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ABSTRACT

POLYCRYSTALLINE PLASTICITY MODELING OF ANISOTROPIC
GRAIN STRUCTURES AND STATISTICAL SIZE EFFECT IN METALLIC

ALLOYS

Bulut, Orhun
M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Tuncay Yalçınkaya

June 2022, 71 pages

In this thesis, two important microstructural phenomena affecting the plastic behav-

ior of metallic materials are addressed through a local crystal plasticity modeling

framework. Initially the influence of anisotropic grain structure developing during

various forming procedures and additive manufacturing processes is studied follow-

ing a multiscale modeling strategy, where Representative Volume Elements (RVEs)

are analyzed under axial loading conditions. Macroscopic response of different de-

grees of anisotropic microstructures and related lattice alignment effects are discussed

in detail. Then, the influence of specimen thickness to grain size ratio affecting the

forming behavior of micron sized specimens is studied. The statistical size effect that

can be captured through a local crystal plasticity model is discussed in comparison

to the existing literature. The thesis is concluded with an outlook for possible future

studies.

Keywords: Crystal Plasticity, Additive Manufacturing, Anisotropic Microstructure,

Texture, Statistical Size Effect

v



ÖZ

METAL ALAŞIMLARDA ANİZOTROPİK TANE YAPISI VE
İSTATİSTİKSEL BOYUT ETKİSİNİN POLİKRİSTAL PLASTİSİTE İLE

MODELLENMESİ

Bulut, Orhun
Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Tuncay Yalçınkaya

Haziran 2022 , 71 sayfa

Bu tezde, metalik malzemelerin plastik davranışını etkileyen iki önemli mikroyapısal

olay, lokal bir kristal plastisite modelleme çerçevesinde ele alınmaktadır. İlk olarak,

çeşitli şekillendirme prosedürleri ve eklemeli imalat süreçleri sırasında gelişen anizot-

ropik tane yapısının etkisi, Temsili Hacim Elemanlarının eksenel yükleme koşulları

altında analiz edildiği çok ölçekli bir modelleme stratejisi takip edilerek incelenmiş-

tir. Farklı derecelerde anizotropik olan mikro yapıların makroskopik tepkisi ve buna

bağlı tane yönelimi etkileri ayrıntılı olarak tartışılmıştır. Daha sonra, mikron boyutlu

numunelerin şekillendirme davranışını etkileyen numune kalınlığının tane boyutuna

oranının etkisi incelenmiştir. Lokal bir kristal plastisite modeli aracılığıyla yakalana-

bilen istatistiksel boyut etkisi, mevcut literatürle karşılaştırmalı olarak tartışılmıştır.

Tez, gelecekteki olası çalışmaları da kapsayan bir bakış açısı ile sonuçlandırılmıştır.

Anahtar Kelimeler: Kristal Plastisite, Eklemeli İmalat, Anizotropik Mikroyapı, Doku,
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İstatistiksel Boyut Etkisi
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CHAPTER 1

INTRODUCTION

Even though the usage of light and strong materials such as composites is increasing

day by day in aerospace industry, the metallic materials still dominate the field due

to their various advantages. After the recent developments in metal additive manu-

facturing, it is now possible to design and manufacture lighter and strong metallic

components. However, the fatigue and ductile behavior performance of these ma-

terials is quite problematic due to their microstructure which might include serious

porosity and anisotropic grain structure (see e.g. [1], [2]). The microstructure is

process dependent and quite difficult to control, leading to a scatter in the macro-

scopic response. Therefore, it is crucial to study the developing microstructure in

order to understand the macroscopic behavior which could only be done following a

methodology at the grain or lower scales. The crystal plasticity framework is a good

candidate in this context which can capture the anisotropic behavior but still feasible

to use for macroscopic understanding.

The main interest in this work concentrates on the anisotropic grain growth observed

during the additive manufacturing processes (see e.g. [3]). The grain structure and

the lattice orientation align itself in the building direction of the process, which in-

deed results in a texture. The influence of both the morphology and the texture should

be analyzed in detail. Therefore, the effect of different grain morphologies and lat-

tice orientation alignment on the plastic response of the materials is studied follow-

ing a computational multi-scale approach. The polycrystalline representative volume

element microstructures are generated through Voroni tessellation including differ-

ent alignment scenarios. The outcome is discussed at the homogenized macroscopic

constitutive response level and the spatial stress evolution at the micro scale.
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The other phenomenon investigated in this thesis is the influence of the thickness

to grain size ratio during micro forming operations. This is a statistical size effect

which should be separated from the intrinsic Hall-Petch effect. Relative size of thick-

ness to average grain size of the material has important influence on the mechanical

behavior (see e.g. [4]). When fewer grains exist along the thickness direction, me-

chanical behavior of the specimens differ from the bulk specimen (see e.g. [5], [6]).

The experimentally observed phenomenon is studied through a local crystal plasticity

framework here in order to focus solely on the statistical effect. The capacity of the

modeling strategy is discussed and possible improvements are proposed.

1.1 Additive Manufacturing

Additive manufacturing of metallic alloys has become quite popular for the over 30

years with the development of new AM techniques which provide a number of major

advantages, including a wide range of geometric capabilities, a low necessity for

human engagement, and a shorter design cycle time. The employment of this process

in aerospace industry is crucial and requires enormous effort both in process itself

and heat treatment. Aircraft engine components, vehicle parts, and space components

have adopted functional AM parts with complex geometries (see e.g. [7]). Different

methods and their categorization are shown in Figure 1.1.

Powder bed fusion, direct energy deposition, metal binder jetting, and sheet lamina-

tion are four of AM techniques which are commonly used (see e.g. [9], [10]). Among

these techniques, powder bed fusion (PBF) is the most popular AM process (see e.g.

[11] ). PBF is separated into two main techniques based on the kind of power source:

selective laser melting (SLM), which employs a high-intensity laser, and electron

beam melting (EBM), which uses an electron beam. Both techniques require the use

of a powder-holding platform. Even though the working principles of these two pro-

cesses are similar, the processing steps are quite different [12]. The schematics of the

SLM and EBM setups are shown in Figure 1.2. In the SLM process, the laser beam

passes through a set of lenses and is reflected by a mirror onto the platform surface in

the SLM process. The mirrors are used to regulate the laser beam spot movement on

the predefined paths in the planar (X and Y) directions. The platform travels lower

2



Figure 1.1: Different Additive Manufacturing Methods from [8]

3



after a layer of powder is selectively melted, and a recoating blade or brush pushes

another layer of fresh powder from the powder tank to the top of the previously con-

structed surface, repeating the laser scan process. To prevent oxidation of metallic

powders at high temperatures, the construction chamber of an SLM machine is filled

with an inert gas, usually argon. The scanning electron microscope (SEM) method

was used to develop the EBM process. It utilizes a much higher-power electron beam

to selectively melt the powder. The EBM procedure needs a vacuum environment.

The electron beam source is positioned on top of the powder bed, as indicated in Fig-

ure 1.2. A lens mechanism controls the movement of the electron beam directly. A

powder hopper delivers fresh powder onto the platform’s side, and a rake coats a layer

of powder on top of the previously melted layer (see e.g. [13], [14]).

Figure 1.2: Schematics of powder bed fusion equipment; (a) Selective laser melting

and (b) electron beam melting from [7].

1.2 Anisotropic Grain Structures

Understanding the evolution of microstructure and crystallographic texture through-

out manufacturing processes is critical because grain size, shape, and texture have a

significant impact on the mechanical performance of the final product. Grain shapes

that deviate from equiaxed morphology have been observed in industrial applications

of forming techniques, particularly in additive manufacturing. It is well understood

that the mechanical characteristics and the development of these distinctive mor-

4



phologies are associated. Due to thermal and mechanical factors, grains are found

to be elongated in particular orientations during manufacturing operations. Example

of an elongated grain structure can be seen in Figure 1.3. An anisotropic, direction-

sensitive response is obtained when grains are aligned in a specific direction (see e.g.

