consistent

initial stiffness parameter estimates and the use of a complex mathematical model [39].

Kim et al. (2003) present a comparative study that uses frequency and mode shapes to

detect the location and severity of the damage on prestressed concrete beams that only
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two modal parameter sets are known. Changes in natural frequencies are used to
generate a damage localization algorithm, and natural frequency perturbations are used
to formulate a damage sizing algorithm that estimates crack sizes. Authors also note
that cracks located at the mid-span can be estimated more accurately than cracks

located at the quarter-span [40].

Salawu (1997) presents a review study about structural damage assessment procedures
with natural frequency changes. This article summarizes many different studies that
have been performed. As a result, natural frequency alone is not a sufficient indicator
for damage localization because similar crack lengths in different locations can
similarly affect the natural frequency. On the other hand, ambient conditions and
testing procedures are other factors that make it challenging to obtain the accurate

dynamic response of the structure [41].

2.2.4 Modal strain energy

The modal strain energy method considers fractional modal strain energy changes
between two structural degrees of freedom. Structural mode shape curvatures are
related to modal strain energy for beam and plate type structures. Therefore, it can be
considered a special case of mode shape curvature-based method for the beam type

structures.

Stubbs and Kim (1996) and Stubbs et al. (1995) present a developed method based on
modal strain changes. This method assumes that if a beam is divided into sub-regions
and damage is localized in one sub-region, fractional strain energy will remain
relatively constant in sub-regions. Bending stiffness, El is assumed to be constant for
both damaged and undamaged modes for beam-type structures. Damage Index (DI)
can be found in a sub-region j followed by equation (2.4)[42,43].

?i1(F{} +1)

== Y 2.4
P X7 (Fj+1) @4

= iz1 [(fj(Ki*)z dx + foL(Ki*)z) fOl(Ki)de] (2.5)
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J

Where Fij and Fi;" are the fractional strain energy of undamaged and damaged beam

for the i-th mode at sub-region j; x; and x;* are the curvature mode shapes of
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undamaged and damaged beam for the i-th mode, respectively, and m is the number
of measured bending modes. Curvature mode shapes are the third-order differential of
displacement mode shapes. Then, it is assumed that DI has a normal distribution and

normalized damage index (NDI) can found for sub-region j with equation (2.6)

Pl (2.6)

Where S and op represent the mean and standard deviation of the damage indices,

respectively. Generally, NDI can be set as larger than two [44].

Cornwell et al. (1999) present a developed version of the strain energy method from
structures which has one-dimensional mode shape curvature to two-dimensional
curvature. One advantage of the method is that mass normalization of mode shape is
not necessary for both undamaged and damaged structures under ambient excitation.
In addition, the developed algorithm is successful in locating even 10% damage by

using few modes [45].

Shi et al. (2000) present a strain energy-based damage detection study on a single-bay,
two-story portal steel frame structure. The authors indicate that only analytical mode
shapes, incomplete measured mode shapes, and system matrices are required for their
approach. Moreover, in the study, single and multiple damage localization is
performed. However, multiple damaged results are not consistent due to the noise
effect [46].

Alvandi and Cremona (2006) present an experimental study comparing four damage
detection methods: strain energy, mode shape curvature, change in flexibility, and
change in flexibility curvature on a simply supported beam. According to the results,
the strain energy method is the most accurate method regarding the noise effect.
Although all methods have difficulties locating the multiple damages, which are close
to supports, the strain energy method gives more accurate results for detecting the
second damaged area by reducing the threshold level. In addition, the threshold level
approach is general and independent of the type of structure because the strain energy
method uses normalized damaged index [47].
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2.2.5 Frequency response function (FRF)

The frequency response function shows the relationship between excitation force and
the response of a structure in the frequency domain. When there is any damage on the
structure, the natural frequencies of the structure will change. Location and severity of
the damage are detected by analyzing the frequency response function changes of the
structure. Since this method is based on the comparison between the measured
structural response of the undamaged and damaged structure, it generally does not
require a FE model. However, the noise effect in measurements makes the applicability
of this method difficult. In addition, the frequency response function is an efficient
method for structural health monitoring. Response of a structure can be story

displacement, velocity or acceleration.

Equation (2.7) represents the equation of motion for complex type of structure.
M + Cx + Kx = f(t) (2.7)

Where x is the vector of nodal degrees of freedom of the structure, t is the time instant.
M, C and K are the mass, damping, and stiffness matrices, respectively. f(t) represents

the excitation, and the dot represents the derivative with respect to time.

Under the harmonic excitation, force and response vectors can be defined as
f(t) = Fe™t (2.8)
x(t) = Xewt (2.9)

where w is the forcing frequency and F is the amplitude of the forcing vector. Then

equation (2.7) can be written as equation (2.10).
(—w?M +iwC+ K)X =F (2.10)
Relation between response X (w) and excitation F (w) at each frequency is given by
X(w) = Hw)F(w) (2.12)

where H(w) defines the receptance matrix of the system or the frequency response

function matrix that is given by
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H(w) = (—w?M + iwC + K)™?! (2.12)

Frequency response function H;;(w) which represents the relation between response
at i-th coordinate X;(w) and excitation at j-th coordinate Fj(w) at each frequency can

be written as

Xi(w)

F

Hijj(w) = F (@)

(2.13)
Hwang and Kim (2004) present a numerical study that determines damage location
and severity using only a subset of vectors from all FRFs for a few frequencies on a
cantilever beam and a helicopter rotor blade. In the study, change in stiffness is
calculated, and the stiffness matrix is updated using frequency function changes.
Frequency measurements for the damaged structure are correct, with a range of 0-10%
noise. However, there may be less than a 2% error probability. For this reason, it is
suggested by the authors that the noise ratio is kept within 5% to obtain accurate
results[48].

Park and Park (2005) propose a method to decrease the workload for the damage
estimation experiments by analyzing the FRFs changes in a substructure. Two
experiments were done on the plate and joined structure. It is mentioned that
optimization techniques are used in the study. Moreover, only FRFs and reduced

stiffness matrices are enough for the damage estimation process [49].

Hsu and Loh (2013) present a damage detection method with FRF change in a six-
story shear building under a ground excitation. The stiffness matrix of intact structure
is estimated with measured to reduce the analytical model necessity. Using FRFs that
are closed to natural frequencies of the structure is suggested by authors to decrease
noise contamination. It is mentioned that modal unbiased and bias error results from

model parameter error and noise, respectively [50].

Kao et al. (2020) present a displacement FRF-based damage localization approach on
building types of structures. Damage localization index SubFRFDI which is utilizable
with sub-structure FRF measurements is improved with another damage localization
index CurveFRFDI. Displacement responses are measured with a digital camera, and
digital image correlation techniques are applied. In conclusion, CurveFRFDI has

higher sensitivity to localization of damage, and CurveFRFDI results are independent
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of damage severity. Authors indicate that both damage identification techniques can

not locate the multiple damages precisely [51].

Huang et al. (2012), Shadan et al. (2016), Sanayei et al. (2012) present different
structural modal updating approaches to damage determination using FRF data [52-
54].

Researches have used not only direct FRF data but also the derivatives of FRF such as
FRF curvatures, FRF differences, or compressed FRFs. The large size and complexity
of FRF data are challenging factors of FRF based damage detection studies. In
addition, FRFs are very sensitive to noise and environmental conditions. Therefore

consistency of results highly dependent on these factors [55].

2.2.6 Transfer function

A transfer function (TF) is a mathematical representation of the relation between input
and output of a linear time-invariant (LTI) system. For the civil engineering structures,
excitations represent the inputs. In addition, measured responses on any structure's
location from these excitations, such as displacements, velocities, and accelerations
represent the outputs. Both FRF and TF represent the ratio of input and output. Unlike
the frequency response function, the transfer function is the ratio of output to input in
a Laplace domain. Mathematical representation of TF is given by followed [56]

H(s) = % (2.14)

Generally, civil engineering structures have the second degree of the differential

equation such as equation (2.7), and it can be rearranged to take forms

2
2 dd};(zt) + oy d};(tt) + apy(t) = bx(t),a, # 0,y(0) =y'(0) =0 (2.15)
d?y(t) dy(t)
2 — = 2.16
vt 2t~y () = Kx(0) (2.16)
or
d?y(t dy(t
d};(z s ZCwn% + wn %y () = Ko, x(8) (2.17)
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The corresponding Laplace transform is

Y(s) K B Kw,?
COX(s)  T2s2+42145+4 1 5%+ 2lw,s + w2

(2.18)

where t is the time constant (natural period of oscillation), w, is the natural

(undamped) frequency, ¢'is the damping ratio, and K is the steady-state gain.

Lew (1995) presents a numerical study to damage detection of a nine-bay truss
structure with transfer function paramere changes. The author first examines the
transfer function changes to determine if there is any damage and then localizes the
damage with a coherence approach. This coherence approach includes comparing the
direction of parameter change vectors between intact and damaged structures and the
ratio of parameter changes of damaged structures to possible damage cases. Moreover,
the author observes that the direction of external excitation is a substantial topic to
determine the damage location process with TF changes for symmetric structures.
Suppose the coherence values of symmetrical elements are close to each other while
detecting the damage. In that case, the direction of the applied force is changed so that
elements take different forces, and the correct result is achieved with new coherence
values [57].

Lew (1998) presents a damage detection method using transfer function parameter
changes by applying a correlation approach of a cantilever beam. The transfer function
in this study is the ratio of excitation acceleration to response acceleration. This
correlation approach facilitates the detection of characteristic property changes such
as stiffness. The author determines the damage by using the direction of the weighted
parameter change vector. In addition, the correlation approach requires a few sensors.
Thus, the location of sensors becomes essential [58].

Viyanak et al. (2010) present a damage detection study on a four-story shear building
from transfer function changes. First, the model is updated with experimentally found
frequencies and mode shapes. Then, TFs are calculated for intact and damaged
structures. The last twelve seconds of an earthquake acceleration used as an input, and
the displacement values are calculated with Newmark's method from measured

acceleration values taken from accelerometers at each floor are used as the output of
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TF. The authors focus on the ratio of TF of damaged structure to undamaged structure.
Since the TF's ratio of the intact and damaged structure are used for damage
assessment, the initial conditions are accepted zero. Consequently, the TF changes of
the first two-story detect the damage better than other stories. Consistency decreases

when multiple floor damage. The higher the noise level, the worse the results [59].

2.2.7 Dynamically measured flexibility

The flexibility matrix is used to predict changes in the static behavior of the structure
by dynamically measuring. The flexibility matrix is the inverse of the static stiffness
matrix. Therefore, the flexibility matrix relates to the structural displacement caused
by the applied static force. The columns of the elastic matrix represent displacements
that occur in each DOF corresponding to a unit force. Mass normalized measured mode
shapes and frequencies are used for estimating the flexibility matrix. The obtained
flexibility matrix with this method is an approximate matrix since a few modes of
structure are used in these estimation processes. The exact flexibility matrix can be
obtained with the contribution of all modes. In this method, the damage is detected by
comparing the estimated flexibility matrix of the damaged structure with measured
mode shapes and the flexibility matrix found using the FE model of the undamaged
structure. The measured flexibility matrix is the most sensitive change in lower modes

because of the inverse relationship with the square of the modal matrix [60].

Pandey and Biswas (1994) present one of the first studies to indicate not only damage
localization but also damage detection can be done by utilizing flexibility matrix
changes of a structure. With the help of several low-frequency modes, the elasticity
matrix can be estimated accurately. It has been verified that the flexibility changes give
consistent results in damage detection and localization by studies on a simple
analytical beam [61].

Toksoy and Aktan (1994) present an experimental study on real three-span reinforced
concrete highway bridge. Authors concentrate on change in flexibility matrix
estimated from measured deflection profiles with and without baseline data set. They

point out deflection profile differences can indicate damage [62].

Aoki and Byon (2001) compare generalized flexibility formulation in three different
flexibility methods that are substructural displacement-based, elemental deformation-

based, and elemental strain-based to detect interior damage in composite pipe and

24



shell. Although stiffness change is determined correctly by all three methods, most
accurate results are obtained with the strain-based method [63].

2.2.8 Neural network

Neural network (NN) is an increasingly popular artificial damage detection method in
the structural analysis due to its nonlinear mapping ability. NN consists of three layers:
an input layer, a hidden layer, and an output layer. Determining network structure,
choosing network parameters, normalizing learning instances, giving initial weight
value, and detecting structural damage are the main steps for NN-based damage
detection methods for structural damages. First, NN has to be trained with known
inputs and known outputs. These inputs and outputs include the damage information
utilize as a train to constructed NN. Damage information can be obtained with FE
model analysis or experimental data. When the training sample is well educated, the
real structural damage feature index can be entered into NN, and the output is the
location and severity of the structural damage [64]. NN can be used with different
VBDD methods.

Viyanak et al. (2010) present an NN-based damage assessment study utilizing the
frequency change ratio that is FRF of damaged to FRF of intact structure as an input
for NN and damage combinations as an output. Authors add various levels of noise to

the input signal and examine the effect of noise on the consistency of NN [59].

Rhim and Lee (1995) present an NN-based structural damage determination study
consisting of learning and diagnosis stages on a composite beam. In the training part
of NN, parameters collected from damaged structures in different regions are grouped
according to the location and severity of the damage. Then system identification is
made to determine structural system properties that are transfer functions. These
functions are fed into multi-layer perception (MLP) as input models for training. MLP
refers to the closest classifier. In the diagnosis phase, the damage is classified
according to damage in the nearest group, and it is designated as that of the class [65].

Kao and Hung (2003) present a two-stage NN-based approach as a system
identification and damage detection study. In the first stage, a NN is established to
define the structural system. In the second stage, free vibration response at the same

initial conditions or impulse response of the structure is obtained using trained NN. In
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this study, changes of periods and amplitudes of free vibration response of structure
refer to structural damage [51].

Lee et al. (2005) present an element-level NN-based damage identification study using
the model properties. Authors utilize the mode shape ratios or curvatures instead of
mode shapes because mode shapes are more sensitive to modeling error than their
ratios or curvature. Two numeric examples made on simple beam and multi-girder

bridge indicate that this method is consistent and effective in damage detection [66].

2.2.9 Wavelet technique

Wavelet analysis is a very suitable method in the analysis of non-stationary signals.
Thus, it is frequently used in signal processing in damage detection to determine the
feature index of structural damage. Singular signal detection, signal to noise
separation, and frequency band analysis are the main wavelet analysis applications in
structural damage detection. Damage existence can be confirmed with the spectrum
graph obtained using wavelet transform [64].

Liew and Wang (1998) present the first application of the wavelet method to determine
the crack propagations in beam-type structures. Wavelet expression in the space
domain and eigentheory solution are used for the comparison of the results. Results
show that eigentheory applications are challenging to solve compare with wavelet
analysis. In addition, for eigentheory solutions, major eigenvalue differences can be
observable in higher modes, and accurate determination of higher modes is not an easy

task. However, this problem is not encountered in the wavelet analysis method [67].

Lu and Hsu (2002) present a method based on wavelet transform that can detect not
only the presence of defects but also their locations and numbers as well. Vibration
signals of both intact and damaged structures are recorded first. Then comparing the
discrete wavelet transforms of these two signals, structural defects can be determined.
Defects are described with attached mass and springs at several points in the original
structure. Authors emphasize that vibration signals obtained from intact and minor
localize damaged structures are normally too small to be noticed. On the other hand,

it appears as a distinct difference in wavelet coefficients [68].

Solis etal. (2013) present a combined-wavelet analysis method for crack determination
of beam-type structures using mode shape differences. Wavelet transform is applied

to the difference between the mode shape of the damaged and intact structure. Wavelet
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results of each mode are added up to get the final value that remarks the crack location.
While adding process, wavelet results of each mode are weighted with the frequencies
of each mode. Then coefficients are normalized. It is proven that this method is

sensitive to detect minor damages [69].

