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1 INTRODUCTION 

1.1 Abstract 

This document is the final activity report of the EU research project MACS. Within the 
MACS project, six partners from Germany, Austria, Sweden and Turkey have investigated a 
new way for controlling a mobile robot with manipulation capabilities by adapting a concept 
from Cognitive Science. 

In this final project report, we present the MACS approach to affordance-inspired robot con-
trol. An affordance, a concept from Ecological Psychology, denotes a specific relationship 
between an animal and its environment. Perceiving an affordance means perceiving an inter-
action possibility that is specific for the animal’s perception and action capabilities. Perceiv-
ing an affordance does not include appearance-based object recognition, but rather feature-
based perception of object functions. The central hypothesis of MACS is that an affordance-
inspired control architecture enables a robot to perceive more interaction possibilities than a 
traditional architecture that relies on appearance-based object recognition alone. We describe 
how the concept of affordances can be exploited for controlling a mobile robot with manipu-
lation capabilities. Particularly, we describe how affordance support can be built into robot 
perception, how learning mechanisms can generate affordance-like relations, how this affor-
dance-related information is represented, and how it can be used by a planner for realizing 
goal-directed robot behaviour. We present both the MACS demonstrator and simulator, and 
summarise development and experiments that have been performed. By interfacing perception 
and goal-directed action in terms of affordances, we provided a new way for reasoning and 
learning to connect with reactive robot control. We show the potential of this new methodol-
ogy by going beyond navigation-like tasks towards goal-directed autonomous manipulation in 
our project demonstrators. 

1.2 Purpose 

This document is the final activity report of the EU research project MACS. MACS is a spe-
cifically targeted research project that has been carried out between September 1, 2004 and 
November 30, 2007. MACS has been partly funded by the European Commission within their 
Sixth Framework Research Programme (FP6) under contract number FP6-004381. Within 
FP6, MACS contributed to the priority Information Society Technologies (IST) and its strate-
gic objective “Cognitive Systems”. 

1.3 Contractors involved 

The co-ordinator of the MACS project is the Fraunhofer Institute for Intelligent Analysis and 
Information Systems in Sankt Augustin, Germany (FhG/AIS). FhG/AIS provides expertise in 
mobile robotics, control architectures, AI, sensor systems and biologically motivated percep-
tion. Joanneum Research, from Graz, Austria (JR_DIB), combines know-how in cognitive 
visual perception systems and in machine learning. Linköpings Universitet, Sweden (LiU-
IDA), contributes know-how in AI, knowledge representation and robotics. Middle East 
Technical University, Ankara, Turkey (METU-KOVAN), provides its know-how in the simu-
lation of robotic systems and in control architectures. Cognitive science and learning methods 
are the research topics of OFAI, Österreichische Studiengesellschaft für Kybernetik, Vienna, 
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Austria. The University of Osnabrück, Germany, (UOS) contributes expertise in AI planning, 
knowledge-based systems, and Robotics. A more detailed description of the consortium can 
be found in Annex B1.3. 

1.4 Authors 

Erich Rome Fraunhofer IAIS Sankt Augustin DE 
Lucas Paletta Joanneum Research Graz AT 
Erol ahin Middle East Technical University Ankara TR 
Georg Dorffner Österreichische Studiengesellschaft für Ky-

bernetik 
Vienna AT 

Joachim Hertzberg Universität Osnabrück Osnabrück DE 
Christopher Lörken Universität Osnabrück Osnabrück DE 
Ralph Breithaupt Fraunhofer IAIS Sankt Augustin DE 
Stefan May Fraunhofer IAIS Sankt Augustin DE 
Gerald Fritz Joanneum Research Graz AT 

Emre Uğur  Middle East Technical University Ankara TR 

1.5 Document Structure 

The remainder of this document is structured as follows. We start with motivating our ap-
proach and give a general introduction to the concept of affordances and how it can be util-
ized for robot control. 

In the next section, we will describe the initial overall objectives of MACS. Subsequently, we 
will give an introduction to the central notion of ‘affordances’ and the main theses of the area 
of Ecological Psychology. In the main technical section of the document, we present our ad-
vances in formalising, perceiving, learning and representing affordances, describe the way our 
affordance-inspired robot control architecture works, and summarise the experiments that we 
have performed. We conclude with summarising our contribution to the covered research 
fields, with some general conclusions and recommendations for future work in the area of 
affordance-inspired robots. Appendices contain bibliographical references, basic facts of the 
project, a detailed presentation of the contractors, a list of publications, lists of other dissemi-
nation activities, and a glossary of terms and definitions. 
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2 MOTIVATION 

Research and development in mobile robotics has made significant progress in the last dec-
ade. Some robots have entered mass production, like the Roomba (Fig. 1(a)), a floor cleaning 
robot, and some of its smarter colleagues. Some research prototypes expose impressive spe-
cialised skills, like the winner of the Grand Challenge contest in the USA. Stanley (Fig. 1(b)), 
a robotic car, travelled 150 miles in below 7 hours, controlled only by a computer program. 

(a)    (b)  
Fig. 1 (a) Roomba, floor-cleaning robot by iRobot. (b) Winner of Grand Challenge 2005: Stanley 

But in general, mobile robots are still not suited for everyday use. The goal of deploying a 
sophisticated mobile robot to a human environment has not yet been accomplished. Particu-
larly, robust mobile interaction and manipulation capabilities are yet to be developed. A mo-
bile manipulating robot would clearly benefit from abilities to solve some real-world, every-
day problems. 

Let us give an example for the type of problem solving we address: Imagine yourself sitting at 
a table in a street café. On the table, there is a glass, a bottle of water, a coffee cup, a menu 
stand, an ashtray and some loose sheets of paper from a printed article. A light wind comes up 
and the sheets are in danger to be blown away. To prevent this, you need a paperweight. Un-
fortunately, you do not carry your nicely designed paperweight with you. Typically, you 
would use one of the other items on the table to function temporarily as a paperweight, for 
instance, the glass. Of course, you could as well use any of the other items on the table. A 
little while later the wind slows down, you notice that you are still a bit thirsty, and you drink 
from the glass, knowing that it is currently not needed as a paperweight. 