[7, 15, 16, 17]).

Figure 1.3: 3-D optical metallograph image view for a cylindrical component (x-axis)

fabricated in argon gas environment from [17].

Anisotropic and heterogeneous microstructures as well as preferential crystal orien-

tations are observed for additive manufacturing applications such as Powder-Bed Fu-

sion (PBF) and Directed Energy Deposition (DED) techniques (see e.g. [16]). Prod-

ucts of additive manufacturing have grains elongated in the direction along the highest

temperature gradient during rapid solidification, resulting in columnar grains (see e.g.

[18], [19]). The morphology and the orientation of the additively manufactured mi-

crostructures are determined by material properties and process parameters such as

scan velocity, laser or beam power, scan strategy and hatch spacing (scan spacing).

With the pursuit of optimum mechanical properties, different process parameters have

been tested for years. Grain morphologies and crystallographic orientations resulting

from the experiments have been analyzed (see e.g. [20], [21], [22]). Examining

5



the additively manufactured products reveals that emergence of the columnar grain

structure is often accompanied by the crystal orientation alignment (see e.g. [23]).

Moreover, orientations of the grains are related to the proportion of the elongation

(i.e. aspect ratio) of grains. In some cases, the grains are so elongated that they start

to be called “fibers” whereas, in some other cases, the grain aspect ratio is not that

extreme (see e.g. [24]). Consequently, crystal orientations vary from case to case

depending upon the morphology. Corresponding aligned structure results in plastic

anisotropy. In the literature, the combined effect of orientation and morphology re-

sulted in a weaker stress response along the direction in which the crystallographic

structure is oriented (see e.g. [24], [25]). In terms of yield and flow stress experiments

have shown that materials are weaker in the direction they are textured (see e.g. [26],

[27], [28]).

Various experimental studies addressed the crystal structure of additively manufac-

tured products. However, it is not possible to conduct a controlled study where the

microstructure is designed during the process to examine its influence. Yet it is pos-

sible to make such a study using computational techniques.

1.3 The Influence of Thickness to Grain Size Ratio

Micron-sized devices are becoming increasingly important in numerous sectors as a

result of continuous technological breakthroughs. Because of the growing popularity

of such tiny devices, further research into the impact of microstructural features on

mechanical response is required. At this length scale, different size effect phenomena

play crucial role in the plastic behavior of the materials (see e.g. [29]). As the material

become thinner, fewer grains are present along the thickness direction. Hall-Petch re-

lation dictates that material strength strongly depends on the grain size with an inverse

relation, which assumes a certain dependency for every grain size independent of the

specimen geometry (see [30]). However, this relation is not always sufficient to ex-

plain the mechanical behavior of materials. There are some cases, where the changes

in mechanical behaviors are cannot simply be explained by Hall-Petch relation like

cases with thin specimens (see e.g. [31, 32]).
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Figure 1.4: Experimental true stresses for different t/d ratios of nickel at 0.05 and

0.03 strain presented in [33].

There have been various experimental studies which have investigated the effect of

thickness to grain size ratio in the literature. These experimental studies have shown

that thickness to grain size ratio (t/d) is a significant factor on the account of mechani-

cal behavior (see e.g. [31, 33, 34]). The thickness to grain size ratio (t/d) is controlled

in these experiments by either keeping the thickness constant while altering the grain

size (by heat treatment) or retaining the same grain size for varying thickness values.

Variation in mechanical responses is observed among these specimens. Flow stress

decreases with decreasing thickness to grain size ratio (t/d) much more drastically for

thin specimens in a certain interval. Therefore, in this interval, thin materials follow a

different trend from the bulk specimens in terms of flow stress and show a "multicrys-

talline behavior", see region B in Figure 1.4. The value of t/d below which specimens

follow this trend, is called critical value. The critical value differs for each material.

After that critical value, material behave like a "polycrystal", see region C in in Figure

1.4.Moreover, for specimens having less than one grain per thickness which is called

"monocrystals", similar values of flow stress are recorded, see region A in Figure 1.4.

This is due to the fact that surface grain ratio stays constant for all specimens, since

all the grains are surface grains.

7



As fewer grains are present along the thickness direction, the ratio of grains having

at least one free surface increases. Therefore, surface grains become more and more

dominant on the specimen which leads to inferior mechanical properties (see e.g. [5]).

The main reason is that the inner grains are much more constrained by the neighbor-

ing grains than surface grains leading to more dislocation grain boundary interaction

and more hardening. The exponential decrease of flow stress with the decrease of t/d

is explained by this proportional increase of free surface (see e.g. [31], [35], [36],

[37]). Moreover, low t/d ratio might lead to an anisotropic behavior since each grain

will possess a strong influence on the overall behavior. Besides anisotropy, the grain

boundaries (GBs) are also crucial in these specimens which can be grouped as vertical

GB (along thickness direction) and horizontal GB (along the loading direction). For

t/d values below 1, only vertical GBs are present since all grains become columnar.

However, for t/d values higher than 1, grains start to stack on each other and hori-

zontal GBs come into action. As the t/d is further increased until the critical value,

the amount of the horizontal grain boundaries increases significantly, which can be

regarded as one of the factors that ensures the increase in flow stress in the interval

before the critical value (see e.g. [31], [33]).

A framework for studying the effect of thickness to grain size ratio with crystal plas-

ticity is established and presented in [38]. A local crystal plasticity model is employed

to assess the mechanical behavior of thin materials. Specimens with varying t/d ratios

are created and subjected to the uniaxial tensile loading simulations. The obtained re-

sults are compared with experimental studies and the capacity of crystal plasticity

finite element calculations is discussed in this context.

1.4 The Outline of the Thesis

The layout of the thesis is as follows. In Chapter 2 the local crystal plasticity theory

used in this thesis is explained where the slip systems in the crystals are addressed

as well. Grain orientation in polycrystalline materials with their pole figure repre-

sentations is also presented. In Chapter 3, crystal finite element modeling and given

boundary conditions for both tensile specimens and representative volume elements

(RVEs) are explained. The homogenization and the parameter identification proce-

8



dures discussed. Pole figures of the analyzed RVEs are presented. In Chapter 4,

the numerical results of both tensile specimens and RVEs are discussed. Finally, in

Chapter 5 conclusions and outlook are presented.
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CHAPTER 2

CONSTITUTIVE MODELING

In this chapter, the formulation of the crystal plasticity framework is explained in

detail. First, the kinematics of finite deformation is introduced. Then crystal plastic-

ity theory and the stress update methodology are addressed. All the simulations are

performed with the commercial finite element analysis software ABAQUS. A user

material subroutine (UMAT) is modified and used to predict the plastic behavior of

the polycrystal (see [39]). The slip systems of crystalline materials is presented and

the grain orientations in polycrystalline materials and pole figures are explained.

2.1 Kinematics of the Crystal Plasticity Model

The kinematical theory describing the crystal behavior proposed by Taylor [40] and

later turned into a precise mathematical theory by Hill and Rice [41, 42, 43] is used

in the formulation of the crystal plasticity theory. The key equations of this theory,

based on the works of Rice [44] and Asaro [45], is summarized in this section.

Metals are crystalline materials, so their individual atoms are grouped into a periodic,

repeating shape known as a crystal. Elastic deformation is defined as the stretching

of interatomic bonds between atoms, and plastic deformation (slip) is defined as the

breaking and re-forming of bonds when one plane of atoms moves relative to another

(see e.g. [46, 47]).

The crystalline material is allowed to flow through the lattice through dislocation

motion, hence, crystalline slip. The lattice, on the other hand, is allowed to go through

elastic deformations. This way, the inelastic deformation of the crystal rises from
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Figure 2.1: Kinematic model of elastoplastic deformation [48]

crystalline slip, which does not distort the crystal lattice, as seen in 2.1.