Quinones et al. (2015) compare continuous wavelet transform (CWT) and fast wavelet
transforms (FWT) to determine damage in different types of engineering structures.
Under an earthquake excitation, different stiffness loss of the first floor is examined at
a five-story shear building with different noise levels. The authors indicate that the
amplitude of FWT spikes is related to the location of the damage. Stiffness loses below
20% can not be detected even noise-free condition and the higher the noise level, the

higher the stiffness reduction required to detect damage [70].
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3. DETERMINATION OF TRANSFER FUNCTION

The transfer function is a mathematical function that theoretically models the device's
output for each possible input in the Laplace domain. In a two-dimensional graph, this
function shows the response of an independent scalar input to the dependent scalar
output called the transfer curve or characteristic curve [71]. Transfer function
components are generally used in electronics and control theory to design and analyze
systems. In civil engineering, since the characteristic features of the structure can be
expressed with transfer functions, it has been observed that it is possible to determine
structural damage by transfer function parameter changes. Mathematical
representation of transfer function represented in equation (2.14)

The transfer function H(s) can be defined by using the output function Y(s) and the

input function X(s). The block diagram of a transfer function is shown in figure (3.1).

X Y
(s) Hes) (s)

Figure 3.1 : Block diagram of a transfer function.

Transfer functions of a system can be derived with Cross Power Spectral Density
(CPSD) of input and output signal divided by Auto Power Spectral Density (APSD)
of the input signal, and equation (3.1) represents the mathematical expression.

CPSD
=— (3.1)
APSD
In order to obtain the behavior of a system, the transfer functions of all modes of the
system can be collected linearly. Equation (3.2) represents the summation of transfer

functions of all modes.

2
TTF= § Kiwg, (3.2)

E15°+ 24w, s+ w,, 2
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Where K; and w;, are the steady-state gain and natural frequency of i" mode,

respectively. £'is the damping ratio, k is the mode number.

If the numerators of the transfer function of two consecutive modes are of the same
sign, there will be an antiresonance at one frequency between these two modes' natural
frequencies. On the other hand, if they are of opposite sign, there will be no
antiresonance, only a frequency range where they are at a minimum value. Figure (3.2)
represents the antiresonance that occurs because the numerators of the two successive
modes' transfer functions are of the same sign. On the other hand, it is seen in figure
(3.3) that there is no antiresonance between two modes that have the numerators are

the opposite sign [72].

0
— la)
=
.
E
z
o
=
o
=
[=]
=
w1 & T ¥ 1 1 I 1
50 100 i 200 500
Frequency (Hz)
Figure 3.2 : FRF plot of two consecutive same signed modes.
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Figure 3.3 : FRF plot of two consecutive opposite signed modes.
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3.1 Components of The Transfer Function

3.1.1 Poles and zeros

The poles of a transfer function are the function's denominator values, which cause the
transfer function to become infinite. The zeros of a transfer function are the function's

nominator values, which cause the transfer function to become zero. For instance, if

the transfer function is ﬁ denominators are 3i and —3i and nominator is zero.

3.1.2 Time constant

The time for the step response to rising to 63% of its final value can be defined as the
time constant. Time response characteristics of the transfer function are examined in
part (3.7).

3.2 Transfer Function of First Order Systems

The first-order system is the name given to systems whose input-output relationship
and dynamic behavior can be described with a first-order differential equation. The
order of the differential equation represents the number of energy storage elements in
a system. Therefore first-order systems have only one energy storage element. Mass-
damper systems and mass-heating systems are common first-order systems. Besides,
if sufficient consistency is provided, higher-order systems can often be represented
with their first mode as a first-order system. The first-order system's general
mathematical formulation and transfer function are described by the following
equations (3.3) and (3.4).

+y(t) = x(t) (3.3)

H(s) = =K (3.4)

Where, K is the gain and 7 is the time constant of the system.

Gain is the parameter that represents the relation between the magnitudes of the input
and output signal at steady-state. The time constant is a measure of how quickly a first-
order system responds to a unit step input. In practice, the smaller the time constant of

the system, the faster the system responds.
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3.3 Responses of First Order Systems

This part contains general response behaviors of first-order systems due to impulse,

step, and ramp function inputs and summarized from [73].

3.3.1 Impulse response of first order systems

Impulse function is a special function whose value is 1 at t = 0 and 0 for all other t
values. When the input function of a system is impulse, the system's response is equal
to the transfer function. Thus, the impulse response of any first-order system can be
obtained by taking the inverse Unit impulse function, response function, and Laplace
transform of the transfer function are defined in equations (3.5), (3.6), and (3.7),

respectively.

X(s)=6(s)=1 (3.5)
Y(s) =H(s) = KTS 1 (3.6)
1 K _t

y(t) is the impulse response of any first-order system in the time domain. Figure (3.4)

represents a unit impulse function, and figure (3.5) represents the impulse response

function of a first-order system where the transfer function is 2

2s+1
Impulse
15 T T T
1k
=3
05T
0 . . . . .
1] 2 4 6 8 10 12

Time (seconds)

Figure 3.4 : Unit impulse function.
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Figure 3.5 : The unit impulse response of a first-order TF: H(s) = ﬁ

The response function takes the value of K/t at t = 0, and its tangent at t = 0 cuts

the time axisatt = t/K.

3.3.2 Step response of first order systems

In order to obtain the step response of the first-order system, inverse Laplace transform
is applied to the product of transfer function and step function. Unit step function,
response function, and Laplace transform of the response function are defined in

equations (3.8), (3.9), and (3.10), respectively.

X(@) =1- X(s) = % (3.8)

Y(s) = X(s).H(s) =l K

s 1s+1 (3.9)

y(t) = L1 EK } — Ke't (3.10)

s+1

Figure (3.6) represents the unit step function, and figure (3.7) represents the step

response function of a first-order system when the transfer function is ﬁ
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Figure 3.6 : Unit step function.
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Figure 3.7 : Unit step response of  first-order TF: H(s) = ——.

The response function takes the value of 0 at t = 0, and its tangent cuts the y = K axis

att = 1.

Figure (3.8) represents the first order system's step response using different time
constants versus the same gain ratio. Figure (3.9) represents the first-order system's

step response using different gain ratios versus the same time constant.
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Figure 3.8 : Step response behaviors with different time constant values.
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Figure 3.9 : Step response behaviors with different steady-state gains values.

3.3.3 Ramp response of first order systems

In order to obtain the ramp response of the first-order system, inverse Laplace
transform is applied to the product of transfer function and a ramp function. Ramp

function, response function, and Laplace transform of the response function are
defined in equations (3.11), (3.12) and (3.13), respectively.
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X(@) =t - X(s) = 1 (3.11)

52
1 1

Y(S)=X(S)-H(S)=S—2-KTS+1 (3.12)

(2 - 3.13

y(t) =L {S—Z.KTS+1}—Kt—T+TeT (3.13)

As shown in equation (3.14), y = t — t line is the asymptote of y(t) and when the
system reaches its asymptote value, r(t) — y(t) = t as seen in figure (3.10). This

difference is named as the dynamic error.

dy(t t
lim & =liml—-e =1 (3.14)

t—oo d t—>oo

Figure (3.10) represents the unit ramp impulse function and ramp response function of

a first-order system where the transfer function is ﬁ

Unit Ramp Response
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Figure 3.10 : Ramp impulse and response of a first-order TF: H(s) = ﬁ :

3.4 Transfer Functions of Second Order Systems

The second-order system is the name given to systems whose input-output relationship
and dynamic behavior can be described using the second-order differential equation in

equation (2.16). Damping ratio and time constant are two parameters that are used to
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characterize second-order systems. The transfer function of a second-order system can
be described with equation (2.18).

Response of any second-order system differs depending on the damping ratio. Three

different system response occurs, and system responses are described in table (3.1).

Table 3.1 : System responses with different damping coefficients.

0<¢< 1 Underdamped system
=1 Critical damped system
d>1 Overdamped system

System responses of second-order systems are examined below in detail for both of

these three damping conditions.

3.5 Responses of Second Order Systems

This part contains general response behaviors of second-order systems due to impulse,
step, and ramp function inputs and summarized from [73]. In the following equations
given in this section, the steady-state gain K, is ignored. In order to obtain actual

system responses, calculated results must be multiplied with steady-state gain.

3.5.1 Impulse response of second order systems

Impulse response of any second-order system is equal to the transfer function as in
first-order systems. Inverse Laplace transformation of equation (2.18) gives the time
response of a second-order system. However, the system response can be in three

different forms depending on the damping ratio.

Figure (3.11) represents the unit impulse responses of the second-order systems with
different damping ratios. All responses approach to y = 0 asymptote at t — c. The
time response of critically and overdamped systems does not exceed the asymptote.
However, underdamped systems' response takes values both above and below the

asymptote, and the amount of oscillation varies according to the damping ratio.
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Figure 3.11 : Unit impulse response of a second-order system.
3.5.1.1 Impulse response of underdamped second order systems

When the damping ratio is between 0 and 1, the second-order system's response has
two conjugate poles, and equation (3.15) represents the system's impulse response in

the time domain. The oscillation frequency of the system is sin w,, /1 — ¢, denoted

by w, and named as the natural frequency of the damped system.

y(t) = \/w—Le—é’wnt sin wy, /1 - gzt (3.15)
1-¢

Without the sin w,, /1 — 2t part of the equation (3.15) gives the equation of the curve

that limits the system's oscillation. If the system is undamped, £ = 0, system response

is;

y(t) = w, sinw, t (3.16)
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3.5.1.2 Impulse response of critically damped second order systems

When the damping ratio is equal to 1, a second-order system's impulse response has

two repeated roots. In that case, equation (2.18) can be rewritten as

w2

H(S) = Y(S) = m

(3.17)

Inverse Laplace transform of equation (3.17) gives the unit impulse response of a
critically damped second order system in the time domain as the following equation

y(t) = w,*te ®nt (3.18)

3.5.1.3 Impulse response of overdamped second order systems

When the damping ratio is greater than 1, a second-order system's impulse response
has two different real roots. In that case, equation (3.16) can be rewritten as

P T A ey

Inverse Laplace transform of equation (3.19) gives the unit impulse response of an

H(s) =Y(s) =

(3.19)

overdamped second-order system in the time domain as the following equation

() = ——t e_<§_ 42_1)“”” _ Le‘<4+@>“’"t (3.20)
2 /42 -1 2 /;2 -1

3.5.2 Step response of second order systems

Step input is defined in equation (3.17), and the system response is defined in the

following equation.

1 wp?
Y(s) =X(s).H(s) = T s T 0 (3.21)

As with the impulse response, the second-order system's step response is seen in three

different ways depending on the damping ratio.
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Figure (3.12) represents the step responses of the second-order systems with different
damping ratios. All responses approach to y = 1 asymptote at t — oo. The time
response of critically and overdamped systems does not exceed the asymptote.
However, underdamped systems' response takes values both above and below the

asymptote, and the amount of oscillation varies according to the damping ratio.

Step Response
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Figure 3.12 : Unit step response of second order systems with different damping
behaviors.

3.5.2.1 Step response of underdamped second order systems

Response of an underdamped second-order system has two conjugate poles, and
equation (3.22) represents the system's step response in the time domain. The

oscillation frequency of the system is the same as the impulse response that

is sin w, fl — ¢*, denoted by w, and named as the natural frequency of the damped

system.

y(t) =1—e “nt| coswyt + isin wgqt (3.22)
1-¢

If the system is undamped, the system response is;

y(t) =1 —coswy,t (3.23)
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3.5.2.2 Step response of critically damped second order systems

Step response of a critically damped second order system has two repeated roots. In
that case, equation (3.17) multiplies with 1/s, and it represents the step response of

the system.

wy?

Y(s) = ——— 3.24
(s) s(s + wy)? (3.24)
Inverse Laplace transform of equation (3.24) gives the step response of critically
damped second order system in the time domain as equation (3.25).

2

y(t) = £ {s(s(:)#)z} = 1— (1 + wyt)e~@nt (3.25)

3.5.2.3 Step response of overdamped second order systems

Step response of an overdamped second-order system has two different real roots. In
that case, equation (3.19) is multiplied by 1/s. Thus, the step response of the system

Is obtained. The result is shown by equation (3.26).

Wy

N P e AR e

Inverse Laplace transform of equation (3.26) gives the step response of critically

Y(s) = (3.26)

damped second order system in the time domain as equation (3.27).
R
2/42—1<§+ /42—1> 2/?—1(;— /gz—1>

(3.27)

y(t)=1+

3.6 Bode Plot

Bode plot represents the gain and phase of a system as a function of frequency. The
horizontal axis is logarithmic and represents frequency. The vertical axis is the
amplitude in the dB unit. The system's phase angle is also shown linearly versus the

logarithm of the frequency [73].
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3.6.1 Bode plot of first order systems

The magnitude of the transfer function of the first-order system, which is given its
general form in equation (3.4) determined by letting s — jw is shown in equation
(3.28). (t is assumed to be 1).

H(j) = Jw? +1 (3.28)

As can be clearly seen from figure (3.13), the magnitude functions of first-order
systems are pretty different above and below the w = 1 point. Below the w = 1 the
function is constant and equal to 0 dB. On the other hand, above the w = 1 magnitude
of the transfer function decreases as —20 log w in dB as a straight line. The two straight
line meets at a frequency corresponding to the pole location named as the breakpoint.

The magnitude of the transfer function is equal to -3 dB at this point.

Bode Diagram

—3dB %

Magnitude (dB)

Frequency (rad/s)

Figure 3.13 : Magnitude plot of a first-order TF: H(s) = il

S+

The phase angle of a transfer function is as important as the magnitude. It shows the
phase change of sine waves that as they pass through the network. Phase versus
frequency plot constitutes the second part of bode plots named as the bode phase plots.

The phase of a first order transfer function can be found with equation (3.29)
ZH(jw) = —tan"1(w) (3.29)
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Figure (3.14) represents the phase plot of a first-order transfer function. Phase plot has
an asymptotic behavior at w = 1 line. Below the w = 1 the phase change of the

function starts from 0° to -45°. On the other hand, above the w = 1 phase change of

the transfer function starts from -45° to -90°.

Bode Diagram

45° 'x

Phase (deg)

Frequency (rad/s)

Figure 3.14 : Phase plot of a first-order TF: H(s) = i

3.6.2 Bode plot of second order systems
This section focuses only on second-order underdamped systems. Poles location of

equation (3.18) can be described as ;

s = —Cw, + w, /42 -1 (3.30)

When the second-order system is underdamped, the frequency response's amplitude is

given in equation (3.31).

W, > 1
= (3.31)

H(w)| = =
U = 107 =07 + 2dwmal
w2 [(wp? — 0?)? + 4 w,2w?

Figure (3.15) represents the amplitude of second-order underdamped transfer
functions with different damping ratios. Asymptotic behavior can be seen on both sides
of the w = w, line. Breaking point w,, is named as ‘corner frequency'. When v < wy,,
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the magnitude of the function is 0. On the other hand, when w > w,,, the magnitude

of the function is equal to —20 log w?.
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Figure 3.15 : Magnitude plot of a second-order TF: H(s) = T

The phase of a second-order transfer function can be found with equation (3.32)

(3.32)

ZH(jw) = —tan™! (2@)—”(‘))

wn2 — (1)2

Figure (3.16) represents the phase plot of a second-order transfer function. The phase
angle for the second-order transfer functions starts from 0° and ends with -180°. As
the damping factor decreases, the slope starts to increase, and the plot becomes parallel
to the asymptote. Moreover, all curves pass the mid-point of the phase jump regardless

of damping values.
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3.7 Time Response Characteristics

This section contains essential time response characteristics of an underdamped
second-order transfer function. The response is drawn, and common terms are listed
below in figure 3.17 [74].

Step Response
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Figure 3.17 : Time response characteristics of an underdamped second-order system.
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Delay time (tq) is the time required to reach 50% of its final value by a time
response signal during the first cycle of oscillation.

Rise time (t) is the time required to reach its final value for an underdamped
system by a time response signal during the first cycle of oscillation. If the
system is overdamped, the rise time is defined as the time it takes to reach from
10% to 90% of its final value.

Peak time (tp) is the time required for the first peek or first overshot by a time
response signal.

Maximum overshoot (My) is the difference between the magnitude of the peak
of time response and the magnitude of its steady-state. Maximum percent

overshoot is defined by

c(tp) — c() (3.33)
c()

Maximum percent overshoot =

Settling time (ts) is the time required to reach and limit within 2% and 5% of
its final value by a time response.
Steady-state error (ess) is the difference between actual output and desired

output at the infinite range of time as defined in equation (3.34).

€ss = L!l_)rg[r(t) —c()] (3.34)
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4. NUMERICAL STUDY

Two different finite element models were created in SAP2000 for the numerical study.
The first one is a model whose dimensions and story weights are adjusted to represent
amodel for laboratory tests. The second one is a full-scale model of a 10 story building.
Relation between story damage and parameter changes in the transfer functions of the
first three modes were investigated. Section (4.1) and section (4.2) describe the details

and results of the numerical studies.