This example shows that we can solve an everyday problem by improvising, namely by using 
an item in a way that it was not particularly created for. It also shows that we are able to iden-
tify interaction possibilities in our environment and that we can select and act upon such in-
teraction possibilities depending on our current goals. 

The cognitive ability to use objects in a variety of ways and to find alternative solutions for a 
given task would be a great benefit for a service robot. The described abilities are attributed to 
the practical aspect of intelligence, which is not yet well understood. So how can we incorpo-
rate an ability like the one described in a technical system? Or, to be more specific: How can 
we design a “cognitive” mobile robot system with manipulation capabilities that can, e.g.,  

• find alternative solutions for a given task,  
• interact with known and unknown objects in a meaningful and goal-directed way, and  
• uses perception methods that are tailored for its tasks and its action capabilities, i.e. that 

are grounded in its actions? 

A valid approach is to draw inspiration from cognitive science. For MACS, we have chosen 
Ecological Psychology as a starting point. One of the founders of Ecological Psychology, J.J. 
Gibson, has created the notion of ‘affordances’, an artificial noun. It denotes the specific in-
teraction possibilities that the environment offers a particular animal. J.J. Gibson defined an 
affordance as a resource or support that the environment offers an animal for action, and re-
quired that the animal be able to directly perceive and employ it [1]. Gibson claimed that the 
animal is in a specific relation to its environment, which formed the basis of the concepts of 
‘situatedness’ and ‘embeddedness’ that are used in several sub-areas of Cognitive Science, 
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like embodied embedded cognition and situated cognition. The concept of affordances has, 
since its conception, proven to have a strong appeal in a wide range of fields, ranging from 
design [2] and neuroscience to robotics. In robotics and artificial intelligence, affordances 
offer an original perspective on coupling perception, action and reasoning. 

Although J.J. Gibson did not provide a formalisation of the affordance concept, he character-
ized the concept in his works, and its most important properties shall be mentioned here. 

1) Affordances are specific to animals and their action and perception capabilities, and to 
their body sizes as well. The same object can offer different affordances to different ani-
mals, as depicted in Fig. 2. 

throw

use as tool

kick and hurt toe

hide,
climb

hide prey

(a)

(b)

(c)

 
Fig. 2 The same object, here a fist-sized stone, offers different affordances to different animals. For 

an adult healthy human, it offers the affordance of throwing it, or to use it as a tool, to name 
just two. For a mouse, it offers the affordances to hide behind it or to climb on top of it, and for 
a cat it offers the affordance of hiding prey. 

2) Affordances include utilities or functions of things in the world.  

3) Affordances can be described by abstract features. Things in the environment that offer a 
human the possibility to sit upon them (affordance ‘sitability’) are typically horizontal, 
knee-high stable surfaces of a certain minimum size (cf. Fig. 3). 

 
Fig. 3 Opportunities to sit offered by different entities in the environment (affordance of being “si-

table”). 

4) Affordances need not necessarily be labelled. If a human knows what to do with a thing, it 
can use it, regardless of its name. However, it should be noted that many words in our 
languages are related to action and to haptic experience (like “to grasp something”). 
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5) Affordances are perceived directly, no mental representation is required. This claim of 
Gibson’s, called ‘direct perception’, is the mostly debated part of his theory of affor-
dances. We will get back on this later. 

How do affordances relate to ‘objects’ (which could be described as coherent entities or 
things)? Objects and affordances are complementary in the sense that one object class may 
offer a multitude of affordances, and one affordance may be offered by a multitude of object 
classes.  

This complementarity of the object and the affordance notions can allow a robot a greater 
flexibility for performing tasks. A robot system that uses object-centred perception may need 
to abort a mission if objects of a certain class that are required to reach a (sub-)goal are not 
available. In those cases where an affordance (like a function) of this object is more important 
than its sensorial appearance, affordance-based perception may be more appropriate, since it 
allows the robot to perceive and use objects with the same function that belong to a com-
pletely different object class, that is, it helps finding alternatives for action. 

So, intuitively, this concept seemed to be suited to form a basis for modelling the type of abil-
ity that we were looking for in MACS. However, before we could use it, there were three dif-
ficulties that needed to be overcome. First, Gibson elaborated much on perceiving affor-
dances, but little on using or learning them. Second, Gibson did not provide a suited formali-
sation of affordances that could directly be employed for implementation in a technical sys-
tem. And third, Gibson’s claim of direct perception and lack of representations of affordances 
seemed to be insurmountable barriers for an implementation. But if affordance support cannot 
be explicitly built into a technical system X, then the behaviour of X can just merely be de-
scribed in terms of affordances, and nothing is gained. 

How did we overcome these difficulties? Let us start with some findings that we employed. 

1) Although affordances are always there in the environment, we do not perceive them all at 
once. We have some filter mechanisms that prevent us from being flooded by affordances. 
The selection of the affordances that we act upon is, among other things, dependent on our 
current goals or motivations. For example, if we walk through a city and get hungry, then 
we are actively looking for restaurants and other opportunities to eat. If we walk through a 
city and get tired, we will be looking for opportunities to sit. 

2) If we perceive an affordance, we do not always automatically act upon that affordance 
[14]. Instead, an act of will might be involved as well. 

3) Affordances can be learned [23]. This holds for natural things, like learning to use a flint 
stone for making fire, and even more for technical systems. The affordances of an airplane 
cockpit cannot just be perceived, they must be taught, trained and memorized. 

Our conclusion was: If we want to make use of affordances in a technical system in a goal-
directed way, and if we want to reason about affordances, then we must represent them ex-
plicitly. And an explicit representation of affordances would benefit from a formalisation. 

Since research on affordances has been continued until today, there were, of course, newer 
results that we inspected, too. Stoffregen [84] and Chemero [3] defined affordances as rela-
tions within the organism-environment system. We created an own formalisation that in gen-
eral followed this idea. Our own ‘agent affordances’—we chose this name to distinguish them 
from Gibson’s original formulation of the concept—are represented as relations between fea-
tures of the environment, the sequence of actions (‘behaviour’) that a mobile robot can per-
form on an affordance, and the outcome of these actions. 