The deformation gradient, mapping the reference configuration of the material to the

spatial configuration, can be decomposed as

F = F∗ · Fp (2.1)

where F∗ describes the elastic stretching and rotation of the lattice, decomposed as

F∗ = Fe · FR (2.2)

where Fe and FR correspond to elastic stretching and rotation of the lattice, respec-

tively. Fp describes the plastic shear of the material, i.e., the permanent deformation,

at an intermediate configuration where lattice orientation and stretching are the same

as reference configuration. For a single crystal with a single slip system, Fp can be

written as
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Fp = 1 + γs⊗m (2.3)

where s and m are slip directions and normal to slip plane, respectively. γ is the total

plastic slip. In the case of presence of multiple slip systems, the rate of change Fp is

described as

Ḟp · (Fp)−1 =
N∑

α=1

γ̇(α)(m(α) ⊗ s(α)) (2.4)

where γ̇(α) is the slip rate of an individual slip system α. The slip direction and normal

to the slip planes in the deformed configuration are defined as

s∗
(α)

=F∗ · s(α)

m∗(α)

=m(α) · F∗−1
(2.5)

Using the decomposed components of deformation gradient, the velocity gradient L

can be obtained in terms of F∗ and Fp as

L = ḞF−1 = ˙(F∗Fp)(F∗Fp)−1 (2.6)

It can be rewritten as

˙(F∗Fp)(F∗Fp)−1 = Ḟ∗F∗−1

+ F∗Ḟp(F∗Fp)−1 (2.7)

This results in components of the velocity gradient corresponding to lattice deforma-

tion and plastic slip, L∗ and Lp respectively.

L∗ =Ḟ∗F∗−1

Lp =F∗Ḟp(F∗Fp)−1 = F∗ḞpFp−1

F∗−1
(2.8)

Inserting the rate of Fp here, one can find
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Lp = F∗ḞpFp−1

F∗−1

=
N∑

α=1

γ̇(α)(m(α) ⊗ n(α)) (2.9)

Additionally, the velocity gradient can be decomposed into symmetric and skew-

symmetric parts describing rate of stretching and spin.

Lsym =D∗ +Dp

Lskew =Ω∗ +Ωp
(2.10)

where D is symmetric rate of stretching and Ω is antisymmetric spin tensor. Thus,

we have defined the kinematics of crystal behavior. Before defining the constitutive

laws governing crystal plasticity, it is necessary to introduce objective stress rates.

The rate definition of stress tensors requires material objectivity, i.e., invariance with

the material frame. While this condition is always satisfied for stress and strain mea-

sures of reference configurations, objectivity is not guaranteed for stress and strain

measures of spatial configuration [49]. One of the commonly used stress rate defini-

tions in continuum mechanics is Jaumann stress rate, which is used in the implemen-

tation of the UMAT subroutine used in this study.

Jaumann stress rate of Cauchy stress tensor σ is defined as

∇
σ= σ̇ −Ωσ + σΩ (2.11)

where
∇
σ is a corotational stress rate on axes rotating with the material. According to

Hill and Rice [43], the existence of an elastic potential yields the following relation

between symmetric rate of stretching of lattice and Jaumann rate of Cauchy stress

tensor, as

∇
σ
∗
+σ(I : D∗) = C : D∗ (2.12)

where I is the second order identity tensor, C is the tensor of elastic moduli and
∇
σ
∗

is

a corotational stress rate on axes that rotate with crystal lattice, related to corotational

stress rate on axes rotating with the material
∇
σ through the following equation
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∇
σ
∗
=

∇
σ +(Ω−Ω∗) · σ − σ · (Ω−Ω∗) (2.13)

The crystalline slip obeys Schmid’s law, meaning that slipping rate of a slip system

γ̇(α) depends on the current Cauchy stress σ through a stress called Schmid stress

τ (α). Schmid stress is the resolved shear stress when elastic distortions are negligible.

The version based on Rice’s [42] thermodynamic stress conjugate to slip is defined as

τ (α) = m∗(α) · ρ0
ρ
σ · s∗(α)

(2.14)

where ρ0 and ρ are mass densities in reference and spatial configurations. The rate of

change of Schmid stress is given as in [43]

τ̇ (α) = m∗(α) · [∇σ
∗
+σ(I : D∗)−D∗ · σ + σ ·D∗] · s∗(α)

(2.15)

In rate dependent plasticity, the rate of shear strain of a single crystal is determined

with the resolved shear stress as in [50]

γ̇(α) = γ̇0

∣∣∣∣τ (α)g(α)

∣∣∣∣n sign(τ (α)). (2.16)

where γ̇0 is the reference strain rate on a slip system, g(α) is the current strength of the

slip system from previous plastic strains, sign(τ (α)) is a function returning the sign of

resolved shear stress, and n is the rate sensitivity exponent. The strain hardening of

a slip system is characterized by the following equation describing the evolution of

strength of each slip system in an incremental manner

ġ(α) =
∑
β

hαβ
∣∣γ̇β∣∣ (2.17)

where hαβ are the slip hardening moduli ranging over all slip systems. In the case

of α = β, self-hardening moduli is represented, and in the case of α ̸= β, latent

hardening moduli are represented. The self hardening formulation in the code used

in this work is characterized as hyper-secant hardening law [45, 51]
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hαα = h(γ) = h0sech
2

∣∣∣∣ h0γ

gs − g0

∣∣∣∣ (2.18)

where h0 is the initial hardening modulus, g0 and gs initial and saturation slip resis-

tances of the slip system, and γ is the cumulative shear strain on all slip systems. The

cumulative shear strain is described as

γ =
∑
α

∫ t

0

∣∣γ̇(α)∣∣ dt (2.19)

For latent hardening expression

hαβ = qαβhαα , (α ̸= β) (2.20)

where qαβ denotes the ratio of latent hardening to self-hardening.

2.2 Formulation of Crystal Plasticity

In this section, the implementation of crystal-plasticity theory through incremental

formulation is explained shortly. Due to material and geometric nonlinearity, it is nec-

essary to use an iterative approach in its implementation. Tangent modulus method

for a rate dependent solid is used to determine the increment of plastic shear of a slip

system for a time increment ∆t as

∆γ(α) = ∆t
[
(1− θ)γ̇

(α)
t + θγ̇

(α)
t+∆t

]
(2.21)

where θ is an integration constant ranging from 0 to 1 corresponding to implicit or

explicit Euler integration scheme. Since slipping rate γ̇(α) is a function of resolved

shear stress (τ) and the current strenght (g), the Taylor expansion of it gives

γ̇
(α)
t+∆t = γ̇

(α)
t +

∂γ̇(α)

∂τ (α)
∆τ (α) +

∂γ̇(α)

∂g(α)
∆g(α) (2.22)
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where ∆τ (α) and ∆g(α) are increments of resolved shear stress and current strength

of the slip system for a time increment ∆t, respectively. The incremental relation for

the slipping rate of a slip system can then be obtained as

∆γ(α) = ∆t

[
γ̇
(α)
t + θ

∂γ̇(α)

∂τ (α)
∆τ (α) + θ

∂γ̇(α)

∂g(α)
∆g(α)

]
(2.23)

The incremental formulation of the current strength is

∆g(α) =
∑
β

hαβ∆γ(β) (2.24)

and the increment of resolved shear stress is

∆τ (α) =
[
Cijklµ

(α)
kl + ω

(α)
ik σjk + ω

(α)
jk σik

]
·

[
∆εij −

∑
β

µ
(β)
ij ∆γ(β)

]
(2.25)

where C is the elastic moduli matrix, µ and ω are Schmid factors defined in terms of

slip directions and slip plane normals as

µ
(α)
ij =

1

2

[
s
∗(α)
i m

∗(α)
j + s

∗(α)
j m

∗(α)
i

]
(2.26)