The flowchart showing the operations performed in numerical studies is represented
in figure (4.1). The correction in step six of this flowchart need not always be made.
If permanent displacement is obtained as a result of time history analysis, a correction
must be made. In addition, it can be done to obtain more accurate results during the

determination of the numerator values of the transfer function.

Create a Do a time Determine -
FE Model history window Derive
and input - analysis and - length and - tra‘ns_fa
function obtain outputs overlap %o functions
t No R2 value
is high
enough
‘ Yes
Obtain TF parameter changes using
A = . > Correct TF
Establish ANum; = ZKJ_‘,-Q),HJ-" — Kjjeon; numerator
linear =z ,
- <= <= using
relations AD i 2 > correction
en;; = L1 — 28005 ;
l o £ n i coefficients
Obtain Estimate damage percentages using
linearity -
coefficients ANum = z a; = D;(%%)
Egualize obtained
Find errors between real and linearly
and estimated/calculated — summed numerator
damage percentages changes with
changing estimated
damage percentage

Figure 4.1 : Flowchart representing the operations performed in numerical studies.
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4.1 Laboratory Model

4.1.1 Model properties

A finite element model that is symmetrical in both X and Y direction of a 5-story
building was created. Each story has 0.5 m height (h1), 1.5 kg mass and 5 kg additional
mass (m1). Columns of the undamaged structure are represented by steel bars with a
diameter of 0.012 m. The distance of the bars to each other in both directions is 0.4 m
(w1). Steel bars continue 0.1 m more after the top story (h2). Each story has a 0.5 m

length (w-). Figure (4.2) represents the side view of the FEM model.

Period values of the first three modes of the intact numerical model are shown in s

unit, and frequency values in both s™* and rad-s™ unit are represented in Table (4.1).

h,

[my ]

—

-

H

T ——

-

L1 [

Figure 4.2 : Side view of the FE model.
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Table 4.1 : Period, frequency and mode participation ratio values of the intact
structure's first three modes.

Intact T f @ Mode
Structure | (s) ol e Participation
radys Ratios
Mode 1l | 0.230 4.342 27.28 87.70%
Mode 2 | 0.079 12.697 79.78 8.80%
Mode 3 | 0.050 20.080 126.17 2.50%

4.1.2 Input and output data

The transfer function of each floor has been calculated separately. The input of each
transfer function is theoritical ground acceleration that is the unit step function for this
study, and outputs are the story displacements. Figure (4.3) and figure (4.4) represent
the input and output function for the first floor of the undamaged structure,
respectively. The unit step function consists of 20-second unit acceleration followed
by a 10-second stationary period. As a result, while no change was observed in the
story displacements for the first 10 seconds, an oscillatory motion was monitored for

the last 20 seconds as expected in second-order systems.

Unit Step Input

1.2

o
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o
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o
.
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Figure 4.3 : Unit step input.
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Figure 4.4 : Step response of the first floor.

4.1.3 Derivation of the transfer function parameters

In this study, transfer functions for each story's first three modes are derived with Cross
Power Spectral Density (CPSD) of input and output signal divided by auto power

spectral density of input signal, as shown in equation (3.1).

In order to obtain the total behavior of the model, the transfer functions of all modes
of the model are collected linearly. Since the transfer functions of only the first three
modes are studied in the model, the sum of these functions results in very close to
actual behavior. Equation (4.1) represents the summation of transfer functions of the
first three modes.

2
TTF=3% Kty 4.1)

iE15% + 24w, s+ w2

Where K; and w;,, are the steady-state gain (in structural engineering, K; is named as
effective stiffness for the equivalent single-degree-of-freedom system representing
first vibration mode) and natural frequency of i-th mode, respectively. {’is the damping
ratio. In this study, the damping ratio of all modes was accepted as 2%. This value is

considered reasonable since steel bars are used to represent columns.
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While calculating CPSD and APSD, the ‘cpsd’ command was used in MATLAB. It is
necessary to specify a certain window length and overlap percentage for this
command. Transfer function graphs obtained with different window lengths and

overlap percentage combinations are given in figure (4.5) and figure (4.6).

The curve fitting toolbox of MATLAB was used to determine the optimum window
length and overlap percentage. Thus, the values that best fit the transfer function plot
and had the highest R? value were selected. In this study, appropriate window length

and overlap percentage were determined as 800 and %90, respectively.

Window Length =128
10-2

sl %0 Overlap
225 Owerlap
2650 Owerlap
%75 Owverlap

103 | ’/

1074

TF=CPSDIAPSD

1072 |

106
102 10" 10° 10’ 102
Frequency (Hz)

Figure 4.5 : Logarithmic transfer function graphs with 0%, 25%, 50% and 75%
overlap when window length is 128.

Window Length =512

107"
%0 Overlap
%25 Owerlap
10-2 | %50 Owverlap | |
W TE Owerlap
) |I]
10 L
g - _ _ o -
0o ! |
=4 |
]
@ 107
S
é
1072 E
1078
‘ID'? | | |
1072 1071 100 101 102

Frequency (Hz)

Figure 4.6 : Logarithmic transfer function graphs with 0%, 25%, 50% and 75%
overlap when window length is 512.
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Since the transfer function of a structure represents that structure's characteristic
property, it is independent of the input function. Transfer functions of the first floor of
the undamaged structure were obtained using different inputs such as 1940 EIl Centro
Earthquake , unit step, and unit impulse. Figure (4.7) represents the logarithmic plot
of the first three modes of the transfer function obtained from the undamaged

structure's first floor.

TF Impulse
TF Step
TF Earthquake

CPSDIAPSD

TF=

1077
107" 10° 10" 102
Frequency (rad/sn)

Figure 4.7 : Transfer function pIots_obtained from the first floor data with different
inputs.
Since the frequency range is set to cover the first three modes, only these are visible
in figure (4.7). The natural frequencies of these modes are 27.28, 79.78, and 126.17
rad/s. The peaks of the transfer function appear in the places corresponding to these
frequencies in the figure. The reverse peaks that arise between the modes included in
the transfer functions indicate that successive transfer functions have the same sign.
Moreover, the sign of the transfer function's numerator value refers to the difference

in direction between input and output signal.

Sine waves of different frequencies were observed spread over transfer functions of
high-frequency modes. Therefore, it became difficult to determine the transfer
functions of high-frequency modes accurately. MATLAB's Curve Fitting Toolbox was
used to find the transfer function parameters. The R? coefficient was used for the
consistency of the graph. Figures (4.8), (4.9), and (4.10) represent the parameters
corresponding to the first three modes of the transfer function obtained from the first

floor of the undamaged structure using Curve Fitting Toolbox, respectively.

52



w10

2F T =
¢ TFmi vs. fregm?
Mode 1

TFm1
=
T

freqm?

Figure 4.8 : Parameter estimation graph of the first mode of the transfer function
obtained from the first floor of the undamaged structure.
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Figure 4.9 : Parameter estimation graph of the second mode of the transfer function
obtained from the first floor of the undamaged structure.
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Figure 4.10 : Parameter estimation graph of the third mode of the transfer function
obtained from the first floor of the undamaged structure.

While estimating the transfer function parameters reflecting the third mode, the sine
waves' effect is more than the first two modes. Therefore, the R? value of the third
mode is less than the other two modes. When figure (4.10) is examined, independent
of the transfer function, a sine wave with constant frequency appears. Obtained transfer
function parameters for the first three modes and R? values are given in table (4.2).

Table 4.2 : Calculated transfer functions and R? values of the first story for the
undamaged model.

Mode 15! mode 2" mode 3"mode

—0.344 —0.240 —0.130
s?2 4+ 1.091s + 744.2 s2+3.191s + 6364 s? 4+ 5.048s + 15926

TF

R? 0.996 0.987 0.709

4.1.4 Damage cases

In this numerical study, the effect of both single and multiple story damage cases on
transfer function parameter changes was investigated. A total of 47 damage cases were
examined—40 of them to detect single-story damage and 7 of them to detect multi-

story damage.
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Story damages were represented by an equal reduction in all columns' moment of
inertia belonging to that story. In single-story damage cases, each story was damaged
up to 80% individually. When investigating multi-story damages, the primary purpose
is to determine the location and level of the damage occurring in the lower stories. The
damage resulting from the earthquake excitation is expected to be concentrated on the
building's lower stories. Thus, all multi-story damage combinations were distributed

among the lower stories. Table (4.3) contains the damage cases investigated in this

study.
Table 4.3 : Damage cases.
Case Story Damage % Case Story Damage %

Number | 1 2 3 4 5 Number| 1 2 3 4 5
1 - - - - - 25 - - 80% - -
2 10% - - - - 26 - - - 10% -
3 20% - - - - 27 - - - 20% -
4 30% - - - - 28 - - - 30% -
5 40% - - - - 29 - - - 40% -
6 50% - - - - 30 - - - 50% -
7 60% - - - - 31 - - - 60% -
8 70% - - - - 32 - - - 70% -
9 80% - - - - 33 - - - 80% -
10 - 10% - - - 34 - - - - 10%
11 - 2% - - - 35 - - - - 20%
12 - 30% - - - 36 - - - - 30%
13 - 40% - - - 37 - - - - 40%
14 - 50% - - - 38 - - - - 50%
15 - 60% - - - 39 - - - - 60%
16 - 70% - - - 40 - - - - 70%
17 - 80% - - - 41 - - - - 80%
18 - - 1% - - 42 30% 10% - - -
19 - - 2% - - 43 30% 30% - - -
20 - - 30% - - 44 50% 10% - - -
21 - - 40% - - 45 50% 30% - - -
22 - - 50% - - 46 30% 20% 10% - -
23 - - 60% - - 47 50% 30% 10% - -
24 - - 70% - - 48 20% 20% 20% - -
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The selected window length and overlap ratio affect the gain rate of the transfer
functions. In addition, a permanent displacement is observed in the floors as a result
of the unit step function. In order to reach the closest results to the actual response of
the model, a story behavior should be obtained by using the transfer functions in table
(4.2), and this behavior should be compared with the precise response of the relevant
floor and multiplied by a correction coefficient that reflects the difference between
them. The correction percentages of the transfer functions found in this study are given
in table (4.4). Corrected transfer functions of the first story for the undamaged model

are represented in table (4.5).

Table 4.4 : Correction percentages of the transfer functions.

Case Story Case Story
Number | 1 2 3 4 5 Number | 1 2 3 4 5

1 6.1% 3.6% 35% 4.1% 3.6% 25 8.0% 51% 4.0% 3.9% 4.3%
2 6.4% 4.2% 3.7% 3.8% 4.4% 26 6.7% 39% 35% 3.7% 3.9%
3 6.2% 43% 3.7% 39% 4.3% 27 6.7% 44% 3.8% 3.7% 3.9%
4 57% 4.1% 3.9% 39% 4.4% 28 6.9% 43% 3.8% 3.9% 4.2%
5 55% 43% 4.1% 4.1% 4.6% 29 72% 4.6% 39% 3.7% 4.1%
6 51% 4.1% 3.9% 3.8% 4.3% 30 76% 50% 4.1% 3.8% 4.4%
7 45% 4.0% 38% 4.1% 4.2% 31 9.1% 6.5% 6.3% 58% 6.9%
8 45% 39% 2.1% 38% 57% 32 7.8% 51% 43% 4.0% 4.0%
9 59% 54% 56% 57% 5.6% 33 7.8% 52% 4.4% 4.0% 4.1%
10 72% 4.1% 3.6% 3.7% 4.2% 34 6.3% 38% 3.1% 32% 3.6%
11 7.3% 4.0% 38% 3.7% 4.2% 35 6.7% 3.9% 35% 4.6% 3.8%
12 77% 42% 4.0% 3.9% 4.6% 36 74% 42% 35% 3.9% 4.2%
13 7.7% 4.0% 3.9% 38% 4.5% 37 7.6% 43% 3.8% 3.6% 4.6%
14 8.0% 39% 39% 38% 4.5% 38 7.8% 44% 3.9% 35% 4.5%
15 7.9% 39% 4.1% 42% 4.9% 39 8.0% 4.7% 3.9% 35% 4.4%
16 8.0% 37% 3.8% 4.0% 4.4% 40 82% 44% 3.8% 3.6% 4.2%
17 9.0% 4.9% 53% 54% 59% 41 89% 53% 4.7% 4.4% 4.3%
18 6.9% 42% 3.6% 3.6% 4.2% 42 5.9%

19 6.9% 42% 3.7% 3.8% 4.2% 43 6.4%

20 76% 45% 3.7% 39% 4.4% 44 5.1%

21 8.0% 48% 1.0% 4.0% 4.6% 45 5.5%

22 76% 48% 3.8% 39% 4.7% 46 6.7%

23 76% 4.7% 4.0% 4.0% 4.7% 47 5.3%

24 82% 4.9% 38% 3.9% 4.4% 48 7.0%
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Table 4.5 : Corrected transfer functions of the first story for the undamaged model.

Mode 1*mode 2" mode 3"9mode
TE —0.365 —0.255 —0.138
s241.091s + 744.2 s%2+3.191s + 6364 s2+ 5.048s + 15926
R? 0.996 0.987 0.709

MATLAB's system identification toolbox was used to determine how accurately the
transfer function simulates the model's motion. Figure (4.11) compares the first story
displacement and the displacement behavior represented by the transfer function
obtained from the undamaged structure's first story. The transfer function reflected the

displacement behavior of the first story by 97.3%.

The transfer functions of the second, third, fourth, and fifth stories simulated the
respective story's displacement behavior at a rate of 97.5%, 98.2%, 98.3%, and 98.8%,

respectively.

5 w10 Measured and simulated model output

Best Fits

'10 l i I i I I I I i I
10 1 12 13 14 15 16 17 18 19 20

Time

Figure 4.11 : Reflected displacement behavior of the first story.

It was thought that equalizing the displacements in the final state by adding a number
instead of multiplying the transfer function with the correction coefficient could better
represent the story behavior. The required number for the transfer function of the
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undamaged structure obtained from the first floor was found as 3.1x107° and added to
the first obtained transfer function. In figure (4.12), it is seen that the transfer function
obtained from the first floor with the added number represents the floor behavior.
However, it was revealed by comparing the percentages in figure (4.11) and figure
(4.12) that adding a number to the transfer function does not consistently represent the
floor behavior.

2 wio™ Measured and simulated model output
Best Fits
thtoplam1+: 96.46
0 L
-2
” TTITT .
\ “ U ‘\ ||w||I lhl |II||I'|I|1.'I,. T

: | | [

-8
-10 * * *

10 15 20 25 30
Time

Figure 4.12 : Reflected displacement behavior with the added number of the first
story.

4.1.5 Transfer function parameter changes

Numerator differences between transfer functions obtained from the undamaged and
damaged structures are represented by equation (4.2). Since the damping ratio is
considered constant, it is sufficient to investigate the change in one of the denominator
values. A mathematical representation of the difference in the denominator for the

damage cases is given in equation (4.3).

d
ANumU = Z Klja)nljz - Kija)nijz ] = 1, e, m (42)
=2
d
ADenij = Z 2§wn1j - Zé/wnij ] = 1, v, m (43)
i=2
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Where, m and d are the mode and damage case numbers considered in the studies,

respectively. K; jwpy ;% is the numerator value of the j™ mode of the transfer function
representing the intact model. K;;w,;;* is the numerator value of the j"" mode of the

transfer function representing the i damage condition.

In cases where only the first story is damaged up to 80% (From case number 2 to 9),
numerator values of the first, second, and third modes of the transfer functions
obtained from each floor are represented in figures (4.13), (4.14), and (4.15),
respectively. When figure (4.13) is examined, the numerator of the first mode of the
transfer functions obtained from the first three floors decreases as the damage
increases, while that of the fourth and fifth floors increases. The change in numerator
values of the transfer function obtained from the first and second floors is remarkably
more than the other floors. The numerator values of the second mode of the transfer
functions obtained from the first floor decreased slightly at first but then increased
again. On the other hand, while the numerator values of the second mode of the transfer
function obtained from the second and third floors increase as the damage increases,
the numerator of the fourth floor's transfer function remains almost constant, and the
numerator of the fifth floor's transfer function decreases as seen in figure (4.14).