After we had resolved these difficulties, we were able to design an affordance-inspired con-
trol architecture for utilizing the concept of agent affordances. The architecture computes 
primitive features in a bottom up manner from the robot’s sensory input. In an exploration 
phase, the robot can interact with its environment, and a learning module acquires knowledge 
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about affordances and functions within the robot’s environment. This knowledge is repre-
sented and stored for goal-directed usage.  

In an application phase, the robot can goal-directedly act upon affordances. The robot can use 
knowledge about affordances for creating plans. These plans consist of a sequence of naviga-
tion and manipulation tasks descriptions, called operators. The plans are executed by invok-
ing some basic robot control routines, the behaviours. The execution is monitored by the exe-
cution control module. The execution control module uses the abstract features of an affor-
dance representation as cues for the presence of affordances in the environment. These cues 
function as a matched filter that prevents the robot from perceiving all affordances at once. 

The architecture has been tested both in simulation and in a real demonstration test-bed in-
cluding the mobile robot KURT3D with its basic manipulation capabilities. A physics-based 
simulator has been developed and employed for preliminary and for mass experiments. Some 
results achieved in simulation could be transferred to the real robot with only little changes 
required. Both facilities and some of the experiments are described in the main section 4. 

 

 

3  MACS OBJECTIVES AND OVERALL METHODOLOGY 

3.1 MACS Objectives 

The main objective of the MACS project was to explore and exploit the concept of affor-
dances for the design and implementation of autonomous mobile robots acting goal-directedly 
in a dynamic environment. The aim was to develop affordance-inspired control as a method 
for robotics. That involved making affordances a first-class concept in a robot control archi-
tecture. By interfacing perception and action in terms of affordances, the project aimed to 
provide a new way for reasoning and learning to connect with reactive robot control. The po-
tential of this new methodology should be shown by going beyond navigation-like tasks to-
wards goal-directed autonomous manipulation in the project demonstrators. All over, MACS 
aimed at embedding its technical results into cognitive science.  

In MACS, there is explicit support for the affordance concept in the robot control architecture 
and the hypothesis was that the resulting performance of the robot will benefit in terms of 
robustness and generality. In fact, these are essentially the only criteria that can be used to 
evaluate empirically whether an affordance-based robotic system is better than a non-
affordance-based one.  

The main result of MACS should be a working, integrated robot system, based on the 
KURT3D robot, that serves as a proof of concept for the affordance-inspired robot control ap-
proach. Other results of the project should be a formal theory, a dedicated simulation envi-
ronment, a specifically tailored learning approach for generating affordance representations, 
an affordance-based planner, feature extractors and other software for function-centred per-
ception, plus dissemination of the results. In the conclusion, we will describe our achieve-
ments with respect to these initial objectives. 

3.2 Affordances in Ecological Psychology 

J.J. Gibson (1904–1979) is one of the most influential psychologists of the 20th century, who 
aimed to develop a ‘theory of information pick-up’ as a new theory of perception. He argued 
that an organism and its environment complement each other and that studies on the organism 
should be conducted in its natural environment rather than in isolation, ideas that later formed 
the basic elements of Ecological Psychology. The concept of affordance was conceived 
within this context. 
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Based on his studies of meaningful optical variables1 and the Gestaltist conception of imme-
diate perception of meanings of the things, J.J. Gibson built his own theory of perception and 
introduced the term affordance to refer to the action possibilities that objects offer to an or-
ganism, in an environment. The term affordances first appeared in his 1966 book [5], and is 
further refined in his later book [1]. In this book, the description of the affordance concept 
was discussed in a complete chapter, which generally laid out the fundamental aspects of 
affordances: 

“The affordances of the environment are what it offers the animal, what it pro-
vides or furnishes, either for good or ill. The verb to afford is found in the dic-
tionary, but the noun affordance is not. I have made it up. I mean by it something 
that refers to both the environment and the animal in a way that no existing term 
does. It implies the complementarity of the animal and the environment.” (J.J. 
Gibson, 1979/1986, p. 127) 

J.J. Gibson believed that affordances were directly perceivable (a.k.a. direct perception) by 
the organism, thus the meaning of the objects in the environment were directly apparent to the 
agent acting in it. This was different from the contemporary view of the time that the meaning 
of objects were created internally with further ‘mental calculation’ of the otherwise meaning-
less perceptual data. 

The discussions on the perception of object affordances naturally had some philosophical 
consequences on the much debated object concept. 

“The theory of affordances rescues us from the philosophical muddle of assuming 
fixed classes of objects, each defined by it common features and then given a 
name. ...You do not have to classify and label things in order to perceive what 
they afford.” (J.J. Gibson, 1979/1986, p. 134) 

Gibson goes on to state that 

“... But this does not mean you cannot learn how to use things and perceive their 
uses.” ([1], p. 134). 

And earlier: 

 “... If you know what can be done with a graspable detached object, what it can 
be used for, you can call it whatever you please.” ([1], p. 134). 

Thus, objects and affordances are complementary in the sense that one object class may offer 
a multitude of affordances, and one affordance may be offered by a multitude of object clas-
ses. 

J.J. Gibson’s view of studying organism and environment together as a system (including the 
concept of affordance) has been one of founding pillars of Ecological Psychology. Following 
the formulation of the theory of affordances, the Ecological Psychology community started to 
conduct experiments in order to verify that people are able to perceive the affordances of the 
environment and to understand the mechanisms underlying this perception. These experi-
ments ([6]–[11]) aimed at showing that organisms (mostly human) can perceive whether a 
specific action is do-able or not-do-able in an environment. This implies that what we per-
ceive are not necessarily objects (e.g. stairs, doors, chairs), but the action possibilities (e.g. 
climbable, passable, sittable) in the world. Although the number of these experiments is quite 
high, the diversity in them is rather narrow. They constitute a class of experiments character-
ized by two main points: taking the ratio of an environmental measure and a bodily measure 

                                                
1 For example optical centre of expansion of the visual field was such an optical variable which was meaningful 
for a pilot trying to land a plane, indicating the direction of the glide, and helping him to adjust the landing be-
haviour. 
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of the human subject; and based on the value of this ratio, making a binary judgment of 
whether a specific action is possible or not. 