ω
(α)
ij =

1

2

[
s
∗(α)
i m

∗(α)
j − s

∗(α)
j m

∗(α)
i

]
(2.27)

Substituting the incremental formulations of resolved shear stress and current strength,

we obtain

γ̇
(α)
t ∆t+ θ∆t

∂γ̇(α)

∂τ (α)

[
Cijklµ

(α)
kl + ω

(α)
kl σjk + ω

(α)
jk σik

]
∆εij

=
∑
β

{
δαβ + θ∆t

∂γ̇(α)

∂τ (α)

[
Cijklµ

(α)
kl + ω

(α)
kl σjk + ω

(α)
jk σik

]
µβ
ij

− θ∆t
∂γ̇(α)

∂g(α)
hαβsign(γ̇

(β)
t )

}
∆γ(β)

(2.28)
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The rate quantities up until this point are formed on the rotating lattice frame. The

UMAT subroutine takes the known current and resolved shear stresses of each slip

system, strain and strain increment, and current grain orientation at time t to predict

the shear strain increment ∆γ. The Newton-Raphson iterative scheme is applied until

the convergence is reached according to the following residual equation

∆γ(α) − (1− θ)∆tγ̇
(α)
t − θ∆tγ̇

(α)
t+∆t ≤ ϵ (2.29)

Through a Newton-Raphson iteration algorithm, ∆γ is iterated until the convergence

criteria is reached, with a tolerance ϵ taken as 10(−5) in this work. After this conver-

gence is achieved, the lattice rotations are applied through the following equations

as

∆s
∗(α)
i =

{
∆εij + Ωij∆t−

∑
β

[
µ
(β)
ij + ω

(β)
ij

]
∆γ(β)

}
s
∗(α)
j (2.30)

∆m
∗(α)
i = −m∗(α)

j

{
∆εji + Ωji∆t−

∑
β

[
µ
(β)
ji + ω

(β)
ji

]
∆γ(β)

}
(2.31)

2.3 Slip in Crystals

The smallest and the most basic periodic part of a crystal lattice is called unit cell.

There are 14 different unit cells. For metals, face-centered cubic (FCC), body-centered

cubic (BCC), and hexagonal close-packed (HCP) are most commonly observed unit

cells. FCC and BCC unit cells are cubic and have cubic symmetry. FCC unit cell

consists of 8 one-eight atom, one at each corner and 6 half atom, one at each face

center.

The driving force of plastic deformation in crystalline materials are slip systems. Slip

systems are crystallographic planes where dislocation motion occurs in a direction on

the plane. Thus, they are made of slip normals and slip directions. Different crystal

structures have different slip systems. In Schmid plasticity, the resolved shear stress

of a slip system is determined by the orientation of its slip normal and slip direction
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to the loading direction. It should be noted that plastic deformation cannot always

be seen in all slip systems, hence, they are not always active. For example, while

BCC crystals can consist of up to 48 slip planes, depending on the temperature of the

material, it is possible that only 12 of them show activity.

In this work, we are concerned with the deformation of crystalline materials with face

centered cubic (FCC) structure. FCC materials consist of 12 slip systems that can be

seen using Miller index notation in Table 2.1, which are all permutations of the slip

plane {111} and direction <110>. In this rate dependent crystal plasticity framework,

they are always considered to be active.

Table 2.1: Slip systems for fcc crystals

Slip Systems Plane Direction

1 (111) [101]

2 (111) [110]

3 (111) [011]

4 (111) [011]

5 (111) [110]

6 (111) [101]

Slip Systems Plane Direction

7 (111) [101]

8 (111) [110]

9 (111) [011]

10 (111) [011]

11 (111) [110]

12 (111) [101]

2.4 Grain Orientations in Polycrystalline Materials

Polycrystalline material consist of many crystals seperated by grain boundaries. Dur-

ing crystallization, grains nucleate at different positions with initial random arrang-

ment of atoms and grow to form grain boundaries with each other, building the poly-

crstalline structure. In polycrstals, each crystal has a uniform periodic arrangment

of atoms through the grain which is called crystal lattice. But the same periodic

arrangement does not repeat itself throughout material since crystals may have differ-

ent crystal orientations. Grains have unique crystal orientation with respect to their

neighbours which enables to distinguish a region as a grain (see [52]).

Orientation of a crystal can be assigned with different methods. Commonly used

methods in the literature are using Euler angles, Rodrigues vectors, Caley-Klein pa-
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rameters and Quaternions. Rotations are used to obtain transformation between crys-

tal’s local coordinate system and global coordinate system of the specimen (see [53]).

Crystal orientation of a FCC crystal can be represented by three pole figures. Each

pole figure represents the orientation of a plane normal of unit cell of crystal. The

plane normals are expressed in terms of Miller indices and must not be parallel to

each other. Two plane normals contain required information about the orientation of

an object in three dimensional space but for pole figures of crystal orientations, third

pole figure is required due to antipodal symmetry.

For FCC crystals, the Miller indices of pole figures are generally determined as (001),

(011) and (111) or permutations of these types. A pole figure is drawn by following

the procedure such that firstly, a unit cell with a certain orientation is placed at the

center of a hemisphere, then the direction vector on the unit cell for which the pole

figure is drawn, is continued until it intersects the hemisphere. The procedure is

followed for all the grains to obtain intersection points. Finally, the hemisphere is

projected onto a plane with equal-area method, and projection points are utilized to

draw density map. For instance, In (010) pole figure is shown in Figure 2.2 , each

cubic corresponds to a crystal. At the perimeter of the circle, local (010) directions of

cubics are perpendicular to normal of the specimen cross-section which is Z axis for

this example. That direction is parallel to the normal of the specimen cross-section at

the center. A similar relation is observed for (011) pole figure.

Explained phenomena that an orientation is required to be represented by three pole

figures is presented visually in Figure 2.3. There are more than one possible orienta-

tions located at the same point at a pole figure. Because, when the unit cell is rotated

about the pole figure direction, local (010) direction in this case, it’s position at the

pole figure does not change.
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Figure 2.2: Pole figure representation with cubes

Figure 2.3: Possible cubic orientations for a same point at pole figure
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CHAPTER 3

FINITE ELEMENT MODELING

In this chapter, FE (Finite Element) analyses of aforementioned cases are introduced.

As discussed previously in order to show effect of size, morphology and orientation

of grains on the mechanical response is emphasized. Micron size tensile specimens

and RVE FE analyses will be explained. With tensile specimens analyses, the atten-

tion is focused on thickness to grain size ratio (t/d) of specimens while with RVE

calculations the analyses concentrate on morphological elongations and orientational

alignments of different grain shapes.

3.1 Representative Volume Element (RVE)

In this thesis, for parametrization and grain morphology studies artificially generated

representative volume elements (RVEs) are used. In this section, RVE generation

and why it is used in analyses will be explained. Representative volume element

(RVE) represents the smallest volume element that repeats itself throughout the total

volume of the material at mesoscale and can imitate the general behavior and the mean

properties of the material (see e.g. [54, 55]). RVE should be created such that it has

large enough number of grains and it reflects all necessary morphological features of

the material including grain shape and microdefects. It also should be small enough

to be considered as a volume element in continuum mechanics.

These aforementioned artificial microstructures called RVEs are generated and meshed

using Neper software through Voronoi tesselation (see [56]). An example of virtually

created RVE microstructure is shown in Figure 3.1. For the Voronoi tesselation, di-

mensions of the space domain and either total grain number or mean grain diameter
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have to be provided along with the desired statistical criteria such as mean aspect

ratio and mean sphericity. Grains are nucleated from points called seeds. Seeds

are distributed randomly to the domain and spherical growth is initiated from these

seed points. Having computed the mean grain volume, growth is continued to fill

the volume near each seed until the defined statistical criteria are satisfied. Voronoi

tesselation method is employed extensively to create microstructure geometries and

meshes in the literature. (see e.g. [57, 58, 59, 60, 55])

Figure 3.1: Virtually created RVE microstructure with 300 grains.