When the numerator values of the transfer functions representing the third mode are
examined in figure (4.15), the change in numerators is much less than other modes,
and the numerator values gradually approach 0 as the final value. It is also found to be
more wavy changes rather than straight like the first two modes.
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Figure 4.13 : 1% story damage percentage versus TF numerators of 1% mode.
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Figure 4.14 : 1% story damage percentage versus TF numerators of 2" mode.

60



1% Story Damage % vs 3™ Mode TF Numerators
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Figure 4.15 : 1% story damage percentage versus TF numerators of 3™ mode.

In the cases where only the second story is damaged up to 80% (From case number 10
to 17), the numerator values of the first, second, and third modes of the transfer
functions obtained from each floor are given in figures (4.16), (4.17) and (4.18),
respectively. It is observed that the numerator of the transfer function obtained from
the first floor increases with damage of the second story as seen in figure (4.16),
considering the transfer function changes of the first mode, unlike the cases where only
the first story is damaged. That can be defined as a direction change, an essential
indicator of the lower story's damage distribution. The other four floors' transfer
functions' numerators changes similar to when the first floor is damaged. The change
of the transfer functions' numerators reflecting the second mode is similar to the case
where the first story is damaged, even when the second story is damaged. When the
changes of the numerators of the transfer functions reflecting the third mode are
examined, it is observed that there is a severe change in direction and magnitude of
the one belonging to the first floor. On the other hand, those belonging to other floors

do not change with the damage.
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2" Story Damage % vs 15! Mode TF Numerators
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Figure 4.16 : 2" story damage percentage versus TF numerators of 1%t mode.
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Figure 4.17 : 2" story damage percentage versus TF numerators of 2" mode.
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2"9 Story Damage % vs 3'9 Mode TF Numerators
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Figure 4.18 : 2" story damage percentage versus TF numerators of 3" mode.

In the cases where the only third story is damaged up to 80% (From case number 18
to 25), the numerator values of the first, second, and third modes of the transfer
functions obtained from each floor are given in figures (4.19), (4.20) and (4.21),
respectively. The cases where only the second and only the third story are damaged
were compared to examine the transfer functions' numerators' change reflecting the
first mode. The apparent difference is the direction change of the transfer function's
numerator obtained from the second floor. It starts to increase with damage, same as

the nominator of the transfer function obtained from the first floor.

Moreover, the transfer function's numerator representing the second mode and
obtained from the second floor is changed its direction and starts to decrease similar
to obtained from the first floor. When the numerator changes of the transfer function
representing the third mode are examined, it is quite apparent that there is no
dependency between change and damage apart from the one obtained from the first

floor. Numerator value obtained from the first floor decreases as the damage increases.
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15! Mode TF Numerators

3" Story Damage % vs 15" Mode TF Numerators
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Figure 4.19 : 3" story damage percentage versus TF numerators of 1%t mode.
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Figure 4.20 : 3" story damage percentage versus TF numerators of 2" mode.
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3" Story Damage % vs 3™ Mode TF Numerators
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Figure 4.21 : 3" story damage percentage versus TF numerators of 3 mode.

In the cases where the only fourth story is damaged up to 80% (From case number 26
to 33), the numerator values of the first, second, and third modes of the transfer
functions obtained from each floor are given in figures (4.22), (4.23) and (4.24),
respectively. When these cases are compared with the previous ones to determine the
transfer function's numerator reflecting the first mode, the only difference is the
direction and magnitude change of the numerator of the transfer function obtained
from the third floor. These changes are directly proportional to the damage. The
numerators of transfer functions reflecting the second mode and obtained from the first
three floors decrease as the damage increases. In contrast, numerators of transfer
functions obtained from the fourth floor increase slightly, the ones obtained from the
fifth floor do not change. The numerators of transfer functions reflecting the third
mode obtained from all floors change very limitedly with the damage. Therefore, the
numerator changes of transfer functions reflecting the third mode are insufficient to

define the damage's location and level.
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1% Mode TF Numerators

Figure 4.22 : 4" story damage percentage versus TF numerators of 1% mode.

2" Mode TF Numerators

Figure 4.23 : 4" story damage percentage versus TF numerators of 2" mode.
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4t Story Damage % vs 3" Mode TF Numerators
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Figure 4.24 : 4" story damage percentage versus TF numerators of 3" mode.

In the cases where the only fifth story is damaged up to 80% (From case number 34 to
41), the numerator values of the first, second, and third modes of the transfer functions
obtained from each floor are given in figures (4.25), (4.26) and (4.27), respectively.
According to figure (4.25), although the transfer functions' numerators representing
the first mode obtained from all floors change negligibly initially, the first four floors'
numerator tends to increase as the damage increases. In contrast, the numerator of the
fifth floor tends to decrease with damage increases. When the numerators of the
transfer functions representing the second mode are examined, it is seen that while the
damage increases, the one obtained from the fourth floor decreases, and the one
obtained from the fifth floor increases. Although there is little change in the transfer
functions' numerators representing the third mode as in the other damage cases, the

numerator obtained from the fourth floor tends to increase, unlike the others.
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Figure 4.25 : 5" story damage percentage versus TF numerators of 1% mode.
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5th Story Damage % vs 2"Y Mode TF Numerators
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Figure 4.26 : 5" story damage percentage versus TF numerators of 2" mode.
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5th Story Damage % vs 3" Mode TF Numerators
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Figure 4.27 : 5" story damage percentage versus TF numerators of 3" mode.

It can be said that a linear relationship can be constructed between the numerators of
the transfer functions representing the first mode and the damage percentages of the
stories, considering all these single-story damage cases described in table (4.5) and the
changes of the numerators of the transfer functions. In addition, there is a change in
directions to the numerators representing the first mode of the transfer functions
obtained from floors below the damaged story. Numerators start to increase,
considering figures (4.13), (4.16), (4.19), (4.22), and (4.25) together. Thus, when the
damage occurs in a single story, it is possible to determine the damaged story by
calculating the numerator change reflecting the first mode of the damaged floor's

transfer function and the floor below it.

4.1.6 Linearity between numerator change and damage up to 80%

The linearity ratio of the transfer function's numerator change with the story damage
from 0% to 80% is examined and represented in table (4.6). In order to obtain a lower
error percentage in results, the linearity ratio of more than 90% was determined as a
priority. As the second priority, it was specified that the coefficient in the linear
relationship should be higher than a certain level. The higher the linearity coefficient,

the greater the numerator change as a result of the damage. Therefore 0.5 and 0.2 were
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determined as essential limits for the coefficient. Table (4.7) shows the coefficients in
the linearity. In Table (4.6) and Table (4.7), the boxes with numbers that fulfill these
conditions are colored. The green color represents the case where both the linearity is
over 90% and the coefficient is greater than 0.5, while the yellow color represents the
case where the linearity is above 90% and the coefficient is between 0.2 and 0.5. Colors
represent the same consistency ratio. The difference between the two colors is only the
level of the numerator change caused by the damage. The green color represents a
numerator change of more than 50% of the damage in percentage, while the yellow

color represents numerator change from 20% to 50% of the damage.

Table 4.6 : Linearity percentages between numerator change and damage from 0%
to 80%.

Damaged Story

1 2 3 4 5
1 Story 1 Mode TF  [|OAI2000NOB0%N 89.0% 80.4%  70.1%
2" Story 1 Mode TF | 96.9% 945% 88.2% 78.9% 69.4%
3 Story 1 Mode TF | 98.8% 97.7% 95.8% 79.4% 71.7%
4" Story 1% Mode TF | 82.3% 92.6% 72.6% 825%  76.0%
51 Story 1% Mode TF | 81.4% 87.3% 67.9% 68.1% 80.8%
1% Story 2" Mode TF | 45.1% 65.3%  92.0%
2" Story 2" Mode TF 74.8% 88.3% 80.6% 79.9%
3" Story 2" Mode TF 65.4% 71.9% 84.6% 83.0%
4" Story 2" Mode TF | -5.0% 28.2% 50.3% 87.0%
5t Story 2" Mode TF | 79.6% 83.1% 27.7% -24.8%

1%t Story 3" Mode TF 87.0% [JOBIRIN 87.6% 70.0%
2" Story 3" Mode TF | 44.5% -83.8% -1.1% -28.8% 77.6%
3" Story 3" Mode TF -1.5%  7.4% 93.2% 84.4%
4" Story 3¢ Mode TF | 80.5%  73.9% 74.1% |55
5t Story 3@ Mode TF -12.0% 22.0% 62.6% 8.0%

Numerators

The linearity percentages between the change of the transfer functions' numerators and
the story damage are given in Table (4.6). While the damages in the first, second, third,
and fifth stories can be determined using only the first floor data, using the data
obtained from the third or fourth floors will give the closest result for the possible
damage situation on the fourth story. Damages on the first and second stories, damages
on the first and fourth stories, damages on the third, fourth, and fifth stories, and

damages on the first and fifth stories can be determined with the data obtained from
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the second, third, fourth, and fifth floor, respectively. In table (4.8), the efficiency of
the data obtained from the floors is separated by color.

Moreover, it has been shown that the data obtained from each floor are influential in
determining which stories are damaged. In this way, it was revealed how consistent
this method would give results with the floors' data. It was observed that the data

obtained from the lower floors were more effective when determining the damage.

Especially utilizing the first floor data, it was observed that seven different linear
relationships could be established for damage assessment. On the other hand, it was
seen that no more than three relationships could be established for the other floors'
data.

Table 4.7 : Linearity coefficients between numerator change versus damage from
0% to 80%.

Linearity Coefficients, a [ANum(%0) = a x D(%0)]

Numerators Damaged Story
1 2 3 4 5
19 Story 1 Mode TF | EII0ANNOIS69N 0523 0380 0.133
2" Story 1% Mode TF | -0.364 -0.302 0.509 0.365 0.130
3 Story 1% Mode TF | -0.076 -0.051 -0.072 0.358 0.131
4" Story 1% Mode TF | 0.060 0.071 0.031 -0.064 0.135
5" Story 1% Mode TF | 0.094 0.098 0.049 -0.055 -0.145
1t Story 2" Mode TF | 0.242 -0.286 0.398
2" Story 2" Mode TF -1.231 -0.688 0.194
3" Story 2" Mode TF 0.299 0.486 -2.316 -0.695
4" Story 2 Mode TF | -0.024 -0.191  0.299 -3.064
5 Story 2 Mode TF | -0.474 -0.311 -0.115 h
1% Story 3¢ Mode TF  |JOI889N -2.938 [JOIBORN -0.504 -0.578

2" Story 3@ Mode TF | 1.119  0.809 0377 0.049 -1.973
39 Story 3 Mode TF [BOIBBON 0.197 -0.076 0449 -0.559
4" Story 3¢ Mode TF | 0853 -0.662 [0I8H6Y -0.678 [IIaN
5% Story 3¢ Mode TF - 0.294 -0.133 -0.340 -0.109




Since we expect the damage to be concentrated on the buildings' lower stories,
examining the lower stories' transfer function changes by placing accelerometers on

the lower floors will give the most accurate result for this method.

Table 4.8 : Efficiency of the transfer functions obtained from the floors.

(Linearity from 0% to 80%o)

TF obtained # of Damage
from equations detectable stories

15! Floor 6 1 1,2,3,5
2" Floor 1 2 1,2
3" Floor 2 1 1.4
4% Floor 3 0 3,4,5
5% Floor 2 0 15

Numerators of the transfer functions representing the first mode shown in figures
(4.13), (4.16), (4.19), (4.22), and (4.25) are examined in detail. It was observed that
when the damage increases to high levels, the relationship becomes far from linear. As
a result, another study was conducted by reducing linearity assumption from 80% to
60% in order to detect lower levels of damage more consistently. As expected, a
significant increase in linearity ratios was observed. Consequently, the damage

detection efficiency of the obtained data at different floors increased.

4.1.7 Linearity between numerator change and damage up to 60%

Table (4.9) represents the linearity ratios between numerator changes and story
damages from 0% to 60%. Compared to table (4.7), there is an increase in the amount
of linearity obtained from the lower floors as well as an increase in the linearity ratios
in general. The linearity ratio between numerators of the first mode of the transfer
functions obtained from the first and second floor increases in the upper story damages.
For example, in the first story damage, the linearity ratio between the numerator of the
first mode of the transfer function obtained from the first floor and the damage
increased from 94.2% to 96.8%, besides linear representation of fourth story damage

increased from 80.4% to 94%.
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Table 4.9 : Linearity percentages between numerator change and damage from 0%
to 60%.

Damaged Story

1 2 3 4 5
1% Story 1 Mode TF  [JOBIB00N 95.6% 945% 94.0%  90.2%
2" Story 1t Mode TF | 98.2% 97.5% 93.9% 92.7% 86.7%
3" Story 1 Mode TF | 98.7% 96.6% 95.7% 945% 91.5%
4" Story 1 Mode TF | 90.2% 95.2% 37.2% 70.0%  89.2%
5t Story 1% Mode TF | 88.2% 95.0% 78.9% 77.0% 93.1%
1%t Story 2" Mode TF 66.8% 85.8%
2" Story 2" Mode TF 90.0% 74.1%
3 Story 2" Mode TF 88.8%
4™ Story 2" Mode TF 83.9%
5t Story 2" Mode TF
1%t Story 3" Mode TF
2"d Story 3" Mode TF
3" Story 3" Mode TF
4™ Story 3" Mode TF
5% Story 3 Mode TF

Numerators

52.0%
83.0%  58.6%
-50.2% -86.1% 65.6%

-8.3% 80.7%
85.6% 66.0%

-716.0% 45.8% -18.7%

Table 4.10 : Linearity coefficients between numerator change versus damage from
0% to 60%.

Linearity Coefficients, a ANum (%) =a x D (%)
Damaged Story

1 2 3 4 5
19 Story 15 Mode TF [S02# 0.460 0409 0.257 0.077
2" Story 1% Mode TF | -0.327 -0.259 0.392 0.239 0.072
39 Story 1% Mode TF | -0.078 -0.047 -0.064 0237 0.078
4" Story 1 Mode TF | 0.044 0062 0.023 0.060 0.089
5% Story 1 Mode TF | 0.067 0.074 0.025 -0.069 -0.100
1% Story 2™ Mode TF | 0.022 -0.153  0.366

Numerators

2" Story 2" Mode TF -0.483 0.204
3" Story 2" Mode TF -0.521
4™ Story 2" Mode TF -2.402

5t Story 2" Mode TF
1% Story 39 Mode TF
2" Story 3" Mode TF
3" Story 3" Mode TF
4™ Story 3@ Mode TF
5% Story 3 Mode TF

0.146
-0.402 -0.324
0.401 -1.343

-0.425
-0.419

-0.138  0.255
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When table (4.11) and table (4.8) are compared, it is seen that a more linear
relationship can be establish with the data obtained from all floors except the fourth
floor, which can be used in damage assessment. Simultaneously, with the data
observed from the first and second floors, it is discovered that the single-story damages
that occurred in the first four stories can be determined. Besides, it is seen that the fifth
story damage can be determined with the data obtained from the fourth and fifth floors.
When it is assumed that the relationship between the damage and the numerator change
is linear up to 60% damage, it is determined that the relations with higher linearity

percentages can be established, especially for the data obtained from the lower floors.

Table 4.11 : Efficiency of the transfer functions obtained from the floors.

(Linearity from 0% to 60%b)

TF obtained # of Damage
from equations  detectable stories

1 Floor 6 3 1,2,3,4
2" Floor 2 5 1,2,3,4
3" Floor 4 1 1,4
4™ Floor 2 0 4,5
5" Floor 3 1 1,2,5

4.1.8 Damage estimation utilizing linearity between numerator change and

damage up to 80%

Table (4.12) represents the transfer function that can best detect each story’s damage
and the linearity parameters belonging to the relationship between that function and
damage. The rows marked with blue have been added in table (4.12) for further
calculation in multi-story damage cases. Each linear relationship in table (4.12) was
examined one by one. The maximum errors for each story’s damage assessment are

represented, starting from table (4.13) to (4.20), respectively.
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Table 4.12 : Critical transfer functions, linearity ratios, and coefficients utilized in
determining story damage.