The first point gives us a clue about how the experimenters interpreted affordances. Since 
affordances were roughly defined as the properties of the environment taken relative to the 
organism acting in it, the effort was to show that the ratio between an environmental measure 
and a bodily measure of the organism have consequences for behaviour. This ratio must also 
be perceivable, so that the organism is aware of this measure which, in a way, determines its 
behaviour’s success. 

Warren’s stair-climbing experiments [6] have generally been accepted as a seminal work on 
the analysis of affordances, constituting a baseline for later experiments which seek to under-
stand affordance-based perception. In these studies, Warren showed that organisms perceive 
their environment in terms of intrinsic or body-scaled metrics, not in absolute or global di-
mensions. He was able to calculate the constant, so called  proportions, that depend on spe-
cific properties of the organism-environment system. There exists one such ratio per each 
affordance, and they solely depend on the functionally relevant variables of corresponding 
actions. For instance, a humans judgment of whether he can climb a stair step is not deter-
mined by the global dimension of the height of the stair step, but by its ratio to his leg-length. 

In [7], Warren and Whangs showed how the perception of geometrical dimensions such as 
size and distance is scaled relative to the “perceived eyeheight” 2 of the perceiver, in an envi-
ronment where the subjects were to judge the affordance of walking through an aperture. 
Marks’ surface sitting and climbing experiments [8] also incorporated a similar approach. 
Some of these studies ([9],[10]) criticized former studies because they limited themselves to 
only one perceptual source, namely visual information. Instead of limiting themselves to vis-
ual perception, they studied haptic perception in infant traversability of surfaces and critical 
slant judgment for walking on sloped surfaces. While in these experiments human subjects 
were asked to judge whether a certain affordance exists or not in a static environment, Chem-
ero [11] conducted other experiments, in order to prove that changes in the layout of affor-
dances are perceivable in dynamic environments, and found out that the results are compati-
ble with critical ratio values. Another important work is Oudejans et. al.’s [12] study of 
street-crossing behaviour and perception of critical time-gap for safe crossing. This work is 
novel since it shows that not only static properties of the organism, but also its dynamic state 
is important when deciding on its actions. 

An overview of the mentioned experiments shows that they are mostly focused on the percep-
tion aspect of affordances. Other cognitive processes such as learning, high level reasoning 
and inference mechanisms are not the subjects of these experiments, and the link between 
affordances and these higher level processes is not discussed. 

 

 

4 WORK PERFORMED AND RESULTS 

4.1 Affordance-inspired robot control architecture 

a. Related Work 

The concept of affordances is highly related to autonomous robot control and influenced stud-
ies in this field. We believe that for a proper discussion of the relationship of the affordance 
concept to robot control, the similarity of the arguments of J.J. Gibson’s theory and reac-
tive/behaviour-based robotics should be noted first.  

                                                
2 In [7], eyeheight is defined as the height at which a person’s eyes would pass through the wall while walking 
and looking straight in a natural and comfortable position. 
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The concept of affordances and behaviour-based robotics emerged in very similar ways as 
opposing suggestions to the dominant paradigms in their fields. J.J. Gibson constructed his 
theory based on the criticism of the then dominant theory of perception and cognition, which 
favoured modelling and inference. Likewise, behaviour-based robotics was motivated by the 
criticism of the then dominant robotic architectures, which favoured modelling and inference. 
This parallelism between the two fields suggests that they are applications of the same line of 
thinking to different domains ([13], p. 244; [14]). Opposing to modelling and inference, J.J. 
Gibson defended a more direct relationship between the organism and the environment and 
suggested that a model of the environment and costly inferential processes were not needed. 
In a similar vein, behaviour-based robotics advocated a tight coupling between perception and 
action. Brooks, claiming that “the world is its own best model”, suggested an approach that 
eliminated all the modelling and internal representation [15]. As a result, one can see the un-
derlying concepts of affordances in existence in robot control architectures such as subsump-
tion architecture [16], the robot-schema architecture [17] and AuRA [18]. 

Some roboticists have already been explicitly using ideas on affordances in designing behav-
iour-based robots. For example, Murphy [19] suggested that robotic design can benefit from 
ideas in the theory of affordances such that complex perceptual modelling can be eliminated 
without loss in capabilities. She tried to prove her point with three case studies and drew at-
tention to the importance of the ecological niche in the design of behaviours. Likewise, 
Duchon et al. [14] benefited from J.J. Gibson’s ideas on direct perception and optical flow in 
the design of behaviours and termed Ecological Robotics to be the practice of applying eco-
logical principles to the design of mobile robots. 

The use of affordances within Autonomous Robotics is mostly confined to behaviour-based 
control of the robots, and that its use in deliberation remains a rather unexplored area. This is 
not a coincidence, but indeed a consequence of the lacks in J.J. Gibson’s theory. The reactive 
approach could not scale up to complex tasks in robotics, in the same way that the theory of 
affordances in its original form was unable to explain some aspects of perception and cogni-
tion. The need to hybridize robotic control architectures can be considered similar to the at-
tempts in Cognitive Psychology to view affordances as part of a complete cognitive model. 
While some cognitive models relate affordances only with low-level processes [20], others 
consider their role in cognitive processes as well ([21]–[23]). Similarly in robotics, some hy-
brid architectures inherit properties related to affordances only at their reactive layer 
([18],[24]), while other studies exploit how affordances reflect to high-level processes such as 
learning ([25],[26],[23],[27],[28]), decision-making [29], and planning [30]. Recently a num-
ber of robotic studies focused on the learning of affordances in robots. These studies mainly 
tackled two major aspects. In one aspect, affordance learning is referred to as the learning of 
consequences of a certain action in a given situation ([27],[28],[30]). Stoytchev’s ([28], [30]) 
and Fitzpatrick et al.’s [27] work uses affordances as a higher-level concept, which a develop-
ing cognitive agent learns about by interacting with the objects in its environment. The robots 
in both studies execute certain actions on certain objects, and observe and learn the change in 
the environment as the consequence of the action. In other studies the focus lies on the learn-
ing of invariant properties of environments that afford a certain behaviour ([23],[26],[29]). In 
[23], MacDorman proposes an architecture, where the robot learns a sensory-motor mapping 
of its actions, and uses this learned model to make plans at the deliberative level. The learned 
model is then used to predict the affordances of objects in the environment. However, Mac-
Dorman defines affordances only in terms of internal values of the robot (like ‘tasty’ and ‘poi-
sonous’ things), and not the physical changes it can create in the environment separating the 
process of predicting the outcome of actions, from the process of predicting affordances. 