3.2 Implementation of Boundary Conditions

3.2.1 Boundary Conditions for Tensile Specimen Calculations

For tensile specimen analyses, boundary conditions are visualized in Figure 3.2. All

the nodes of the bottom surface are constrained in Y direction while the node at the

origin is constrained in all three directions. Moreover, x1 node is constrained in z-

direction while z1 node is constrained in the x-direction to eliminate any possible

rigid body rotation and ensure uniaxial tension.
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Figure 3.2: Boundary conditions for uniaxial tension simulation.

3.2.2 Boundary Conditions for Representative Volume Element Calculations

The boundary conditions for RVE calculations are adjusted such that RVE can imitate

the mechanical response of the material. Also, to simulate the uniaxial tensile loading

conditions stress triaxiality is enforced to remain constant at (T=1/3) throughout the

entire loading. The stress triaxiality is defined as ratio of the hydrostatic stress to to

the von Mises equivalent stress and can be written as,

T =
Σh

Σeq

(3.1)

where Σh and Σeq are the hydrostatic stress and von Mises equivalent stress, respec-

tively. Hydrostatic stress and equivalent von Misses stress are defined as,

Σh =
Σ11 + Σ22 + Σ33

3
(3.2)

Σeq =
1

2

√
(Σ11 − Σ22)2 + (Σ11 − Σ33)2 + (Σ33 − Σ22)2 (3.3)

With the imposed boundary conditions for the RVE analyses in this study, ratio of

the hydrostatic stress to equivalent stress results in 1/3 after the homogenization pro-

cedure. Therefore, the triaxiality is enforced to remain constant at 1/3 and all the
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surfaces of the RVEs are kept straight. To employ this boundary condition, first a

master node M is selected on (L1, L2, L3) cube RVE. The coordinate for this node

should be the (L1, L2, L3) as it is the corner of the RVE which enables us to couple the

displacements of the surfaces and the master node. Surface names and master node

on cube RVE with displacement directions are shown in Figure 3.3. Displacement

couple equations for master node and the surface can be written as

Figure 3.3: Location of master node and surfaces on RVE.

u1(0, x2, x3) + uM1 = 0 (3.4)

u1(L1, x2, x3)− uM1 = 0 (3.5)

u2(x1, L2, x3)− uM2 = 0 (3.6)

u3(x1, x2, 0) + uM3 = 0 (3.7)
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u3(x1, x2, L3)− uM3 = 0 (3.8)

Bottom surface of the RVE is fixed in terms of u2

u2(x1, 0, x3) = 0 (3.9)

With the above equations, every given displacement to node M is guaranteed to be

fully supplied to relevant unit cell surfaces. More information about RVE boundary

conditions covering other constant triaxiality values can be found in [61].

3.3 Homogenization

It is important to get a mesoscopic stress-strain response to analyze the results more

accurately. Homogenization methods are particularly suited to capture the mechanical

behavior of macroscopic scale from grain-scale calculations. The effective character-

istics of heterogeneous materials can be obtained in this manner (see e.g [55], [60],

[62], [63] for some examples in the literature).

This overall responses of RVEs can be obtained with the fundamental theorem of

homogenization,

Σij =
1

V

∫
V

σij dv with(i, j = 1, 2, 3) (3.10)

where Σij is the mesoscopic stress components of the RVE, σij is the microscopic

Cauchy stress, and V is the total volume of the representative volume element. As

a result, Σij is determined for an RVE by summing the microscopic Cauchy stresses

over each element with their associated integration points through

Σij =

∑N
m=1(

∑p
q=1 σ

q
ijv

q)m

V
(3.11)

where N is the number of elements, p is the total number of integration points and v

is the local volume at the integration point.
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3.4 Parameter Identification

For the identification of material parameters an artificial representative volume el-

ement (RVE) is generated through Voronoi tessellation using Neper software with

300 grains. The material data for AA6016 in T4 temper condition in [64] is consid-

ered and the stress-strain response is fitted to the ones from the RVE computations.

Symmetric boundary conditions with tensile loading which is explained in details in

boundary conditions part are imposed such that all surfaces of RVE are kept straight

and ensure that triaxiality values remain 0.33 (see e.g. [55]).

Cubic elastic parameters for aluminum sheet is taken asC11 = 108.2 GPa,C12 = 61.3

GPa and C44 = 28.5 GPa [65]. Reference slip rate γ̇0 is taken as 10−3 and rate

sensitivity exponent n is determined as 60 for analyses to be rate-independent as much

as possible. The ratio of latent hardening to self-hardening q is a constant for all

grains and taken as 1.4 considering strong latent hardening for aluminum (see e.g.

[51], [66]). After the identification process, the hardening parameters are obtained

as, initial hardening modulus h0 = 190 MPa, saturation slip resistance gs = 95 MPa

and initial slip resistance g0 = 47 MPa. Additionaly, three different simulations with

different sets of random orientations are conducted to verify the obtained hardening

parameters, see Fig. 3.4. For both parametrization and main analyses, the strain rate

is taken as 10−3.
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Figure 3.4: Comparison of stress strain responses of RVEs with fitted parameter and

experimental study presented in [64]
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3.5 Tensile Specimens

Tensile specimens are generated with 2 mm x 2 mm dimensions having varying thick-

nesses, see Table 3.1. Four example microstructures of the specimens are presented

in Fig. 3.7. Grain orientations are assigned randomly for each grain where Euler

ZYX convention is followed. The intervals for Euler angles are selected as ϕ[0 360],

θ[0 180],ψ[0 360].

(a) t/d = 0.3 (b) t/d = 0.48

(c) t/d = 0.62 (d) t/d = 0.88

Figure 3.5: Microstructures of specimens having different t/d values below 1.

The employed local plasticity cannot predict the intrinsic size effect due to varying

grain size. In order to include such effects a strain gradient crystal plasticity model

should be used (see e.g. [67], [68], [69]). The variation of both grain size and the

thickness makes the analysis complicated and it would be difficult to get a clear con-

clusion when both intrinsic and extrinsic size effect is active. Therefore as an initial

attempt we keep the grain size around a constant value and vary the thickness us-

ing a size-independent model. In this way the hardening parameters are naturally

kept constant in all simulations. The strategy of controlling the t/d ratio by changing
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Table 3.1: Dimensions and corresponding t/d ratios of examined specimens.

thickness (µm) mean grain diameter (µm) t/d ratio total number of grains

18 59 0.30 665

35 73 0.48 665

53 85 0.62 665

70 93 0.75 665

88 100 0.88 665

105 105 1 685

147 105 1.4 959

168 105 1.6 1096

189 105 1.8 1233

211 105 2 1370

232 105 2.2 1507

253 105 2.4 1644

274 105 2.6 1781

295 105 2.8 1918

316 105 3 2055

358 105 3.4 2329

400 105 3.8 2603

442 105 4.2 2877

484 105 4.6 3151

526 105 5 3425

568 105 5.4 3699

thickness is also conducted experimentally in literature (see e.g. [33], [70]). Note

that the CPFE model does not include the effect of grain boundaries directly. For

a more physical analysis where the influence of grain boundary orientation and the

misorientation between the grains are considered, a proper GB model should be in-

cluded in the modeling (see e.g. [68], [71]). In here the misorientation between the

neighbouring grains create a constraining effect anyhow due to the different plastic-
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(a) t/d = 1.6 (b) t/d = 2.4

(c) t/d = 3.4 (d) t/d = 4.2

Figure 3.6: Microstructures of specimens having different t/d values above 1.

ity evolution coming from the random orientation distribution. Therefore, the model

indirectly considers the effect of the grain boundaries with a limited capacity.