Linearity assumed from 0% to 80% damage

Damaged Floor TF/Mode Linearity a
1 1% Floor /1% Mode  94.20% -1.204
1 2" Floor / 1% Mode  96.90%  -0.364
2 1% Floor / 1 Mode  91.00%  0.569
2 2" Floor / 1t Mode ~ 94.50%  -0.302
3 1% Floor / 1 Mode  89.00%  0.523
3 1t Floor / 3" Mode  98.20%  0.892
4 4" Floor / 2" Mode  99.60%  1.151

5 4" Floor / 3™ Mode 97.50%  3.373

Table (4.13) represents the error differences between the calculated damage
percentage and the real damage percentage, assuming the change of the numerator of
the first mode of the transfer function obtained from the first floor as linear up to 80%
damage, for damage case from 2 to 9. While a damage percentage less than the actual
value was calculated for damages up to 60%, values higher than the real value were
calculated for damages greater than 60%. The maximum negative error was detected
as 8.8% when the real damage was 40%, while the maximum positive error was

detected as 13.5% when the real damage was 80%.

Table 4.13 : Error between real and calculated first story damage using linearity
between damage and numerator change of the 1% mode of the 1% floor’s transfer function

15t Story Damage 15t Floor / 1%t Mode
ANumerator (%) Dr(%) Dc (%) Error (%)
-7.0% 10.0%  5.8% -4.2%
-15.8% 20.0% 13.1% -6.9%
-25.7% 30.0% 21.3% -8.7%
-37.5% 40.0% 31.2% -8.8%
-51.7% 50.0% 42.9% -7.1%
-68.3% 60.0% 56.8% -3.2%
-88.9% 70.0% 73.8% 3.8%
-112.6% 80.0% 93.5% 13.5%

The best linearity ratio utilized in detecting first story damage belongs to the first mode
of the transfer function obtained from the second floor. Percentage errors between

calculated with this relation and real damages are shown in table (4.14).
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The error percentage’s behavior was similar to table (4.13), while the error was
negative up to 60% damage and then turned positive for higher damage percentages.
While maximum negative and positive errors were again calculated at the exact real

damage percentages, their values were 6.5% and 8.7%, respectively.

Table 4.14 : Error between real and calculated first story damage with using best

linearity.
15t Story Damage 2"d Floor / 15t Mode
ANumerator (%) Dr (%) Dc(%) Error (%)
-2.6% 10.0%  7.0% -3.0%
-5.6% 20.0% 15.2% -4.8%
-8.6% 30.0% 23.5% -6.5%
-12.2% 40.0% 33.5% -6.5%
-16.4% 50.0% 45.1% -4.9%
-21.2% 60.0% 58.2% -1.8%
-26.7% 70.0% 73.4% 3.4%
-32.3% 80.0% 88.7% 8.7%

Table (4.15) represents the numerator changes and error differences between the
calculated damage percentage and the real damage percentage for second story damage
cases (cases 10 to 17). As in the above results, up to 60% damage was detected lower,
while after 60% damage, it was detected more than its real value. For the second story
damage cases, the maximum negative error was detected as 11.0% when the actual
damage was 40%. In comparison, the maximum positive error was detected as 18.5%
when the real damage was 80%. When compared with the percentage of error in the
first story’s damage detection, it was determined that both negative and positive error

percentages were higher for the second story than the first story.

Table 4.15 : Error between real and calculated second story damage using linearity
between damage and numerator change of the 1% mode of the 1% floor’s transfer function.

2nd Story Damage 15t Floor / 15 Mode
ANumerator (%) Dr (%) Dc (%) Error (%)

3.1% 10.0% 5.5% -4.5%

6.8% 20.0% 11.9% -8.1%

11.2% 30.0% 19.7% -10.3%
16.5% 40.0% 29.0% -11.0%
22.8% 50.0% 40.0% -10.0%
31.4% 60.0% 55.2% -4.8%
42.0% 70.0% 73.8% 3.8%

56.1% 80.0% 98.5% 18.5%
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The best linearity ratio utilized in detecting second story damage belongs to the first
mode of the transfer function obtained from the second floor. Percentage errors
between calculated with this relation and real damages are shown in table (4.16).
Damages up to 60% were detected with negative error, while more severe damages
were detected with positive error. The maximum negative error was 8.6%, and the
maximum positive error was 13.6%. They correspond to the second story being 40%

and 80% damaged, respectively.

Table 4.16 : Error between real and calculated second story damage with using best

linearity.
2nd Story Damage 2"d Floor / 15t Mode
ANumerator (%) Dr(%) Dc (%) Error (%)
-2.0% 10.0% 6.6% -3.4%
-4.2% 20.0% 13.8% -6.2%
-6.6% 30.0% 22.0% -8.0%
-9.5% 40.0% 31.4% -8.6%
-13.0% 50.0% 43.1% -6.9%
-17.0% 60.0% 56.3% -3.7%
-22.1% 70.0% 73.1% 3.1%
-28.3% 80.0% 93.6% 13.6%

Table (4.17) represents the numerator changes and error differences between the
calculated damage percentage and the real damage percentage for third story damage
cases (cases 18 to 25). As in the first and second story damage detection results, up to
60% damage was detected lower, while after %60 damage, it was detected more than
its actual value. The maximum negative error was 12.8%, and the maximum positive
error was 21.3%. They correspond to the third story being 40% and 80% damaged,

respectively.

Table 4.17 : Error between real and calculated third story damage using linearity
between damage and numerator change of the 1% mode of the 1% floor’s transfer function.

3" Story Damage 15t Floor / 15t Mode
ANumerator (%) Dr(%) Dc (%) Error (%)

2.7% 10.0% 5.2% -4.8%

6.0% 20.0% 11.4% -8.6%

9.5% 30.0% 18.2% -11.8%
14.2% 40.0% 27.2% -12.8%
20.4% 50.0% 39.0% -11.0%
28.4% 60.0% 54.2% -5.8%
38.6% 70.0% 73.9% 3.9%

53.0% 80.0% 101.3% 21.3%
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The best linearity ratio utilized in detecting third story damage belongs to the third
mode of the transfer function obtained from the first floor. Percentage errors between
calculated with this relation and real damages are shown in table (4.18). Although the
determination of the parameters belonging to the third mode of the transfer function
was more difficult than the first two modes, it could detect the third story’s damage
with a minor error. The maximum negative error was 5.3%, and the maximum positive
error was 6.5%. Unlike the results calculated with linearity, which best represents the
other story damages, damages with maximum negative and positive errors correspond

to 30% and 10% damage, respectively.

Table 4.18 : Error between real and calculated third story damage with using best

linearity.
3" Story Damage 15t Floor / 379 Mode
ANumerator (%) Dr(%) Dc (%) Error (%)
14.7% 10.0% 16.5% 6.5%
16.3% 20.0% 18.2% -1.8%
22.0% 30.0% 24.7% -5.3%
32.7% 40.0% 36.6% -3.4%
43.8% 50.0% 49.1% -0.9%
51.6% 60.0% 57.9% -2.1%
63.9% 70.0% 71.6% 1.6%
75.0% 80.0% 84.0% 4.0%

Since there is no combination of fourth and fifth stories in case of multi-story damages
to be examined, only the best linearities for these stories are represented in this part.
The best linearity ratio utilized in detecting fourth story damage belongs to the second
mode of the transfer function obtained from the fourth floor. Percentage errors between
calculated (Dc) with this relation and real damages (Dr) are shown in table (4.19).
When calculating the fourth story’s damage by utilizing best linearity, an error of more
than 2.4% was not made in considering both negative and positive errors. The
maximum negative error was 1.9%, and the maximum positive error was 2.4%. They
correspond to the fourth story being 40% and 80% damaged, respectively. As the
linearity was as high as 99.6%, calculated errors remained at such small levels. On the
other hand, the frequent change of the error sign corresponds to increased damage level

can be explained by the high linearity.
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Table 4.19 : Error between real and calculated fourth story damage with using best

linearity.
4™ Story Damage 4™ Floor / 2" Mode
ANumerator (%) Dr(%) Dc (%) Error (%)
14.3% 10.0% 12.4% 2.4%
21.7% 20.0% 18.9% -1.1%
36.7% 30.0% 31.8% 1.8%
43.9% 40.0% 38.1% -1.9%
56.8% 50.0% 49.4% -0.6%
69.2% 60.0% 60.2% 0.2%
83.1% 70.0% 72.2% 2.2%
90.4% 80.0% 78.5% -1.5%

The best linearity ratio utilized in detecting fifth story damage belongs to the third
mode of the transfer function obtained from the fourth floor. Percentage errors between
calculated with this relation and real damages are shown in table (4.20). Calculated
maximum negative and positive errors correspond to the real damage levels of 50%

and 70%, respectively, and their values were 6.0% and 6.6%.

Table 4.20 : Error between real and calculated fifth story damage with using best

linearity.
5% Story Damage 4™ Floor / 379 Mode
ANumerator (%) Dr(%) Dc (%) Error (%)
15.6% 10.0%  4.6% -5.4%
57.4% 20.0% 17.0% -3.0%
89.6% 30.0% 26.6% -3.4%
125.4% 40.0% 37.2% -2.8%
148.5% 50.0% 44.0% -6.0%
188.2% 60.0% 55.8% -4.2%
258.3% 70.0% 76.6% 6.6%
287.7% 80.0% 85.3% 5.3%

In cases of multi-story damage, these are cases from 42 to 48, only the linear
relationship between damage and numerator change of the first mode of the transfer
function obtained from the first floor was used. In order to associate the numerator
change of the relevant mode of the transfer function as a result of the measurements
with the damage on the stories, estimated damage percentages of each story are
multiplied by the linearity coefficient to find the effect of that floor on the total

numerator change and the total change was calculated by adding the effect of all floors
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one by one. The difference between calculated and measured numerator change is
given in Table (4.21) for the case where linear relation is accepted between numerator
change and up to 80% damage. Regardless of the damage distribution between stories,
it is seen that the error increases as the total damage percentage increases on the
structure. An exception to this situation is the last case (case 48), where the first three
stories are damaged by 20%. Even though the total damage was less than the case
numbers 45 and 47, the error was more. Fortunately, the case where each story is
equally damaged is not one of the expected damage scenarios for the building due to

a possible earthquake effect.

Table 4.21 : Error between real and calculated numerator change in multi-story
damage cases where the relationship between damage up to 80% and the numerator
change assumed as linear.

Multi-Story Damage Cases

Damage Observed Linearly
Damage Numerator Summed Error
Case 18t 2nd 3rd Chande (% Numerator (%)
Floor Floor  floor ge (%) Change (%)
42 30% 10% 0% -29.6% -30.4% 0.8%
43 30% 30% 0% -20.0% -19.0% -1.0%
44 50% 10% 0% -57.4% -54.5% -2.9%
45 50% 30% 0% -47.0% -43.1% -3.8%
46 30% 20% 10% -22.8% -19.5% -3.3%
47 50% 30% 10% -44.2% -37.9% -6.3%
48 20% 20% 20% -9.5% -2.2% -7.3%

Table (4.22) represents the story damage distribution when the calculated numerator
change in multi-story damages is equal to the measured one. In Table (4.22), while
numerator changes are equalized, only the first story damage percentage has been
changed. When only the numerator change was utilized for the damage determination
and this change was balanced by adjusting the first story’s damage percentage, the
largest error between the real and estimated damage of the first story was 6% for all
multi-story damage cases. For all damage cases except for 42, estimated damage

percentages were higher than the real percentage.
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Table 4.22 : Error between real and estimated damage for the first story in multi-
story damage cases where observed and linearly summed numerator changes are equal.

Multi-Story Damage Cases

Damage Real Damage Estimated Damage Error between 1%
Case 15t ond 3rd 15t ond 3rd Story Damage
Floor Floor Floor Floor Floor floor (%0)
42 30%  10% 0% 29.3% 10.0% 0.0% -0.7%
43 30%  30% 0% 30.8% 30.0% 0.0% 0.8%
44 50% 10% 0% 524% 10.0% 0.0% 2.4%
45 50%  30% 0% 53.2% 30.0% 0.0% 3.2%
46 30% 20% 10% 32.7% 20.0% 10.0% 2.71%
47 50% 30% 10% 55.3% 30.0% 10.0% 5.3%
48 200 20% 20% 26.0% 20.0% 20.0% 6.0%

Table (4.23) also represents the story damage distribution when the calculated
numerator change in multi-story damages is equal to the measured one. In Table (4.23),
while numerator changes are equalized, only the second story damage percentage has
been changed. When only the numerator change was utilized for the damage
determination and this change was balanced by adjusting the second story’s damage
percentage, the largest error between the real and estimated damage of the second story
was 12.8% for all multi-story damage cases. Unlike Table (4.22), estimated damage

was smaller than the real damage for all cases except for case 42.

Table 4.23 : Error between real and estimated damage for the second story in multi-
story damage cases where observed and linearly summed numerator changes are equal.

Multi-Story Damage Cases

Damage Real Damage Estimated Damage Errcr)]g between
Case 1st ond 3rd 1st ond 3rd 2"% Story
Floor Floor Floor Floor Floor floor  Damage (%)
42 30%  10% 0% 30.0% 11.5% 0.0% 1.5%
43 30%  30% 0% 30.0% 283% 0.0% -1.7%
44 50%  10% 0% 50.0% 50% 0.0% -5.0%
45 50%  30% 0% 50.0% 23.2% 0.0% -6.8%
46 30% 20% 10% 30.0% 14.2% 10.0% -5.8%
47 50% 30% 10% 50.0% 19.0% 10.0% -11.0%
48 20% 20% 20% 20.0% 7.2% 20.0% -12.8%
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Table (4.24) contains the damage combinations with the third story. It represents the
situation in which the measured numerator changes are equalized with those calculated
by changing the damage percentage of the third story in case of multi-story damage.
Damage percentage smaller than real value was estimated for all damage cases. In
addition, when the numerator equalized for the 47" case, the estimated damage
percentage was found to be -2%. However, as it was not possible, estimated damage

was accepted as 0%.

Table 4.24 : Error between real and estimated damage for the third story in multi-
story damage cases where observed and linearly summed numerator changes are equal.

Multi-Story Damage Cases

Real Damage Estimated Damage Error between
Damage 0 g
Case 1st ond 3rd 1st ond 3rd 3¢ Story
Floor Floor Floor Floor Floor floor  Damage (%)
46 30% 20% 10% 30.0% 20.0% 3.6% -6.4%
47 50% 30% 10% 50.0% 30.0% 0.0% -10.0%
48 20% 20% 20% 20.0% 20.0% 6.1% -13.9%

4.1.9 Damage estimation utilizing linearity between numerator change and

damage up to 60%

The linearity coefficient used in determining the first story damage is higher than that
of the second and third stories. When we equalized the numerator changes by changing
the estimated first story’s damage percentage, it was determined that the error between
estimated and the real damage was the lowest compared to the other stories, as

expected.

Damage percentages were calculated lower than the actual damage level up to 60%
when the relationship between change in the numerator of the first mode of the transfer
function obtained from the first floor and damage is considered linear up to 80%
damage. On the other hand, when the actual damage was more than 60%, it was
realized that calculated damage percentages were higher than the real damage. This
situation revealed that the study, which was carried out assuming that the relationship
was linear up to 60% damage, should give better results in determining single-story
damage. Table (4.25) represents the highlighted transfer functions, linearity
coefficients, and linearity percentages found in the study where the linear relationship

is accepted up to 60% damage. Compared with Table (4.12), while a significant
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increase was observed in all the linearity percentages found by using the parameter
changes of the first mode of the transfer function obtained from the first floor, other
percentages were improved generally. On the other hand, since this change was made
to increase the accuracy of the damage detection in lower damage situations, the
linearity coefficients’ magnitude decreased as expected. Despite this decrease, the

coefficients were still above the specified level.

Table 4.25 : Critical transfer functions, linearity ratios, and coefficients utilized in
determining story damage.

Linearity assumed from 0% to 60% damage

Damaged Floor TF/Mode Consistency a
1 1% Floor / 1°* Mode 96.80% -1.027
1 2" Floor / 1% Mode 98.20% -0.327
2 1% Floor / 1%t Mode 95.60% 0.460
2 2" Floor / 1% Mode 97.50% -0.259
3 1% Floor / 1%t Mode 94.50% 0.409
3 1%t Floor / 3" Mode 97.10% 0.850
4 4" Floor / 2" Mode ~ 99.50% 1.146
5 4" Floor/ 3¥ Mode ~ 99.00%  3.047

Table (4.26) represents the errors between the calculated damage percentage and the
real damage percentage, assuming the change of the numerator of the first mode of the
transfer function obtained from the first floor as linear up to 60% damage, for first
story damage cases that are from 2 to 9. Maximum negative and positive errors were
5.0% and 6.5%, respectively. If the results in Table (4.26) are compared with Table
(4.13), it is clear that damage up to 50% was calculated with less error. It is also seen
that the sign of the error changed at a lower damage level. On the other hand, while
the minimum error in Table (4.13) corresponds to approximately 65% real damage
(found by linear interpolation), the minimum error in Table (4.26) corresponds to 49%

damage.
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Table 4.26 : Error between real and calculated first story damage using linearity
between damage and numerator change of the first mode of the transfer function obtained
from the first floor.