Some hybrid architectures inherit the properties of reactive architectures in their reactive 
components. For example, AuRA [18] is said to be influenced from J.J. Gibson’s theory of 
affordances for using action-oriented perception in the reactive component. In AuRA, each 
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motor schema is associated with a perceptual schema, which extracts the sensory input rele-
vant for the particular behaviour. Similarly, in the SSS [24] architecture, the communication 
of lower and upper layers is based on the idea of matched filters, which suggests that certain 
sensor states are equivalent if they call for the same motor response. Although not explicitly 
stated, we can further relate affordances to some deliberative processes in hybrid architec-
tures. For instance, the AuRA [18] architecture can be said to perform deliberative modula-
tion of perception, since plan execution occurs by activating motor schemas and the relevant 
perceptual schemas specified by the plan. Another example is the SFX [31] architecture in 
which the symbolic world model depends on the current behaviour, as a consequence of ac-
tion-oriented sensor fusion. 

We would like to note that the affordance theory of J.J. Gibson was mostly used as a source 
of inspiration in autonomous robotics. As a result, only certain aspects of the theory were 
used, and that no attempts to consider the implications of the whole theory towards autono-
mous robot control were made. In this sense, the development of an ‘affordance-inspired ro-
bot control architecture’ that is designed to learn, detect, and use the affordances in the envi-
ronment [32] is an important contribution to the field. 

b. The MACS approach to Affordance-inspired Robot Control 

The vast majority of robot perception approaches are either close perception-action couplings 
for reactive behaviour or oriented towards object recognition on higher control levels. Also, 
object recognition is in many cases based on general computer vision methods that do not 
account for the specifics of the robot at hand, i.e. its sensory system and its actuator system. 
Only very few robot perception approaches deal with recognition of functions that the envi-
ronment offers (cf. Sec. 4.3). 

We can state that a function-centred perception approach realises a view of the environment 
that is orthogonal to object-centred perception. Such function-centred perception potentially 
allows a robot to find more alternatives for acting in its environment. A robot mission that 
requires to find—based on appearance only—and use certain objects in the environment will 
fail if one or more of these objects cannot be found. But often the identity or appearance of an 
object may not be relevant for completing a task. A task could, for instance, also be com-
pleted if the robot finds an alternative object that offers the same functions as the original one 
(in J.J. Gibson’s terminology, one would say: it affords the same action possibility). As we 
initially hypothesized, an affordance-inspired robot control with a function-centred perception 
would allow a robot more flexibility in plan execution and thus increase the likelihood of suc-
cessfully completing a mission. Thus, it would enhance a robot’s abilities to perceive and 
utilize the potential for action that the environment offers, i.e. enable a robot to make use of 
affordances. This is the central hypothesis of MACS. 

MACS aimed at realizing affordance-inspired control in a hybrid architecture that allows 
goal-directed behaviour based on function-centred perception, with functions related to and 
grounded in the robot’s action capabilities. Affordance support in the sense sketched in the 
previous sections has been built into several levels of the architecture. In order to use affor-
dance support for deliberate action, i.e. for planning, we needed an explicit representation of 
the potential for action or the functions that the environment offers, respectively. The formali-
sation that is the basis for such representations is described in [33]. In summary, a number of 
formalisations have been proposed to clarify the concept of affordance in the field of Ecologi-
cal Psychology. To summarise briefly, Turvey [34] defined affordances as ‘dispositions’ in 
the environment that get actualized with the interaction of the organism and the environment. 
Different from Turvey’s formalism, which attached affordances to the environment, Stoff-
regen [85] and Chemero [3] defined affordances as relations within the organism-environment 
system. Independent from these formalisations in Ecological Psychology, Steedman [36] 
formalised affordances in Linguistics by providing an explicit link to action possibilities of-
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fered by the environment, and by proposing the use of the concept in planning. The authors 
are not aware of other robot control methods that make use of explicit, symbolic affordance 
representations. 

In order to distinguish our use of the term ‘affordance’ from the use in Ecological Psychol-
ogy, we introduced the definition of an agent (or robot) affordance ([33],[32])3:  

Definition 1 ((Agent) Affordance). An affordance is a relation between the 
agent and its environment as acquired from the interaction of the two. � 

This definition states that the affordance is a perceivable relation between the subjective ca-
pabilities of an agent and the features of its surroundings. The agent affordance definition is 
used whenever we are referring to or describing the robot’s situation in its environment, e.g. 
in examples of the robot’s behaviour or in descriptions of experiments. For this purpose, we 
use the notions of entity, (observed) behaviour, and (observed) outcome. An example shall 
illustrate the meaning of these notions. Given our mobile robot KURT3D (cf. Sec. 4.6a) with 
its basic electromagnetic gripper as manipulation device, and given that there are magnetic 
cans in its environment, we could say: “The robot has successfully lifted the blue can.”, where 
some features of the blue can comprise the entity, lifting is the observed behaviour, and the 
successful execution resulting in the can attached to the robot’s electromagnet is the observed 
outcome. The entity can be represented by a set of features perceived prior to the lifting be-
haviour, the lifting behaviour can be represented as a sequence of basic actions, and the out-
come by a set of features perceived after the lifting behaviour has been executed. This leads to 
a straightforward definition of an (agent) affordance representation [32]: 

Definition 2 (Affordance Representation). An affordance representation or af-
fordance triple is a data structure: 

(cue descriptor, behaviour descriptor, outcome descriptor). (1) 

Here, a cue descriptor or an outcome descriptor is specified as a list of attribute 
value pairs. A behaviour descriptor consists of one or more behaviour identifiers. 
Optionally, parameters for these behaviours can be specified. � 

Such representations can either be handcrafted or learned during an extended initial learning 
phase as described in Sec. 4.4. The cue part of the representation can be used to hypothesize 
the presence of a certain affordance in the environment that the robot searches for achieving 
the planned outcome. The feature set comprising a cue needs only be sufficient for making 
such a hypothesis. It is neither required that the feature set is a sufficient representation of the 
manipulated object, nor that all the cue features belong to this object. 