A mean grain size of 105 µm is considered for each specimen with t/d > 1. The

thickness of the specimens vary between 18 µm and 568 µm, which leads to t/d ratios

within an interval between 0.3 and 5.4. To capture the critical value of the t/d ratio,

the thickness is gradually increased until the increase in flow stress is almost levelled

off. In order to preserve the mean grain size, the number of grains is increased from

685 (t/d=1.0) to 3699 (t/d=5.4) by increasing the thickness. On the other hand, the

specimens having t/d ratio below 1 consist of 665 grains. Microstructures of these

specimens can be seen in Figure 3.5.
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(a) t/d = 0.3 (b) t/d = 1.0

(c) t/d = 2.2 (d) t/d = 4.6

Figure 3.7: Microstructures of specimens having different t/d values.

3.6 RVE Analyses for Morphological and Orientation Study

To represent different morphologies, different representative volume elements (RVEs)

are generated with 300 grains. The average aspect ratio of the grains is adjusted

such that the first RVE has equiaxed grains, while other RVEs have grains in the

shape of needles. Needle RVEs have the ratio of longer dimension to the shorter

dimension from 2 to 10, separately. Equiaxed, needle1, needle2 and needle3 RVEs

are shown in Fig. 3.8. These morphologies consist of grains with mean aspect ratios

of (1,1,1), (0.5,1,0.5), (0.25,1,0.25) and (0.1,1,0.1), respectively where the ratio of

longer dimension to the shorter dimension is gradually increased.

3.6.1 Crystal orientations for RVE Analyses

For the orientation of the grains, Euler ZYX convention is implemented. From the

local coordinate system to the global coordinate system, crystals of each grain are
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(a) (b)

(c) (d)

Figure 3.8: RVEs with different grain morphology; (a) Equiaxed, (b) Needle1, (c)

Needle2, (d) Needle3

assigned to have a set of Euler rotations. In the case of the RVEs with randomly

oriented grains, each grain has a unique set of Euler angles in the range of [0 360] for

X and Z rotation and [0 180] for Y rotation. This set of angles provides the required

randomness in terms of crystal orientation. Note that the local plasticity model used

in the current study does not account for the effect of the grain boundaries through a

specific model. Nevertheless, the crystal orientations are assigned randomly, so, there

are orientation differences between adjacent grains which create such an effect that

grains restrain each other from slip and rotation as if the model includes the grain

boundaries.

For the RVEs with orientation alignment, grain orientations are distributed randomly

within restricted intervals. Crystals are tilted around the building direction by impos-

ing X and Z rotations while the Y rotation is always kept at zero. For instance, being

oriented up to 10 degrees means an Euler transformation between local coordinates

to global coordinates in such a way that the X and Z rotations are restricted to the in-

terval of [-10 +10]. The rotation angles are selected randomly within their restricted

intervals. The aim is to provide an orientation alignment to the material around the
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building direction while preserving the polycrystalline characteristic.

3.6.2 Aligned Grain Orientations

To examine the orientation alignments clearly, a pole figure study is also conducted

for RVE calculations with different crystal orientation restrictions. Pole figure is a

way of graphical representation for analyzing the probability densities of grain orien-

tation in a medium. How to read these figures is explained in section 2.4.

For an easier comparison between RVEs with different orientation restriction a rela-

tion of resultant angle to the building direction (BD) is used which is called mean

resultant angle to BD. This mean resultant angle (MRA) relation can be calculated by

rotation matrix using Euler angles. The input for the rotation matrix is taken by the

average angle from the limits of the restriction and it is represented in Figure 3.9.

Figure 3.9: Corresponding α/2 for the mean angle of rotation for rotation restriction

between – α and + α

Calculation of MRA with rotation matrix is given by this relation


b1

b2

b3

 =


A11 A12 A13

A21 A22 A23

A31 A32 A33



x

y

z

 (3.12)
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where
A11 = cos(θ)cos(ψ),

A12 = cos(θ)sin(ψ),

A13 = −sin(θ),

A21 = −cos(ϕ)sin(ψ) + sin(ϕ)sin(θ)cos(ψ),

A22 = cos(ϕ)cos(ψ) + sin(ϕ)sin(θ)sin(ψ),

A23 = sin(ϕ)cos(θ),

A31 = sin(ϕ)sin(ψ) + cos(ϕ)sin(θ)cos(ψ),

A32 = −sin(ϕ)cos(ψ) + cos(ϕ)sin(θ)sin(ψ),

A33 = cos(ϕ)cos(θ)

and calculation of mean resultant angle to BD (MRA) becomes

MRA = arccos

(
A11 + A22 + A33 − 1

2

)
(3.13)

Examined pole figures of RVEs with different orientation restrictions are given in

Table 3.2.
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Table 3.2: Restricted intervals of RVEs with their corresponding mean resultant an-

gles.

Z Rotation Y Rotation X Rotation Mean Resultant Angle to the BD (MRA)

0 0 0 0

±1 0 ±1 0.7

±5 0 ±5 3.5

±10 0 ±10 7.1

±15 0 ±15 10.6

±20 0 ±20 14.1

±25 0 ±25 17.7

±30 0 ±30 21.2

±35 0 ±35 24.7

±40 0 ±40 28.2

±45 0 ±45 31.7

±50 0 ±50 35.2

±55 0 ±55 38.7

±60 0 ±60 42.2

±65 0 ±65 45.6

±70 0 ±70 49.1

±75 0 ±75 52.6

±80 0 ±80 56.0

±85 0 ±85 59.4

±90 0 ±90 62.8

±95 0 ±95 66.2

±100 0 ±100 69.6

±105 0 ±105 72.9

±110 0 ±110 76.2

±115 0 ±115 79.5

±120 0 ±120 82.8

±125 0 ±125 86.1

±130 0 ±130 89.3
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Figure 3.10: Pole figure for [-1 +1] & 0.7◦ MRA.

Figure 3.11: Pole figure for [-10 +10] & 7.1◦ MRA.

Figure 3.12: Pole figure for [-20 +20] & 14.1◦ MRA.

From Figure 3.10 to 3.20, distribution of crystal orientations are presented for differ-

ent random orientation intervals. It can be concluded from these figures, for RVEs

with more oriented along the building direction, less scatter is observed on the pole

figures. Concentration of orientations can be seen with red areas on the figures. For

RVEs with less oriented along the building direction, a more scattered drawing is ob-

tained. As the orientation interval increases, pole figures oriented RVEs get close to

RVE with fully random grain orientations.
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Figure 3.13: Pole figure for [-30 +30] & 21.2◦ MRA.

Figure 3.14: Pole figure for [-45 +45] & 31.7◦ MRA.

Figure 3.15: Pole figure for [-70 +70] & 49.1◦ MRA.

Another method for grain orientation alignment is applied. This time, grain orienta-

tions are arranged such that all the grains would have the same angle to the building

direction rather than having a restricted interval. The difference between this method

and the previously explained restricted interval is that when given a restricted interval,

grain orientations are alternating within their prescribed interval whereas this method

ensures all the grains have same mean resultant angle. For example, for the RVE with

grains having 10◦ to the building direction, all the grains are still oriented randomly,
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Figure 3.16: Pole figure for [-80 +80] & 56◦ MRA.

Figure 3.17: Pole figure for [-90 +90] & 62.8◦ MRA.

Figure 3.18: Pole figure for [-110 +110] & 76.2◦ MRA.

in other words, they have different amount of X and Z rotation but it is settled that

they all have the 10 degrees as the resultant angle. Analysed RVEs with grains hav-

ing corresponding angles are presented in Table 3.3. Pole figures of these RVEs are

shown from Figure 3.21 to 3.29.
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Figure 3.19: Pole figure for [-130 +130] & 89.3◦ MRA.

Figure 3.20: Pole figure for full randomly oriented RVE.

Table 3.3: Resultant angles of grains for different RVEs when all the grains having

same angle to BD is maintained .

RVE number Resultant Angle

1 5

2 10

3 20

4 30

5 35

6 40

RVE number Resultant Angle

7 50

8 60

9 70

10 75

11 80

12 90
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Figure 3.21: Pole figure for RVEs with all grains having 5◦ resultant angle.