15t Story Damage 15t Floor / 15t Mode
ANumerator (%) Dr(%) Dc (%) Error (%)
-7.0% 10.0% 6.8% -3.2%
-15.8% 20.0% 15.4% -4.6%
-25.7% 30.0% 25.0% -5.0%
-37.5% 40.0% 36.5% -3.5%
-51.7% 50.0% 50.3% 0.3%
-68.3% 60.0% 66.5% 6.5%

Table (4.27) represents the calculated damage using the transfer function numerator
changes that best detect the first story’s damage and the error between real damage.
Numerator change of the first mode of the transfer function obtained from the second
floor has the highest linearity rate in determining first story damage. The maximum
negative and positive errors were 3.9% and 4.8%, respectively. After %50 real

damage, calculated damage was higher.

Table 4.27 : Error between real and calculated first story damage with using best

linearity.
15t Story Damage 2"d Floor / 15t Mode
ANumerator (%) Dr (%) Dc (%) Error (%)
-2.6% 10.0% 7.8% -2.2%
-5.6% 20.0% 17.0% -3.0%
-8.6% 30.0% 26.1% -3.9%
-12.2% 40.0% 37.3% -2.7%
-16.4% 50.0% 50.2% 0.2%
-21.2% 60.0% 64.8% 4.8%

Table (4.28) represents the errors between the calculated damage percentage and the
real damage percentage, assuming the change of the numerator of the first mode of the
transfer function obtained from the first story as linear up to 60% damage, for second
story damage cases that are from 10 to 17. Maximum negative and positive errors were
5.7% and 8.3%, respectively. When the results in Table (4.28) and Table (4.15) are
compared, it is seen that the damage up to 50% is calculated with a minor error.
Moreover, the sign of the error changed again at a lower damage level. On the other
hand, while the minimum error in Table (4.15) corresponds to approximately 64% real
damage (found by linear interpolation), the minimum error in Table (4.28) corresponds

to 51% damage.
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Table 4.28 : Error between real and calculated second story damage using linearity
between damage and numerator change of the first mode of the first floor’s transfer

function.
2nd Story Damage 15t Floor / 15t Mode
ANumerator (%) Dr(%) Dc(%) Error (%)
3.1% 10.0% 6.8% -3.2%
6.8% 20.0% 14.7% -5.3%
11.2% 30.0% 24.3% -5.7%
16.5% 40.0% 35.9% -4.1%
22.8% 50.0%  49.5% -0.5%
31.4% 60.0% 68.3% 8.3%

Numerator change of the third mode of the transfer function obtained from the fifth
floor has the highest linearity rate in determining second story damage. While
estimating the third mode components in an experimental study, it is difficult to
separate the effect of noise from the building’s behavior, as the signal-to-noise ratio
(SNR) will be quite large. Therefore, since it is difficult to determine the third mode
parameters in practice, the first mode of the transfer function obtained from the second
floor was selected as the function that gives the highest linearity between transfer
function parameter changes and second story damage. Moreover, the linearity
percentage of that transfer function is close to the third mode of the transfer function
obtained from the fifth floor. Table (4.29) represents the errors between the calculated
damage percentage and the real damage percentage for the second story damage case.
Maximum negative and positive errors were 4.4% and 5.7%, respectively. As in other

cases, calculated damage was higher after about %50 real damage.

Table 4.29 : Error between real and calculated second story damage with using best

linearity.
2nd Story Damage 2"d Floor / 15t Mode
ANumerator (%) Dr(%) Dc (%) Error (%)
-2.0% 100% 7.7% -2.3%
-4.2% 20.0% 16.1% -3.9%
-6.6% 30.0% 25.6% -4.4%
-9.5% 40.0% 36.6% -3.4%
-13.0% 50.0% 50.3% 0.3%
-17.0% 60.0% 65.7% 5.7%
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Table (4.30) represents the numerator changes and error differences between the
calculated damage percentage and the real damage percentage for third story damage
cases (cases 18 to 25). As in the first and second story damage detection results, up to
50% damage was detected lower, while after 50% damage, the damage was detected
more than its real value. The maximum negative error was 6.7%, and the maximum
positive error was 9.3%. They correspond to 30% and 60% damage for the third story
damage case, respectively. If Table (4.30) compared with Table (4.17), it is the fact

that errors for the damage up to 50% decreased on average by 40%.

Table 4.30 : Error between real and calculated third story damage using linearity
between damage and numerator change of the first mode of the first floor’s transfer

function.
37 Story Damage 15t Floor / 15t Mode
ANumerator (%) Dr(%) Dc (%) Error (%)
2.71% 10.0% 6.7% -3.3%
6.0% 20.0% 14.6% -5.4%
9.5% 30.0% 23.3% -6.7%
14.2% 40.0% 34.8% -5.2%
20.4% 50.0% 49.9% -0.1%
28.4% 60.0% 69.3% 9.3%

Table (4.31) represents the calculated damage using the transfer function numerator
changes that best detect the third story’s damage and the error between real damage.
Numerator change of the third mode of the transfer function obtained from the first
floor has the highest linearity rate in determining the first third damage. Maximum
negative and positive errors were 4.1% and 7.3%, respectively. In this calculation,
unlike the previous ones, even with 10% real damage, a damage calculation of 17.3%
was made. The reason for this difference is that parameter change of the third mode of
the transfer function is utilized when detecting third story damage. It can be said that
even though the biggest error was calculated for 10% real damage, errors at other levels

remained quite acceptable.
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Table 4.31 : Error between real and calculated third story damage with using best

linearity.
3" Story Damage 15t Floor / 379 Mode
ANumerator (%) Dr(%) Dc (%) Error (%)
14.7% 10.0% 17.3% 7.3%
16.3% 20.0% 19.1% -0.9%
22.0% 30.0% 25.9% -4.1%
32.7% 40.0% 38.4% -1.6%
43.8% 50.0% 51.6% 1.6%
51.6% 60.0% 60.7% 0.7%

In case the relation between damage and numerator change is accepted as linear up to
60% damage, the best linearity that can be used in detecting fourth story damage
belongs to the second mode of the transfer function obtained from the fourth floor.
Percentage errors between calculated with this relation and real damages are shown in
table (4.32). The maximum negative error was 1.7%, and the maximum positive error
was 2.5%. In Table (4.32), similar to table (4.13), these maximum errors correspond
to 40% and 10% damage for the fourth story. The linearity percentage was also at a
high level of 99.5%. Therefore, as the real damage percentage increases, the error

sign’s change indicates that the consistency of the linear relationship is high.

Table 4.32 : Error between real and calculated fourth story damage with using best

linearity.
4™ Story Damage 4™ Floor / 24 Mode
ANumerator (%) Dr(%) Dc (%) Error (%)
14.3% 10.0% 12.5% 2.5%
21.7% 20.0% 18.9% -1.1%
36.7% 30.0% 32.0% 2.0%
43.9% 40.0% 38.3% -1.7%
56.8% 50.0% 49.6% -0.4%
69.2% 60.0% 60.4% 0.4%

The best linearity ratio used in detecting fifth story damage belongs to the third mode
of the transfer function obtained from the fourth floor. Percentage errors between
calculated with this relation and real damages are shown in table (4.33). Calculated
maximum negative and positive errors correspond to the real damage levels of 10%
and 60%, respectively. Moreover, their values were 4.9% and 1.8%. When Table

(4.33) and Table (4.31) are examined together, there is a similarity in the percentage
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of errors. The highest absolute error percentages were obtained at the 10% actual
damage level. The only common point of the errors in the two tables is that they are
found by using the linearity between parameter change of the third mode of the transfer

function and damage.

Table 4.33 : Error between real and calculated fifth story damage with using best

linearity.
5% Story Damage 4™ Floor / 3" Mode
ANumerator (%) Dr(%) Dc(%) Error (%)
15.6% 10.0% 5.1% -4.9%
57.4% 20.0% 18.8% -1.2%
89.6% 30.0% 29.4% -0.6%
125.4% 40.0% 41.2% 1.2%
148.5% 50.0% 48.7% -1.3%
188.2% 60.0% 61.8% 1.8%

Table (4.34) represents the error between observed and calculated numerator changes
with utilizing linearity in multi-story damage cases. Unlike Table (4.21), the numerator
change was found in Table (4.34) by utilizing the linearity in which the relationship
between numerator change of the transfer function and the damage is considered linear
up to 60% linear. When the error percentages in Table (4.34) are compared with those
in table (4.21), it can be said that the calculated error for each case except for the 48"
case was significantly higher. However, the calculated error decreased for the 48™"

case.

Table 4.34 : Error between real and calculated numerator change in multi-story
damage cases where the relationship between damage up to 60% and the numerator
change assumed as linear.

Multi-Story Damage Cases

Damage Damaged Floor Observed  Linearly Summed Error
Case 1st 2nd 3rd Numerator Numerator (%)
Floor Floor Floor Change (%) Change (%)
42 30%  10% 0% -29.6% -26.2% -3.4%
43 30%  30% 0% -20.0% -17.0% -3.0%
44 50%  10% 0% -57.4% -46.8% -10.6%
45 50%  30% 0% -47.0% -37.6% -9.4%
46 30% 20%  10% -22.8% -17.5% -5.3%
47 50% 30%  10% -44.2% -33.5% -10.8%
48 20% 20%  20% -9.5% -3.2% -6.4%
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The error between the real and estimated first story’s damage percentages in the case
of equalization of the observed and calculated numerator changes is represented in
Table (4.35), similar to Table (4.22). While in numerator changes equalization process
in Table (4.34), only damage percentage of the first story has been changed. When the
results are compared with Table (4.22), it was observed that there was a significant
increase in the error percentages for all cases except for the 48" case. Besides, the

maximum error percentage increased from 6% to 10.5%.

Table 4.35 : Error between real and estimated damage for the first story in multi-
story damage cases where observed and linearly summed numerator changes are equal.

Multi-Story Damage Cases

Damage Real Damage Estimated Damage Error between
Case 1st 2nd 3rd 1st 2nd 3rd 1St Story
(o)
Floor Floor Floor Floor Floor Floor Damage (%0)

42 30% 10% 0% 33.3% 10.0% 0.0% 3.3%
43 30% 30% 0% 329% 30.0% 0.0% 2.9%
44 50% 10% 0% 60.4% 10.0% 0.0% 10.4%
45 50% 30% 0% 59.2% 30.0% 0.0% 9.2%
46 30% 20% 10% 35.1% 20.0% 10.0% 5.1%
47 50% 30% 10% 60.5% 30.0% 10.0% 10.5%
48 20% 20% 20% 26.2% 20.0% 20.0% 6.2%

Story damage distribution and error between real and estimated second story damages
are represented in Table (4.36) when the calculated numerator change in the case of
multiple damages is equal to the measured one. In Table (4.36), while numerator
changes are equalized, only the second story damage percentage has been changed.
The maximum error between real and estimated damage of the second story was 23.4%
for all multi-story damage cases. In addition, when the numerator change is equalized
for the 47" case, the estimated damage percentage was found to be -13.2%. However,
as it was not possible in reality, estimated damage was accepted as 0%. If the error
percentages in Table (4.36) are compared with those in Table (4.23), it is noticed that

the error percentage increases for each multi-story damage case.

89



Table 4.36 : Error between real and estimated damage for the second story in multi-
story damage cases where observed and linearly summed numerator changes are equal.

Multi-Story Damage Cases

Damage Real Damage Estimated Damage Errcr)]g between
Case 1t ond 3rd 1st ond 3rd 2"% Story
Floor Floor Floor Floor Floor Floor  Damage (%)
42 30% 10% 0% 30% 2.6% 0.0% -71.4%
43 30% 30% 0% 30% 23.5% 0.0% -6.5%
44 50% 10% 0% 50% 0.0% 0.0% -10.0%
45 50% 30% 0% 50% 9.4% 0.0% -20.6%
46 30% 20% 10% 30% 8.6% 10.0% -11.4%
47 50% 30% 10% 50% 6.6% 10.0% -23.4%
48 20% 20% 20% 20% 6.2% 20.0% -13.8%

Table (4.37) includes the combinations where the third story is damaged. The error

between real and estimated third story damage was found by equalizing the obtained

and linearly summed numerator changes by changing only third story damage

percentage in multi-story damage conditions. As in Table (4.24), damage percentage

smaller than real value was estimated for all damage cases. Moreover, when the

numerator is equalized for the 46" and 47" cases, the estimated damage percentage

was -3% and -16.3%, respectively. However, since the damage percentage could not

be negative, the estimated damage was accepted as 0%.

It is seen that the error percentages in Table (4.37) are higher for all damage cases

when compared with those in Table (4.24), considering the percentages in case of

negative estimation of the damage.

Table 4.37 : Error between real and estimated damage for the third story in multi-
story damage cases where observed and linearly summed numerator changes are equal.

Multi-Story Damage Cases

Damage Real Damage Estimated Damage Error between
Case 15t ond 3rd 1st ond 3rd 3rd Story
Floor Floor Floor Floor Floor Floor Damage (%)
46 30% 20% 10% 30% 20% 0,0% -10,0%
47 50%  30% 10% 50% 30% 0,0% -10,0%
48 20% 20% 20% 20% 20% 4,5% -15,5%
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It is favorable to have the opposite sign of the linearity coefficients of the first mode
of the transfer function obtained from the first floor while determining the distribution
of the damage between the first and second stories. However, after a certain point,
numerator change alone is insufficient in detecting multi-story damages. Because the
coefficients are of opposite sign and the floors’ effects are summed up linearly,
damages in another percentage can also make the exact change on the total numerator
change. In this case, another parameter change should be utilized for the damage
determination. This parameter change is the denominator change of the transfer
function’s relevant mode obtained from the relevant floor. Since the damping is
considered constant as 2% in this study, it does not matter which parameter change in
the denominator is utilized. The only factor affecting the denominator’s values is the
natural frequency of the structure. The denominator change mentioned in the following

sections is the change of 2w, value.

Table (4.38) represents the first mode of the transfer function’s denominator changes
obtained from the first floor for four cases where only the first story was damaged by
15.8% and the first and second story were damaged together. Calculated numerator
changes were equal in all comparisons, and valued as -19%. The numerator changes
were the same despite the increase in the percentage of damage because the linearity

coefficients utilized to calculate first and second story damage were opposite signs.

When the denominator changes obtained due to the damage of the first story and the
damage combinations of the first two stories are examined in Table (4.38), it is seen
that the difference between obtained and calculated denominator changes can be used
in determining actual damage. The smaller the difference, the more accurately the

actual damage is detected.

Table 4.38 : Comparison of the first mode of the transfer function’s denominator
change in multi-story damage cases where numerator changes obtained from the first
floor are equal.

Multi-Story Damage Case Denominator Comparison

Real Damage Obt. Est. Estimated Damage
Comp' 1st 2nd 3rd Den. Den. 1st 2nd 3rd
Name Floor Floor Floor (%) (%) Floor Floor Floor
DM1 15.8% - - -3.1% -11.4% 30.0% 30.0% -
DM2 15.8% - - -3.1%  -82% 25.0% 19.5% -
DM3 15.8% - - -31% -53% 20.0% 9.0% -
DM4 15.8% - - -3.1% -3.8% 18.0% 4.7% -
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In addition to the numerator changes, denominator changes should also be used in
determining the levels of multi-story damage. As shown in the estimated damage part
in Table (4.38), the numerator changes of different damage combinations can be equal.

In this case, the denominator changes reflect the level of actual damage.

When the comparison named DM5 in Table (4.39) is examined, it is seen that although
both the numerator and denominator changes of the first mode of the transfer function
obtained from the first floor are very close, there is a difference in the real and
estimated damage distribution between the second and third stories. In addition, in the
comparison named DM6, single-story damage levels on the second and third stories
were compared. While the numerator changes were equal, it was observed that
denominator changes were very close. It was determined that this change was not
sufficient to determine the correct damage distribution between the second and third
stories. Therefore, it can be said that the parameter changes of the first mode of the
transfer function obtained from the first floor are insufficient in determining the

distributions of the second and third story damages.