After a certain amount of affordance representations have been created, the robot shall make 
use of this information for deliberate action as described in Sec. 4.2. A mission defined by a 
human operator could be the task of searching ‘liftables’ and stack these in an arbitrary loca-
tion. The planner would create operators that employ affordance representations, and an exe-
cution control would monitor, as usual, the progress of task completion. 

In order to implement these concepts, the proposed affordance-inspired control architecture 
consists of two branches. A bottom-up branch goes from sensors via a perception module (cf. 
Sec. 4.3) to a learning module (cf. Sec. 4.4) that generates affordance representations. A top-
down branch goes from a deliberation module via execution control down to a behaviour sys-
tem that provides some basic robot skills, including but not limited to driving, braking, map-
building and lifting, or moving and controlling the magnet. 

The proposed and implemented affordance-inspired control architecture scheme is depicted in 
Fig. 4. In this diagram, a red, solid arrow between components A and B in the diagram is of 

                                                
3 A similar but alternative formalisation of affordances was also proposed in [37]. 
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type control flow. The arrow indicates that the control is passed from A to B. The arrow does 
say nothing about the situations in which the control is passed, nor about the data that might 
be exchanged when passing control. The designations close to such an arrow indicate qualita-
tively the nature of the control flow, e.g. information request, configuration request etc. A 
blue, dashed arrow between components A and B in the diagram is of type data flow. The data 
flow arrow does not say anything about the circumstances, that is, the current control states, 
under which the data are transferred. The designations close to such an arrow indicate qualita-
tively the types of data that are passed from A to B. Bold arrows indicate flows between mod-
ules, thin arrows intra module flows. Data passed from module A to B are available to all 
components inside B. White boxes are specific affordance support oriented components that 
are usually not found in other control architectures. 

 
Fig. 4. Modules, data and control flow of the MACS control architecture. A solid arrow between com-

ponents A and B indicates control flow, a dashed arrow data flow. White boxes are specific af-
fordance support oriented components. 

The main architectural building blocks in this diagram are: 

User Interface displays status information and allows a user both to guide a robot manually 
through an action sequence and to just specify a mission goal for the robot. The 

Deliberation module converts a mission goal into an executable affordance-based mission 
plan which is passed to the 

Execution module. This module executes the mission plan, monitors its execution, including 
successful or unsuccessful acting upon affordances. The Execution module’s new Event 
and Execution monitor checks the existence of affordance support cues and compares ex-
pected outcome with actual outcome of an executed behaviour control routine. The Exe-
cution control triggers behaviours of the 

Behaviour System. This module provides a number of pre-programmed behaviour control 
routines that can be viewed as basic skills of the robot. Some behaviour control routines 
are parametrizable and can be configured by other modules, if necessary. The behaviours 
make use of 
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Actuators that enable the robot to move about and to interact with its environment. They in-
clude the drive motors, the sensor servos, and the crane arm motors. The 

Sensors enable the robot to perceive its environment and its internal states, Virtual sensors 
provide software state information, real sensors yield data from the environment. All sen-
sory data are first handled by the 

Perception module. It relays sensory data, extracted features and status information (like 
active behaviours and their parameters) to the Learning module, Execution module, Be-
haviour System and Deliberation module. It can be configured to look just for certain fea-
tures that relate to searched affordance support cues. Its Entity Structure Generation Mod-
ule converts sensory data into appropriate data structures for architectural affordance sup-
port. The 

Learning module takes input from the Perception module and generates affordance represen-
tations (affordance triples) to populate the new 

Affordance Representation Repository. This repository is new and specific to our affor-
dance-based approach. It provides affordance representations for use with the affordance-
based Planner and Execution Module for goal-oriented mission planning. 

This architecture is implemented in such a way that it can be connected both to the physical 
robot and the simulated robot via the same interface, just by pushing a button. This enables us 
to test the system both in simulated and in real environments. 

In the next three sections, the affordance-based approaches of the main building blocks within 
this architecture, namely representation and planning (Sec. 4.2), perception (Sec. 4.3) and 
learning (Sec. 4.4), are explained. An elaborate description of the behaviour system and its 
basic skills can be found in [38]. In Sec. 4.5, our latest formalisation is presented. Before we 
conclude this report, we present the physics-based simulator MACSim and the experimenta-
tion environment, i.e. the demonstrator scenario and its elements in Sec. 4.6, and describe the 
experiments for the proof-of-concept in Sec. 4.7. 
 

4.2 Representation for deliberation 

Literature is rather sparse when it comes to more or less formal definitions for representations 
of affordances. This is not surprising, as representing them explicitly is actually against the 
ecological psychologist’s interpretation of directly perceivable and usable affordances like it 
has always been postulated by Gibson. While such a view on affordance without representa-
tion and reason has as well been picked up in the area of robotic systems, e.g. by [19], we 
dissent from this view, arguing for the advantages of a formalised affordance concept 
throughout the MACS project. 