Figure 3.22: Pole figure for RVEs with all grains having 10◦ resultant angle.

Figure 3.23: Pole figure for RVEs with all grains having 20◦ resultant angle.

41



Figure 3.24: Pole figure for RVEs with all grains having 30◦ resultant angle.

Figure 3.25: Pole figure for RVEs with all grains having 50◦ resultant angle.

Figure 3.26: Pole figure for RVEs with all grains having 60◦ resultant angle.
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Figure 3.27: Pole figure for RVEs with all grains having 70◦ resultant angle.

Figure 3.28: Pole figure for RVEs with all grains having 80◦ resultant angle.

Figure 3.29: Pole figure for RVEs with all grains having 90◦ resultant angle.
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CHAPTER 4

RESULTS AND DISCUSSIONS

Using the finite element models for micron size specimens and the representative

volume elements described in the previous chapter, numerical examples are provided

and the findings are discussed in this chapter. The results from the RVE analyses are

first shown in the context of morphology and orientation, and then micro specimen

results are shown in the context of thickness to grain size ratio effect.

4.1 RVE Analyses

Initially, the influence of the grain shape is addressed without considering the texture

effect. In order to analyze solely the effect of the grain morphology, the orientations

in all RVEs with different aspect ratios are assigned randomly. The CPFE simulations

are conducted by imposing 10% displacement both in the building direction and the

normal direction separately.

For both building and normal direction loading, the difference between constitutive

response of RVEs is found to be negligible, as shown in Fig. 4.1. Although the grains

are elongated gradually and reach a very columnar grain structure in needle3 case,

the stress curves of the needle RVEs are very similar to that of equiaxed RVE. Even

though the morphology has changed a lot, the crystal orientation of each grain is kept

fully random in all RVEs in this simulation set. Considering the local plasticity model

employed, the morphology itself did not make a significant difference. Morphologic

differences without corresponding crystal orientation alignment are proven to be not

much influential in the current numerical analysis. The possible usage of a strain

gradient crystal plasticity model (see e.g. [67], [68], [69]) would be quite problematic
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Figure 4.1: Stress versus strain response for different microstructures with random

orientations loaded in building and normal directions.

in this case due to the change in the mean grain size. Such a change would give non-

physical results with considerable hardening.
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Figure 4.2: Stress versus strain response for different microstructures loaded in build-

ing (BD) and normal direction (ND).

To have more realistic microstructures, the crystal orientations are assumed to be

evolved with the elongation of the grains, i.e. aligned in the building direction. For the

reference state unrestricted, fully random, orientations are assigned to the RVE with

equiaxed grains. Then, the orientations are gradually restricted in narrower intervals

as grains are more elongated along the building direction. Both X and Z rotations
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are restricted in [-90 +90], [-30 +30] and [-10 +10] intervals for RVEs called needle1

needle2 and needle3, respectively.

Fig. 4.2 demonstrates the stress versus strain response of RVEs having equiaxed and

needle grains with corresponding orientation alignments. The first observation is that

RVEs with elongated and textured grains possess weaker stress response compared

to the RVE with randomly oriented equiaxed grains. For the textured RVEs, when

the interval of orientation is kept in a narrower range, the orientations of individual

grains become closer to each other. Since grains are oriented similarly, the indirectly

imposed effect of the grain boundaries (misorientation) becomes more difficult to

observe, especially for needle3. Since the the influence of the grain boundaries is still

valid for the RVEs with the randomly oriented grains, they show higher resistance

to the plastic deformation. Also, as illustrated in Fig. 4.2a, needle2 shows different

responses for loadings in building and normal directions. Having grain orientations

restricted in [-30 +30] interval, needle2 presents an anisotropic behaviour. On the

other hand, randomly oriented RVE shows similar responses in both directions due to

its isotropic structure. Likewise, as shown in Fig. 4.2b, strongly oriented needle3 also

possesses similar responses for building and normal directions, but the reason for that

is the crystal symmetry since the rotation angles are very small.
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Figure 4.3: Stress versus strain response for microstructures with different morpholo-

gies and orientation alignment.

Stress-strain response curves of all RVEs are illustrated in Fig. 4.3 for loading along
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the building and the normal directions, separately. For both cases, the strongest re-

sponse is obtained for the RVE with randomly oriented equiaxed grains. As the grains

are more elongated and crystal orientations are further restricted, the stress response

is decreased. For the normal direction loading, the stress response of needle2 is lower

than the response of needle3, due to the plastic anisotropy observed in needle2, as

discussed earlier.
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(a) Von Mises stress distribution of equiaxed RVE
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(c) Von Mises stress distribution of needle2 RVE
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(d) Von Mises stress distribution of needle3 RVE

Figure 4.4: Von Mises stress distribution for different microstructures loaded in the

building direction.

Von Mises equivalent stress contours for building and normal direction loadings are

shown in Figs. 4.4 and 4.5 respectively. The lower stress response for RVEs with

elongated and oriented grains can also be observed in von Mises stress distributions.

Moreover, as the orientation alignment is increased, due to the diminishing of the

misorientations between neighboring grains, more homogeneous stress distribution is

observed in Figs. 4.4d and 4.5d.
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(c) Von Mises stress distribution of needle2 RVE
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(d) Von Mises stress distribution of needle3 RVE

Figure 4.5: Von Mises stress distribution for different microstructures loaded in the

normal direction.
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(d) Von Mises stress distribution of RVE with [-

125 +125] & 86.1◦ MRA orientation restriction

Figure 4.6: Von Mises stress distribution for equiaxed morphology RVEs with differ-

ent orientation restrictions.

After concluding that, the effect of morphology does not have a significant impact

without the orientation alignment, a more comprehensive study is conducted about

the orientation alignments with equiaxed RVEs. The stress results for 0.1 strain are

given in Figure 4.7. Change in stress results shows similar trend with the experimental

studies in literature. It can be seen from the figure that, stress result reaches maximum

nearly 45 degree MRA about the building direction. Blue line on the figure indicates

the result of RVE with full randomly oriented grains.

The study by giving random orientation to grains while maintaining that they will

have same amount of resultant angle to building direction is conducted. True stress

results are plotted in Figure 4.8. Similiar trend in Figure 4.7 can be observed. How-

ever, with this method a greater stress variation is observed.
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Figure 4.7: Stress vs Mean Resultant Angle for RVEs with restricted grain orienta-

tions at 10% displacement.

Figure 4.8: Stress vs Resultant Angle for RVEs with grains having exact resultant

angle at 10% displacement.

4.2 Tensile Specimen Results for t/d Effect

In the simulations, a general trend of increase in flow stress with increasing t/d ratio

is observed, which is obtained solely through thickness increase. In this analysis the
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number of grains should be increased to see the influence of higher t/d ratios. Even

though the total grain number is increased, the number of grains at the free surfaces

stays nearly constant for all t/d ratios. Therefore, the ratio of the surface grains to

all grains decreases for increasing t/d. As discussed previously, higher the surface

grain ratio weaker the stress response. The results presented in Fig. 4.9 confirm this

simple relation where the flow stress increases with increasing t/d and with decreasing

surface grain ratio. At t/d equals 1, almost all grains are surface grains and the stress

response is lowest among the other specimens having higher t/d. In Fig. 4.9a, it

can be observed that flow stress increases rapidly with increasing t/d but then the

rate of increase slows down. Fig. 4.9b shows that the increasing trend in flow stress

diminishes for higher t/d ratios and the results converge to a single curve, which is

expected for a polycrystalline material.

(a) Engineering stress-engineering strain curves

of specimens having t/d below 3

(b) Engineering stress-engineering strain curves

of specimens having t/d above 3

Figure 4.9: Engineering stress-engineering strain curves for specimens having differ-

ent t/d ratios at 10% displacement.