Table 4.39 : Comparison of the first mode of the transfer function’s denominator
change in multi-story damage cases where numerator changes obtained from the first
floor are equal.

Multi-Story Damage Case Denominator Comparison

Real Damage Obt. Est. Estimated Damage
Comp. Den D
Name 1st 2nd 3rd o ) ;ﬂ. 1st 2nd 3rd
Floor Floor Floor (%) (%) Floor Floor Floor
DM5 50.0% 30.0% - -178% -17.7% 50.0% 20.0% 10.9%
DM6 - 17.6% - -3.1% -2.3% - - 19.1%

4.1.10 Relation between TTF coefficients and story damages

During the investigation to find the relationship between damage and the transfer
function parameters of each mode one by one, the idea that the coefficients of the
equation obtained by summing the transfer functions representing the first three modes
can be used to determine the damage. When equation (3.2) is written in the long-form,
the numerator of the TTF has five coefficients and seven in its denominator. In this
section, the relationship between the story damages and the coefficients in the

numerator has been examined.
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Figure (4.28) shows the relationship of the five coefficients in the numerator of the
TTF obtained from five floors with the first floor damage. As the first story damage
increased, all coefficients obtained from the first floor decreased. On the other hand,
the first coefficients obtained from the other four floors did not show a significant

change with first story damage, while the other four coefficients increased.

93
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Figure 4.28 : Numerator coefficients of the TTF in the case where the 1% story is
damaged:; a: 1 coefficient change, b: 2" coefficient change, ¢: 3™ coefficient change, d:
4™ coefficient change, e: 5™ coefficient change.
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Figure (4.29) represents the change of the TTF coefficients obtained from all floors in
case the second story is damaged. Unlike figure (4.28), it can be said that the change
of the first coefficient obtained from all floors is not related to the second story
damage. It is observed that as the second story damage increases, the four coefficients

obtained from all floors increase.

Figures (4.30), (4.31), and (4.32) represent the change of the TTF coefficients obtained
from all floors in cases where the third, fourth, and fifth stories are damaged,
respectively. The coefficient changes of the TTF seen in these figures are similar to
figure (4.29).

The increasing tendency of the coefficient values of TTF is thought to be due to the
fact that the frequencies are decreasing as the damage increases, decreasing the
denominator coefficients of the transfer functions. Since the coefficients in the
denominator of the transfer function representing each mode decrease, when these
modes are summed linearly, the coefficients in the numerator decreased and

approached zero.

As a result, when examining all cases except the case where the first story was
damaged, the coefficient changes of the TTF are not a parameter that can be used in

determining the story damages for building type structures.
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Figure 4.29 : Numerator coefficients of the TTF in the case where the 2" story is
damaged; a: 1%t coefficient change, b: 2" coefficient change, c: 3™ coefficient change, d:
4" coefficient change, e: 5™ coefficient change.
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Figure 4.31 : Numerator coefficients of the TTF in the case where the 4" story is
damaged:; a: 1 coefficient change, b: 2" coefficient change, c: 3™ coefficient change, d:
4™ coefficient change, e: 5™ coefficient change.
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Figure 4.32 : Numerator coefficients of the TTF in the case where the 5" story is
damaged; a: 1%t coefficient change, b: 2" coefficient change, c: 3" coefficient change, d:
4" coefficient change, e: 5™ coefficient change.
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4.2 Full Scale Model

4.2.1 Model properties

A finite element model with 20 m length in X direction and 15 m length in Y direction
of a 10-story building was created. Each story has 3 m in height. 12 kN/m? dead load
and 3.5 kN/m? live load were distributed on each story. Column and beam dimensions
of the undamaged structure are 0.6x0.6 m and 0.4x0.7 m, respectively. The building's
static system consists of a Reinforced Concrete (RC) core in the center and RC frames
around it. The thickness of the shear wall is 0.3m. Figures (4.33) and (4.34) represent
the plan and profile views of the FE model, respectively.

(s) () (o) (x)
T

Figure 4.33 : Plan view of the FEM model.
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a b
Figure 4.34 : Profile views of the FE model. a) X-Z view b) Y-Z view.

In this study, the first mode in the X direction was examined. The period and the

frequency value of the intact model are shown in table (4.40).

Table 4.40 : Period and frequency value of the first mode of the intact model.

Intact T f w I\.Ilt')de.
Structure 1 g5l Participation

(s) S rad-s Ratio

Mode 1_X 0.482 2.073 13.03 73.30%

4.2.2 Input and output data

The base excitation affecting the numerical model is the North-South acceleration
record of the 1999 Kocaeli Earthquake. Since one of the ultimate purposes of this study
was to determine the location and the level of the damage in the building during the
earthquake, the entire earthquake record was not used. Instead, in addition to the last
20 seconds of the Kocaeli Earthquake recording, a 10-second stationary period was
added to create a 30-second acceleration record in total. Thus, the damage caused to

the building as a result of the destructive effect of the earthquake was tried to be
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determined when the impact of the same earthquake was relatively less with the
transfer function changes in the building. Figure (4.35) represents the entire Kocaeli

Earthquake record and the record created for use in this study.

Kocaeli EQ Record and Utilized Acceleration

3 T
Kocaeli N-S 0-40sec record
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Figure 4.35 : 1999 Kocaeli N-S EQ record and created input acceleration.

The outputs utilized to obtain the transfer functions of each floor are the story
displacements caused by the effect of this 30-second acceleration record on the

building. Figure (4.36) shows the story displacements of the intact structure.
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Figure 4.36 : Story displacements of the intact structure.
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4.2.3 Derivation of the transfer function parameters

Transfer functions of each story are derived with the ratio of CPSD of the input and

output data to APSD of the input data as shown in equation (3.1). In this study, the

window length was 850, and the overlap ratio was 50% to derive the transfer functions.

Choosing a low overlap ratio did not negatively affect the results, as the transfer

functions of the higher frequency modes were not examined and the peak values can

be obtained correctly. Figure (4.37) represents the transfer function plots of each story

of the intact model.
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Figure 4.37 : Transfer functions of each story of the intact model.

Using the curve fitting toolbox of MATLAB, The transfer function parameters

belonging to the relevant mode were found for both the intact and damaged models.

Figure (4.38) represents the parameter estimation graph of the intact model's first

stories transfer function. The R? coefficient for the estimated transfer function is

96.96%.
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Figure 4.38 : Parameter estimation graph of the transfer function obtained from the
first floor of the intact structure.

Since only one mode's transfer function is examined, the ratio of the obtained transfer
function to represent the building's behavior is proportional to the mode's mass
participation ratio. The mass participation ratio of the first mode in the X direction of
the undamaged model is 73.3%. The transfer function of the first floor was able to
reflect the behavior of the floor at a rate of 77.4%, close to the mass participation ratio.
Figure (4.39) represents the comparison of the actual and reflected displacement

behavior of the intact structure's first story.

w0 Measured and simulated model output

Best Fits
t Floar TF: 77.4029
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Figure 4.39 : Reflected displacement behavior of the first story.
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Transfer function parameters of the intact model are represented in Table (4.41). As
expected, the numerator value of the transfer function for the upper stories was higher

since the higher floors' displacements will be higher than the lower floors.

Table 4.41 : Transfer function parameters of the intact structure

1 TF 2" TF 3YTF 4" TF 5" TF

—-0.095 —0.260 —0.467 —0.700 —-0.940
52 +1.303s + 169.8 s2+1.303s + 169.8 s2+1.303s + 169.8 524 1.303s + 169.8 524+ 1.303s + 169.8

6" TF ™ TF 8" TF 9" TF 10" TF

—-1.180 —1.408 -1.620 —1.812 —-1.984
s? +1.303s + 169.8 524+ 1.303s + 169.8 52413035+ 169.8  s2+1.303s+169.8 s?+1.303s+ 169.8

4.2.4 Damage cases

In this numerical study, the effect of damage on the different structural elements was
investigated. Firstly, it was studied whether the beam damage has an impact on the
parameters of the transfer function. In cases where it is difficult or impossible to detect
the beam damage with the transfer function parameter changes, in addition to the
beams, the cases where the columns are damaged at certain levels were examined. On
the other hand, in circumstances where all beams on the floor are damaged is easily
detected, the number of damaged beams was reduced, and the relation between the
transfer function parameters and the number of damaged beams was examined.
Finally, the cases where the core between the ground and the first floor were damaged
at certain levels were examined because damage is expected at the bottom levels of the
core in the event of possible earthquake damage in structures with a reinforced
concrete core in the center. Beam damages were represented by defining plastic hinges
at both ends of the respective beams. Column damages were described by reducing the
moment of inertia of all columns in the relevant story. Moreover, core damage was

characterized by reducing the elasticity modulus of the material defined in the core.

Table (4.42) represent the total of 17 damage cases, including only single-story
damage, that was examined. In Table (4.42), a row of inner beams means four beams
in the X direction and line with the core, while two rows of inner beams represent eight
beams in the same direction aligned with the core. On the other hand, one row of outer

beams means five beams in the X direction and on an axis without a core, while two
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rows of outer beams represent ten beams on axes without a core in the same direction.
All beams mean all beams in the X direction, which is equal to the sum of two rows

of inner and two rows of outer beams.

Table 4.42 : Damage cases.

Nlcjzristfer D%r{:)i%ed Damaged Elements
1 1 One row of inner beams
2 1 Two rows of inner beams
3 1 One row of outer beams
4 1 Two rows of outer beams
5 1 All beams
6 2 Two rows of inner beams
7 2 Two rows of outer beams
8 2 All beams
9 3 All beams
10 3 All Beams + All colums 20% damaged
11 3 All Beams + All colums 50% damaged
12 3 All Beams + All colums 80% damaged
13 4 All Beams + All colums 50% damaged
14 4 All Beams + All colums 80% damaged
15 1 All core elements 33% damaged
16 1 All core elements 66% damaged
17 1 All core elements 80% damaged

4.2.5 Transfer function parameter changes

Equation (4.2) represents the numerator changes between the undamaged model and
the damaged model. The damping ratio in equation (4.2) is considered constant, and
its value is 5% because concrete is selected in the modeling process of the FE model.
One of the main differences between the first and this numeric study is the utilized
mode number to determine the structural damage. Instead of the first three modes of
the transfer function parameters, only the first mode of the X-direction parameter
changes was studied. Besides, since the case of multi-story damage was not examined
in this study, there was no need to investigate the denominator changes of the transfer

function.
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The changes in the transfer function's numerators obtained from all floors due to the
various damages at the first-floor level are shown in figure (4.37). Regardless of the
severity of the damage, the change in the transfer functions obtained from the first
three floors appears to be more pronounced than those obtained from the upper floors.
In addition, in the first and second cases where the inner row beams were damaged,
the numerator change in the transfer functions of the other floors except the first three
floors was minimal. In fact, there was no change in the transfer functions of the 6%

floor in the first case, and the 8™ and 9" floors in the second case.

In the damage cases shown in figure (4.40), four, eight, five, ten, and eighteen beams
are damaged, respectively. In the first case, where the number of damaged beams is
the least, the change in the transfer function of none of the floors is not positive. On
the other hand, in the fifth case, where the number of damaged beams is the most, the
transfer function change of the top five floors is positive. At the same time, the
percentage of the change in the transfer functions of all floors increased in proportion

to the level of the damage.

When the first and third, or second and fourth damage cases are compared in figure
(4.40), it is seen that the change in the all floors transfer function is more remarkable
when the beams in the outer row are damaged than when the beams in the inner row

are damaged.

The directions of the transfer function changes of successive floors should be
investigated in order to detect the damaged story. When the figure (4.40) is examined,
it can be said that the first story has the damage in all five cases since the numerator
change in the transfer function of successive floors does not change from positive to

negative.

If the damage cases in figure (4.40) are examined in terms of sensor efficiency, it can
be said that the transfer functions of the middle floors have minor changes with
damage.

In the first case, where four beams were damaged, the numerator change percentages
of the first and second floors were 1.3% and 1.2%, respectively, while in the fifth case,
where eighteen beams were damaged, the numerator changed percentages these floors
were 6.3% and 4.6%. As the number of damaged beams increased, the percentage

change of the transfer function obtained from the first floor increased more than that
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obtained from other floors. It turned out that the transfer function obtained from the
first floor is more sensitive to the first story damage and can give more consistent

results in damage detection than the transfer functions of the other floors.

7 TF Numerator Change vs 1t Story Damage
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Figure 4.40 : TF numerator change versus 1% story damage cases.

The relationships between the transfer function's numerator change and the second
story damage are shown in figure (4.41). In all damage cases examined for the second
story, although the transfer function change of the second floor, which was the
damaged story, was negative, the transfer function change of the first floor was
positive. This transfer function change between the first and second floors reveals that

the structural damage is at the second story.

When the numerator changes in figure (4.41) are examined, as the number of damaged
beams increases, the difference in the numerators of the transfer functions obtained
from other floors increases, except for the transfer functions obtained from middle
floors. The transfer function's numerators of the middle floors either did not change or

changed at a minimum level with the damage.

It is seen that the transfer function of the first floor is the most sensitive function to
define the second floor damage when the numerator change percentages in figure

(4.41) are investigated considering the sensor efficiency. In addition, although the
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transfer functions of the lower and upper floors remained at approximately the same
levels, the most significant difference was in the transfer function of the first floor with
3%.

When the numerator changes of the sixth and seventh damage cases in figure (4.41)
were compared, similar results were obtained, unlike the cases where the first story
was damaged. Therefore, it has been revealed that the locations of the damaged beams
cannot be determined by numerator changes of the transfer function utilized in this
study. In addition, although two more beams were damaged in the seventh case than
in the sixth case, the transfer function's numerator changes did not even increase 1%
more than in the sixth case. As a result, it was found that when the second story was
damaged, the number of damaged beams and the transfer function's numerator changes

had a weaker relationship than when the first story was damaged.

In all three cases in figure (4.41), where beam damages were examined on the second
floor, the transfer function changes in the upper floors were positive, just as the case
five which all beams on the first floor were damaged. Therefore, the transfer function
changes obtained from the upper floors were insufficient to determine whether the

damaged beams were on the first or second floor.

TF Numerator Change vs 20 Story Damage
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Figure 4.41 : TF numerator change versus 2" story damage cases.
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Figure (4.42) represents the change in the numerators of the transfer functions obtained
from all floors as a result of cases where all beams and columns at the third story are
damaged at a certain level. When all beams on the first and second floor were damaged,
this damage can be detected by the direction changes in the transfer function changes
of relevant floors. On the other hand, when all beams on the third floor were damaged,
there was no direction change in the transfer function changes of the relevant floors.
In addition to the ninth case, in the tenth and eleventh damage cases, the direction
change in the numerator change of the transfer functions obtained from the floors did
not appear. While there was a positive change in the numerators of the transfer
functions obtained from all floors except the fourth floor, there was no change in the
numerator obtained from the fourth floor. In the twelfth case, where all the columns
were 80% damaged in addition to all the beams, the transfer function's numerator
changes of the first two floors are positive. On the other hand, the numerator changes
of the transfer functions obtained from the third and fourth floors were negative. This
sign change between the transfer function changes of the first two floors and the third

floor reveals that the structural damage is on the third floor.

When the numerator changes against the damage cases in figure (4.42) are examined,
the numerator changes of the transfer functions obtained from the middle floors were
less compared to the lower and upper floors. Therefore, similar to the results when the
first two stories are damaged, the transfer functions obtained from the middle floors

are the least capable of detecting the third story damage.

In all cases where the third story was damaged, the numerator changes of the transfer
functions obtained from the first two floors were more than obtained from the other
floors. Thus, it turned out that the transfer functions obtained from the first two floors

have higher efficiency to determine the third story damage than the other floors.

In the first three damage cases investigated in figure (4.42), it was determined that
although there was damage on the third story, there was no change of direction in the
transfer function changes. However, the difference between the numerator changes of
the transfer functions expected to have a direction change was higher than the changes
in the numerators of the other functions. Based on these sudden changes, shown in
figure (4.42), it was necessary to conduct a study examining the percentages of the
numerator changes of the transfer functions obtained from successive floors when

there is no change in direction. The results are shown on the following pages.
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Figure 4.42 : TF numerator change versus 3" story damage cases.