For the benefit of affordances for robotics, we will instead follow the line of argument of, for 
instance, MacDorman who justifies learning and the explicit recognition, and thus implicit 
representation, of affordances by stating: 

“It is not surprising that Gibson underestimated the computational complexity of 
vision, since he wrote before researchers had begun to explore it seriously. [...] 
Thus, the brain may need to process sensorimotor data extensively and to spend 
time learning what kinds of invariance are useful in recognizing affordances.” 
([39], p. 1003) 

We are furthermore convinced that it makes indeed sense to reason about affordances rather 
than acting directly upon an affordance percept. This point has been picked up by [14], too as 
they explicitly argue that an agent does not merely respond to a directly perceived stimulus by 
applying the action that is afforded in that situation. It is not controlled by the environment. It 
can rather use the information provided by the affordances of a situation and reason about 
them in a goal-directed manner selecting those afforded actions that will lead to its goal. 
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Now MACS has attempted to define an explicit, symbolic affordance representation on which 
the whole architecture and all its various components are based. Some of the following ideas 
were introduced in [33] and re-used in [38]. The overall idea, however, is primarily inspired 
by the work of Chemero [3] who first described an affordance as a perceivable relation be-
tween an agent and its environment or, as we interpret it, between the subjective capabilities 
of an agent and the features of its surroundings. We extended this idea by introducing the 
definitions of an (agent) affordance and an affordance representation (Def. 1 & 2, Sec. 4.1b). 

Regarding Def. 2 of the affordance representation, one can understand its attributes as fea-
tures of the environment or even internal states of the robot, while the values are not restricted 
to distinct values but can also represent value ranges.  

The cue descriptor holds that piece of processed or raw sensor information, which supports 
the existence of the represented affordance, whereas the outcome descriptor contains the data 
as it was perceived by the robot while previously executing the behaviour referenced in the 
behaviour descriptor. That descriptor, on the other hand, refers to a robot behaviour and a set 
of parameters that were used with this robot behaviour when the respective cues and out-
comes were monitored. 

To summarise this definition, an affordance is represented by: 

• The cues for an affordance that support it. These are the perceivable features or attributes 
of the environment for the agent and their values or value ranges. Attribute value pairs 
stored in a cue descriptor can thus be, for instance, the relative distance to a test object, its 
colour, or the different currents sent to the robot’s motors.  

• The behaviour descriptor refers to the behaviour or sequence of behaviours the robot has 
applied when this representation was created. To stick with the last example, this would 
be a lift action combined with the parameters like motor current or crane movement that 
were used for the particular action.  

• The outcome of any action or behaviour executed upon the affordance. The outcome rep-
resents the changes of the agent and the environment, as far as they can be perceived by 
the agent. For example, a blue-coloured blob is being perceived at a higher position, rela-
tively to the agent, if a lifting action has been performed.  

The different affordance representation triples, which can both be hand-coded or learned (see 
Sec. 4.4), are then used during system runtime to build up and maintain a world model of the 
robot’s surroundings that is represented as an affordance map. The different map regions hold 
the information whether a particular affordance type has been perceived in that area. 

Given such a representation, it is left to describe how affordances can be exploited for robot-
ics by reasoning about them. One approach has been attempted in the MACS project, namely, 
to ground plan operators by means of affordances; other types of reasoning with or about af-
fordances are envisable. Here is the idea behind operator grounding: Assume the robot being 
in a situation where it has some goal to achieve, but one does not actually care about how or 
by which means to reach it. For example, it might want to weigh down a pile of paper; this 
could be done by putting a rock, a cup, or a book on that pile, achieving the same effect with 
each of these items. In other words, the robot may select just any item that affords the weigh-
ing action—the decision which concrete item to chose can be deferred to execution time, rely-
ing on affordance perception to re-identify the desired cue. On the other hand, if the plan cur-
rently under execution advises to watch out for a cue for the weighing-down affordance, it 
would lead to ignoring for the moment other affordances, which would not appear to lead to 
the desired goal as planned. 

The MACS planning system is based on a complete domain and problem definition specified 
in the Planning Domain Definition Language (PDDL) [40]. The planner’s world model con-
tains knowledge of where what kind of affordance has been perceived . The planner uses the 
recorded availability of an affordance in a certain region of the environment to plan an action 
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in that region (cf. Fig. 19). Consider the example that the robot has to open a door by putting 
some weight on a switch. The generated plan will be a sequence of operators to drive to a 
region where the liftability affordance has been perceived, to lift some liftable item there, to 
drive to the switch and put the item, whatever it may be, on the switch. The plan will thus 
contain a lift operator that gets implemented or grounded only during the execution phase of 
the plan. The robot simply has to select an affordance representation triple that belongs to the 
type of the liftability affordance and whose cues of its cue descriptor can currently be per-
ceived. By acting as specified in that triple’s behaviour descriptor, the robot implicitly 
chooses the next available liftable item and lifts it—be it a rock, a cup, or a book. 

The deliberation part of the MACS architecture, as specified in [41], thus reasons about affor-
dances in the sense that it selects goal-directedly the kind of affordance to act upon; i.e. it 
decides to use the liftability affordance rather than, for instance, pushability. So, the the action 
focus induced by some plan that is currently under execution helps the robot control selecting 
among the potentially very many affordances that may rush upon the robot at any time. Af-
fordance representations may help plan-based robot control, on the other hand, by offering a 
direct way of grounding symbolic operators, as used in action plans, in physical execution. 

It is an obvious topic for further research to explore more closely this interplay between af-
fordance-based and plan-based robot control. In this context, it will also be useful to re-
introduce objects (individuals as well as object classes) into the architecture, in addition to 
affordances. Imagine yourself dining with the Queen: you will desperately wish to distinguish 
between her glass and your glass rather than act upon drinkable-from affordance. So the prob-
lems of object detection and anchoring [89] will not go away, and it remains to be investi-
gated how affordance representations and object representations interact. To start with, they 
may support each other, as, e.g., sitability is a property typically expected to be perceived of 
an object of the class chair. However, the connection in detail within a robot control architec-
ture is unexplored.  

Another line of future research is using more expressive plan representation languages in the 
planner. We have used a very simple propositional variant of PDDL here. A more expressive 
logical language, namely, TAL, has in fact been introduced into the project. It remains to be 
seen where and how this more expressive language could be brought to bear in affordance-
based control—an obvious candidate for a planning system being TALPlan in this case. 
 