To get a better comparison with the experimental behavior shown in Fig. 1.4, the flow

stress values at different macroscopic strains are plotted for specimens having differ-

ent t/d values in Fig. 4.10. In the experimental studies, flow stresses do not change

much for specimens with t/d < 1. When the ratio is increased further until the critical

value, flow stresses are observed to be increasing rapidly. Above the critical value,

the increase slows down and similar flow stress values are recorded for higher t/d ra-
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Figure 4.10: Flow stress values at different strains of specimens having different t/d

ratios.

tios. In the current numerical study, the most obvious difference with experiments is

obtained for t/d < 1 where a considerable increase in flow stresses occur. One of the

reasons is that, in our simulations, the imposed boundary conditions make the spec-

imen deform homogeneously, therefore it delays the localization. Another reason is

that, even though the surface grain ratios are similar, the amount of grain boundaries

changes dramatically for these specimens. Moreover, the most important reason is

that in the calculations the same hardening parameters are used for each specimen.

Yet, while specimens with t/d > 1 have the same mean grain size, the specimens with

t/d < 1 show decreasing grain size behavior with decreasing t/d ratio. If hardening

parameters were adjusted according to the grain sizes, or if a size dependent crys-

tal plasticity model was employed, which would lead to a harder response, then the

results would be similar for t/d < 1 to the experimental observations.

The flow stress response shows a steep increase for t/d between 1 and a critical value

compared to the response at higher t/d ratios which converge to polycrystalline be-

havior. Fig. 4.10 shows that the critical value corresponds to around 2. Between 1

and the critical value, the numerical study resulted in a similar trend with the exper-

imental results. Starting from t/d = 1, as the ratio is increased, the grain boundaries

parallel to the loading direction start to emerge. These GBs contribute to the resis-

tance of the material to plastic deformation. The difference between flow stresses is
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not high compared to the experimental studies. The main reason is that the local crys-

tal plasticity method does not include the effect of the grain boundaries directly as

it was explained in the simulations section. Yet, there is a distinguishable evolution

that constitutes observable trends. The influence of the boundary conditions which

leads to same homogeneous behavior in all specimens could influence the difference

between the experiments and the numerical results. While in experimental studies

the thinner specimens start to localize earlier, here there is no difference in that re-

gard due to homogeneous behavior. As stated previously, the increase in flow stress

diminishes after the critical value. The findings of the simulations are parallel to the

experiments. For these specimens, at least 2 grains are present through thickness and

all grains have at least one horizontal grain boundary. Therefore, newly formed grain

boundaries do not create a significant difference in flow stress. As the t/d ratio fur-

ther exceeds the critical value, the mechanical response approaches to that of the bulk

specimen and the effect of having few grains per thickness disappears.

The von Mises stress distributions of some specimens with t/d ratios below 1 is shown

in Figure 4.11 and some specimens with t/d ratios above 1 is shown in Figure 4.12.

To get a better outlook, the von Mises stress distributions of specimens with different

t/d ratios from different t/d intervals are shown in Fig. 4.13. The difference in stress

distribution is apparent especially on the lateral (thickness) surface. As the t/d ratio

increases, a general increase in the von Mises stress values is apparent. The emer-

gence of new GBs can be observed by examining the stress variation along the upper

and lateral surfaces.
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(d) t/d = 0.88

Figure 4.11: Von Mises stress distribution of specimens having different t/d ratios

below 1 at 10% displacement.
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(d) t/d = 4.2

Figure 4.12: Von Mises stress distribution of specimens having different t/d ratios

above 1 at 10% displacement.
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(d) t/d = 4.6

Figure 4.13: Von Mises stress distribution of specimens having different t/d ratios at

10% displacement.

57



58



CHAPTER 5

CONCLUSIONS

In this work, the crystal plasticity finite element method is initially employed to as-

sess the effect of anisotropic grain structure with orientation alignments on the macro-

scopic behavior of additively manufactured metallic materials following a multi-scale

approach. Then the influence of the of thickness to grain size ratio on micron size ten-

sile specimens is addressed. The conclusions obtained from the RVE analysis and the

full size micron tensile specimens are presented separately below with outlooks.

5.1 RVE Analyses for Anisotropic Grain Structure

With RVE analyses the mechanical behavior of the microstructures with columnar

grains which are observed in additively manufactured metallic products is investi-

gated through a crystal plasticity framework. Firstly, the sole effect of morphology

is studied by modeling the RVEs with different degree of columnar structure having

randomly oriented grains, however the difference between the constitutive responses

is found to be negligible. After that, columnar grain structure and the correspond-

ing orientation alignment are numerically modeled to assess the constitutive response

and the anisotropy due to additive manufacturing. Step by step, the grains are elon-

gated and the orientations are restricted around the building direction to analyze the

anisotropy at different levels. After assigning the corresponding restricted orienta-

tions to the morphologies, a significant difference occurs between flow stresses of

RVEs with equiaxed and columnar grains for both building and normal direction load-

ing. The stress response weakens as grains become more columnar. RVEs with grains

oriented around the building direction demonstrates that when the orientation of each
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grain is assigned in a similar direction, the misorientation of the neighboring grains

diminishes.

A more comprehensive study about the grain orientation restriction showed that there

is significant change in stress responses with varying mean resultant angle. As the

mean orientation angles come close to 45 degree, resistance to plastic deformation

gets stronger. Mean orientations beyond the 45 degree, flow stresses starts to result

in lower values. Since the misorientations indirectly impose the effect of the grain

boundaries, oriented RVEs show different mechanical responses. The numerical re-

sults agree qualitatively with the literature (see e.g. [28], [72]). Final crystalline

structure of additively manufactured products have significant importance in terms of

mechanical properties.

Note that the current study considers solely the influence of the grain morphology

and the induced lattice allignment on the macroscopic anisotropic response through a

local crystal plasticity model which cannot predict the size effect. However the evolu-

tion of such elongated grain structure raises the question of the mean size of the grains

and related size effect which should be addressed through a nonlocal crystal plasticity

framework. Moreover the current work does not include the influence of the poros-

ity evolving during the additive manufactiuring processes. In order to understand the

effect of the microstructure the cavities should be incorporated as well.

5.2 t/d Effect on Full Size Micron Specimens

The macroscopic response of the specimens are compared with the experimental find-

ings in the literature in a qualitative manner. For specimens with thickness to grain

size ratio t/d < 1, the numerical results were not in an agreement with the experiments.

Significant differences between flow stresses of the specimens were observed even

though similar values were recorded in experimental studies. The most important

reason was the same hardening parameters being used for specimens with different

mean grain sizes, which would naturally decrease in the t/d < 1 regime. A more ac-

curate study can be conducted in the future with appropriate hardening parameters or

by employing a strain gradient crystal plasticity model which would take into account
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the intrinsic size effect would naturally decrease in the t/d < 1 regime.

For t/d > 1, flow stresses increase rapidly until the critical value. The critical value

is found to be approximately 2. The rapid increase was a result of the development

of the GBs parallel to the loading direction. The trend is in line with the empirical

tests in literature, yet the differences between flow stresses were lower in simulations

compared to the experiments due to the employed local crystal plasticity model which

cannot include the direct effect of the GBs. Further increase in the t/d ratio, above

the critical value, slows down the increase in flow stress. Since there is already a

considerable amount of GBs parallel to the loading direction, newly formed GBs

do not make a substantial contribution to the resistance to deformation. Moreover,

for specimens with higher t/d ratios, the specimens can no longer be treated as thin

specimens and the behavior converges to the polycrystalline one.
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[54] Ö. Kahveci, C. Gençoğlu, and T. Yalçinkaya, “Experimental analysis and mul-

tiscale modeling of the dynamics of a fiber-optic coil,” Sensors, vol. 22, p. 582,

2022.

68



[55] T. Yalçinkaya, S. O. Çakmak, and C. Tekoğlu, “A crystal plasticity based finite
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