Figure (4.43) represents two cases where the fourth story is damaged. The numerator
change of the transfer functions obtained from all floors was positive for both damage
cases. Therefore, the damaged floor could not be determined by examining the
direction change of the numerator changes of the transfer functions obtained from the
damaged floor and floor below. As in the three cases where the third story was
damaged, it was found that there was a significant difference between the changes in
the transfer function's numerators obtained from the third and fourth floors, although
there was no change of the direction. For both cases where the fourth story was

damaged, this change was examined and shown in the following pages.

As seen in figure (4.43), when the fourth floor was damaged, the transfer function's
numerators' changes were more remarkable than when the other floors were damaged.
In addition, although the change in transfer functions obtained from the first three
floors is more than obtained from the other floors, it was determined that the most
effective change that utilizes in damage determination was the change in the numerator

of the transfer function obtained from the first floor.

As in the previous figures, it is seen that the transfer functions obtained from middle
floors show the minor change with damage in figure (4.43). In the results where the
fourth story was damaged, it was revealed that the transfer functions obtained from

middle floors on damage assessment would be minimal.
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Figure 4.43 : TF numerator change versus 4™ story damage cases.

Figure (4.44) represents the numerator changes of the transfer functions obtained from
all floors in cases where the reinforced concrete core in the center was damaged from
the ground to the first floor level. As in the fourth and fifth cases in figure (4.40), where
the damage was more significant than the first three cases, numerator changes of the
transfer functions obtained from the lower floors were negative. In contrast, the
numerator changes of the transfer functions obtained from the upper floors were

positive.

Similar to the results obtained for other cases, it was found that the numerator changes
of the transfer functions obtained from the middle floors were less susceptible to

damage compared to those obtained from the other floors.

When figure (4.44) is examined, it can be revealed that as the damage level in the core
increases, the changes in the numerators of the transfer functions obtained from all
floors increases. However, the most significant change occurred in the transfer
function obtained from the first floor. The numerator of the transfer function obtained
from the first floor has changed by 20%, 51.6%, and 65%, in cases where the core had
33%, 66%, and 80% damages, respectively.

When the numerator changes of the transfer functions obtained from successive floors
are utilized to determine the damaged floor by examining figure (4.44), the negative

change in the first floor's numerator indicates that the damage is at the first story.
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Other indicators that show the damage was on the first floor are:

e After a positive change in the numerator of the transfer function obtained from

any floor, there was no negative change in the one obtained from the upper

floor.

e There was no positive change at a much lower level in any floor's transfer

function after a huge positive change in the numerator of the transfer function

obtained from the floor below.
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Figure 4.44 : TF numerator change versus core damage cases.

It was seen in figure (4.42) that the numerator change of the transfer function obtained
from the second floor and the numerator change of the transfer function obtained from

the third floor has the same direction. However, it was noticed that although the

changes have the same sign, their ratio to each other is significant.

It was aimed to use the ratio of the transfer function's numerator changes to detect the
damaged floor when the numerator changes of the damaged floor and the lower floor
has the same sign. As a result of the study done to understand whether this ratio can

determine the damaged floor, the ratios of the changes according to each other are

shown in figure (4.45).
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As a result of the nine, tenth, and eleventh damage cases in figure (4.45), the rate of
the transfer function's numerator change obtained from the second and third floors was
much higher than that of all the other rates. In addition, it has been revealed that the
sign change of the transfer function's numerator change in the twelfth case enables to
determine the damaged story. At the same time, it is proved that the damaged story

also can be found by using the transfer function change ratios.

The ratios of the transfer function's numerator changes obtained from some of the
floors do not appear in figure (4.45) because there was no change in the transfer

function's numerator of any of the two floors used when obtaining the ratio.
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Figure 4.45 : Rate of TF numerator change versus 3 story damage cases.

Figure (4.46) represents the ratio of the transfer function's numerator change
percentages obtained from the floors to the ones obtained from the lower floors for
cases where the fourth story was damaged. While examining figure (4.43), the
damaged story could not be detected because there was no sign change between the
numerator changes of the successive transfer function. However, when the changes in
the numerators of the transfer functions were compared as in figure (4.46), it was seen
that the ratio of the third and fourth floor's numerator changes is greater than the ratio
of all other floors. It was sufficient to detect the damaged story in both cases, although

the rate of change was not more significant than the others.
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Figure 4.46 : Rate of TF numerator change versus 4™ story damage cases.
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5. CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

5.1 Conclusions and Discussions

This study aimed to locate and determine the structural damage by using the transfer
functions' parameter changes obtained from the floors of a building type structure. In
this study, two FEM of a building type structures were examined. The story
displacements that changed as a result of the damage in the building and the ground
acceleration affecting the building were utilized to obtain the transfer functions of the
floors. Linear time series analyzes were performed while the parameter changes of the

transfer functions were investigated for both analytical models.

In the first study, a FEM of a five-story shear building was prepared for the laboratory
scale model. Transfer functions of each floor were obtained using the unit step function

as an input and the story displacements corresponding to this input as output.

Even if the different base excitements affecting the structure produce different story
displacements, there is no change in the transfer functions obtained from the floors of
the structure because the transfer function is a characteristic feature that reflects the
behavior of the floor which it is received. In the first study, each floor's transfer
functions were obtained using the 1940 EIl Centro Earthquake record, unit step
function, and unit impulse force as inputs and the story displacements as outputs. As
aresult, all transfer functions obtained from the same floor were proved to be identical,

regardless of the input function.

It was observed that the selected window length or overlap ratio influences the
numerator value of the transfer function. If the input affecting the structure causes a
permanent story displacement, the resulting numerator value of the transfer function
must be multiplied by a correction factor to obtain the correct numerator value. The
difference in percentage between the actual story displacement when the building
reached the steady-state and the displacement obtained using the transfer function was
selected as the correction coefficient. It was examined that adding with a number

instead of multiplying with a coefficient was also possible. However, it was seen that
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there was no significant change in the percentage of the transfer function representing
the floor's behavior.

In the first numerical study, the transfer functions' parameter changes reflecting the
first three modes of the structure were examined in single or multi-story damage.
Parameter change of the first mode of the transfer function is more effective in both
localizing and determining the level of story damage than the parameter changes of
the second and third modes. In addition, parameter changes of the transfer functions
obtained from the lower floors provided more consistent results in determining

structural damage in building type structures.

Single and multi-story damage cases were examined in the first study. It was revealed
that detecting the damaged floors in both single and multi-story damage cases is

possible with parameter changes of the transfer functions.

Two assumptions were made in which the relationship between story damage and the
transfer function's numerator change were considered linear up to 80% and 60%
damage. According to the results, when the relationship between numerator change of
the transfer function and story damage was considered linear up to 60% damage,
single-story damages were detected with more minor errors. On the other hand, the
error level was relatively higher in multi-story damage cases. It can be said that the
acceptance of linearity up to a lower damage percentage is more efficient in
determining single-story damages. On the other hand, the acceptance of linearity up to

more severe damage Yyields better results in detecting multi-story damage.

In the case of single-story damage, the damaged story can be determined by examining
the numerator changes of the first mode of the transfer functions obtained from
successive floors. The numerator of the first mode of the transfer function obtained
from the damaged story changed in the opposite direction with the lower story's
numerator. It was observed that the numerator of the transfer function of a lower floor

increased while the numerator of the transfer function of the damaged floor decreased.

In the case of multi-story damage, numerator change of the first mode of the transfer
function obtained from the first floor alone is not sufficient to determine the damage
distribution between the first and second stories. Because different levels of damages
on stories may result in an equal numerator change, change in the transfer function's

denominator should also be examined. Damage distribution in the first two stories can
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be estimated by the parameter changes of the first mode of the transfer function
obtained from the first floor, considering both numerator and denominator changes.
However, the first floor's transfer function parameters are insufficient to detect the
multi story damage which include second and third stories' damage distribution. It is
thought that parameter changes of the first mode of the transfer function obtained from
the second floor should precisely estimate the damage distribution between the second

and third stories.

Damage determination with the parameter changes of the total transfer function
obtained with transfer functions belonging to the first three modes was investigated.
The fact that the parameters in the transfer function's denominator decreased with
damage caused a reduction in the parameters of the total transfer function, regardless
of the damage cases. Therefore, it was observed that damage determination could not
be made by summing the transfer functions representing each floor's first three modes
of behavior.

In the second study, a FEM of a ten-story building with an RC core in the center was
prepared. In this study, it was aimed to determine the damages that may occur in high
rise buildings during the earthquake by transfer function changes. Transfer functions
of each floor were obtained using the 1999 Kocaeli EQ record as an input and the story

displacements corresponding to this input as output.

It was revealed that the transfer functions obtained from the lower floors are more
sensitive in detecting the damages. In addition, it was observed that the percentage
change of the numerators of the transfer functions increased with the increase in the
damage level. On the other hand, the transfer functions obtained from the middle floors

were insensitive or slightly sensitive in all damage cases.

Beam damages in the first two floors can be determined by the difference in the sign
of the numerator change of the transfer functions, while beam damages in the upper
floors did not cause a change in sign. Column damages in addition to the beams on the
third story affected the sign of the change of the transfer function's numerators.
However, it was observed that there was no sign change in the transfer function
numerators with beam and column damages in the upper stories. As a result, even the
low-level damage in the lower stories could be detected by the sign changes of the

transfer function's numerator changes of the relevant floors. On the other hand, even
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if there are high-level damages on the upper stories, the severity of the damage can be
determined but can not be localized with sign change.

In case there was no difference in the signs of the changes in the transfer function
numerators, the rates of the changes in the transfer function's numerators of the
successive floors have been examined. It has been found that the ratio between the
transfer function's numerator changes of the damaged floor and the lower floor can be

used in the determination of the damaged story.

It was found that the damage occurring in the RC core caused more remarkable
changes in the transfer function parameters obtained from all floors than those in the

beams or columns.

As a result, it was found that damage determination can be made for building type
structures with transfer function parameter changes. The relationships established here
can be shown as a significant development in Structural Health Monitoring studies.
Transfer function parameter changes can detect both the severity of the damage and

the damage location using a minimum number of sensors.

5.2 Recommendation for Future Research

Damage detection with transfer function parameter changes can be used when the
number of sensors is limited since very few sensors are required. In order to detect the
damaged story, it is recommended to place a sensor on the floor that is expected to be
damaged floor and the floor below. On the other hand, placing sensors on lower floors
can be said as the most appropriate sensor placement to detect the severity of the
damage.

Even if the story damages were detected in the studies carried out, it is thought that the
transfer functions that can represent the movements in two directions should be
examined to localize the damaged elements. In addition, transfer functions obtained

from rotational modes can help the damage localization on structures.

It can be possible to detect the damaged elements with different intensities on the same
floor by investigating the transfer function parameter changes obtained from

movement in two directions in building type structures.
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In an experimental study, while estimating the higher modes' transfer function
parameters, it is difficult to separate the effects of the building's behavior and the noise,
as the SNR ratio will be greater than the first modes. Therefore, it is hard to derive the

transfer function parameters belonging to the higher modes.

The relationship between denominator changes of the transfer function and the damage

can be detailed by working on the cases where the damping ratio is not constant.

Supporting the results obtained in this study with experimental studies to be carried
out in the field or the laboratory in the future is essential in proving the consistency of

the results.
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APPENDIX A

A.1 Fourier Series

Fourier series are used to separate a periodic function into sinusoidal functions. Fourier
series is a type of Fourier transformation for periodic functions. f(t) is a periodic

function of time, if this condition can be satisfied for all t;

fE+T)=g() (A1)

Where, T is the fundamental period.

Equation (A.1) means after every T seconds passed, the value of f(t) must be same.
Fourier series can represent all periodic continuous functions. Moreover, the Fourier
series can be written as the sum of an infinite number of sine and cosine functions, and

each has an integer multiple of 1/T frequency.

- 2mmt - 2mnt
gt) =ay+ Z am cos( T ) + bnsin< T ) (A.2)
m=1

n=1

Equation (A.2) is the general formula of the Fourier series. a, is the average of the
function, am and b,, are the optimal coefficients for sinusoidal functions from zero to

T, m, and n are the integer between 1 and positive infinity.

From the equation (A.2), the unknown Fourier coefficients ao, an and b,, can be found
with the following equations, which show general formulas for the coefficients a,, a,,
and b,,.

a, = %LTf(t)dt (A.3)

First term of the Fourier equation is constant. Best value for a, is the average value of

the function. Hence equation (A.3) is the mathematical representation of averaging.

Ay = %JOTf(t) cos (27r;nt) dt (A.4)
b, = ; fo ' £(t) sin (27;711:) dt (A.5)
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Equations (A.4) and (A.5) are the mathematical representation of the correlation
process between f(t) and sinusoidal functions for determining the coefficients a,, and
b,. [75]

A.2 Complex Fourier Coefficients

In engineering, sometimes complex numbers provide more understandable solutions
than real ones. Complex coefficients can be used by using the well-known Euler
equation when creating the Fourier series. The complex exponential base is used to
reach the complex Fourier coefficients. Complex Fourier series have a complex
exponential basis.

[0e]

g(t) = Z cnei% (A.6)

n=-—oo

Equation (A.6) is the general representation of the complex Fourier series. Only the ¢,
coefficient is unknown. Euler equations (A.7) and (A.8) can be used to find this
coefficient. This complex exponential consists of sinusoidal functions since equation
(A.9) is provided.

cost = —eit te™ (A7)
2

i (A8)
2i

et = cost+isint (A.9)

An optimal value for the unknown coefficient c,, can be found using equation (A.10).
L P, A.10
C”=TJ f®e T dt (A.10)

0

Complex functions may not always result in complex coefficients. Sometimes real
coefficients can also be found. The resultant function g(t) is an authentic function if
equation (A.11) is provided [75].

(A.11)

Cn =C_p

In equation (A.11), * sign refers to the complex conjugate.
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A.3 Fourier Transform

Fourier series can transform any periodic function to sinusoidal functions. However,
Fourier transform is more comprehensive method that can also transform non-periodic

functions.

Fourier Transform (FT) is a name of mathematical operation that defines a waveform
as a combination of sinus and cosine functions. Almost everything (a function or a
signal dependent on time, sound waves, stock market price changes, etc.) can be
defined as a waveform. FT is a powerful method that shows how a wave is formed by
merging different frequency waves. The transformation takes place from the time
domain data to frequency domain data. Therefore questions that are hard to solve in

the time domain can be solved simply in the frequency domain.

Flg®)} =G6(f) = fmg(t) e 2miftdt (A.12)

Equation (A.12) shows a Fourier Transform for any g(t) function. The result of this
equation is frequency. G(f) is the power of the frequency and generally called as a
spectrum. Fourier transform is a two directional transformation, so g(t) can be

obtained with the inverse of G (f) as seen in the equation (A.13) [76].

FG()) = j G(f) e2™Itdf = g(1) (A13)

A.4 Laplace Transform

Laplace transform is an integral transform like Fourier transform. The Laplace
transform of a function is a complex function of a complex variable, while the Fourier
transform of a function is a complex function of a real variable (frequency). The
Laplace transform is useful in solving ordinary linear differential equations. Therefore
they are often used in the analysis of electrical circuits. The transform converts an
equation from time-domain to Laplace domain that is represented with s. The Laplace

transform is defined in equation (A.14). [77]

F(s) = L{f()} = f f() e~stdt (A.14)
0

Where f is a function of t and defined for all t > 0.[78]
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Laplace transform is a two directional transformation. Inverse Laplace transform
converts a function from Laplace domain to time domain and defined in equation
(A.15).

f@) =L HF(s)} = o fc C_::oest F(s)ds (A.15)
Laplace transform can only be applied under the following conditions [79]:

1. The system or signal is analog.

2. The system or signal is linear.

3. The system or signal is Time-invariant.

4. The system or signal is casual.
The main properties of Laplace transform can be listed as follows

If L{F(©)} = F(s),

1. Linearity

Liaf (t) + bg(®)} = aL{f (D)} + bL{g(t)} (A.16)
2. Frequency Shifting
L{e*f(t)}=F(s—a) (A.17)
3. Time Shifting

Laplace transformation of f(t) after the delay of time, T is equal to the product of

Laplace Transform of f(t) and e~ that is

LU (= Thu(t = T)} = eF(s) (A.18)
where u(¢) is the step function.
4. Time Scaling
L{f(a)} = EF (2) (A.19)
5. Differentiation
L{% f(t)} = sF(s) — £(0) (A20)
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6. Integration

b=t f© A21
L{fof(t)}—SF(s)+ - (A.21)

7. Multiplication
s =5 tim [ F@e@de A2
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