4.3 Perception of affordances 

In the context of ecological perception, as it was created by J.J. Gibson [1], visual perception 
would enable agents to experience in a direct way the opportunities for action. However, J.J. 
Gibson remained unclear about how this concept could be used in a technical system. Neisser 
[42] replied to this concept with the notion of a perception-action cycle that shows the recip-
rocal relationship of the knowledge (i.e., a schema) about the environment directing explora-
tion of the environment (i.e., action), which samples the information available for pick up in 
the environment, which then modifies the knowledge, and so on. This cycle describes how 
knowledge, perception, action, and the environment all interact in order to achieve goals. Our 
work on affordance-like perception is in the context of technical systems based on a notion of 
affordances that ‘fulfil the purpose of efficient prediction of interaction opportunities’. 

In the project MACS we provided a refined concept of affordance perception by proposing 
two processing stages in terms of a predictive module, an interaction and an evaluation mod-
ule (cf. Sec. 4.1b). Affordance-like perception aims at supporting control schemata for per-
ception-action processing in the context of rapid and simplified access to agent-environment 
interactions. This framework  is completely novel in the frame of affordance perception, in 
particular, concerning the learning of the selection of specific cues to predict opportunities for 
interaction.  
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a. Related work  

Previous research on affordance based perception focused on heuristic definitions of simple 
feature-function relations to facilitate sensor-motor associations in robotic agents. Human 
cognition embodies visual stimuli and motor interactions in common neural circuitry (Faille-
not et al. [43]). Accordingly, the affordance-based context in spatio-temporal observations 
and sensor-motor behaviours has been outlined in a model of cortical involvement in grasping 
by Fagg and Arbib [44], highlighting the relevance of vision for motor interaction [45]. Rea-
ching and grasping involves visuo-motor coordination that benefits from an affordance-like 
mapping from visual to haptic perceptual categories (Wheeler et al. [46]). Within this context, 
the MIT humanoid robot Cog was involved in object poking and proding experiments that 
investigate the emergence of affordance categories to choose actions with the aim to make 
objects roll in a specific way (Fitzpatrick et al. [27]). The research of Stoytchev [30] analysed 
affordances on an object level, investigating new concepts of object-hood in a sense of how 
perceptions of objects are connected with visual events that arise from action consequences 
related to the object itself. Although this work innovatively demonstrated the relation between 
affordance triggers and meaningful robot behaviours, these experiments involve computer 
vision still on a low level, and do not consider complex sensor-motor representation of an 
agent interaction in less constrained, even natural environments. 

Affordance based visual object representations are per se function based representations. In 
contrast to classical object representations, functional object representations (Stark and Bow-
yer [47], Rivlin et al. [48]) use a set of primitives (relative orientation, stability, proximity, 
etc.) that define specific functional properties, essentially containing face and vertex informa-
tion. These primitives are subsumed to define surfaces and form the functional properties, 
such as ‘is sitable’ or ‘provides stable support’. Bogoni and Bajcsy [49] have extended this 
representation from an active perception perspective, relating observability to interaction with 
the object, understanding functionality as the applicability of an object for the fulfilment of 
some purpose. However, so far, function-based representations were basically defined by the 
engineer, and not learned from interaction. Fig. 5 depicts  a schematic view about the embed-
ding of affordance based perception into general frameworks of vision-based recognition, 
reflecting our view that it is determined by both function based and purpose vision.  

 
Fig. 5 Overview on the embedding of affordance based perception into various classical frameworks 

on vision based recognition. The function based approach relates to affordance based recog-
nition in terms of its association of features with functions. However, in contrast to our ap-
proach it does not explicitly take the outcome of the function into account. Purposive vision in 
general relates goals with a selection of features, but as a global concept it does not consider 
the specific predictive structure including cues, behaviours and outcomes into account. Task 
based recognition simply does not explicitly relate parts of the environment with extracted fea-
tures but can be understood to provide a global not local strategy to select features. Affor-
dance based perception takes advantage of a predictive structure to relate the purposive se-
lection of features with the association of functions, i.e., interactions.  

b. Stages in affordance perception  

We developed a refined concept on affordance perception [50] by proposing (i) an interaction 
component (affordance recognition: recognising relevant events in interaction via perceptual 
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entities) and (ii) a predictive aspect (affordance cueing: predicting interaction via perceptual 
entities). This innovative conceptual step enables firstly to investigate the functional compo-
nents of perception that make up affordance-based prediction, and secondly to lay a basis to 
identify the interrelation between predictive features and predicted event via machine learning 
technology ([50]–[53]).  

Fig. 6 illustrates the various stages within the affordance based perception process for the 
example of the affordance fill-ability in the context of the opportunities for interaction with a 
coffee cup. Fig. 6(a) schematically illustrates the detection of perceptual entities that would 
provide affordance cues in terms of verifying the occurrence of a cup that is related to the 
prediction of being fill-able in general. Fig. 6(b) shows in analogy entities that would underlie 
the process of interaction of an agent with the cup by actually filling it up. Finally, Fig. 6(c) 
represents the entities corresponding to the final state of the interaction with the outcome of a 
successfully filled coffee cup. These figures illustrate that affordance cueing and affordance 
recognition must be conceptually separated and would involve different perceptual entities in 
general. While affordance recognition actually involves the recognition of the interaction 
process and its associated final state, affordance cueing will be solely determined by the ca-
pability to reliably predict this future event in a statistical sense.  

 
(a)     (b)       (c)  

Fig. 6 Affordance recognition in affordance based perception for the example of the affordance fill-
able with respect to the impact of selecting appropriate features. The seemingly simple inter-
action of filling up a coffee cup can be partitioned into various stages in affordance based per-
ception, such as, (a) affordance cueing by predictive features that refer to a fill-able object, (b) 
identifying perceptual entities that represent the process of the affordance related interaction 
(e.g., flow of coffee), and (c) recognizing the final state by detecting perceptual entities that 
represent the outcome of interaction (e.g., level of coffee in cup).  

Fig. 7 depicts the innovative concept of feature based affordance perception worked out in the 
MACS project (cf. Sec. 4.1, Def. 2). We identify first the functional component of affordance 
recognition, i.e., the recognition of the affordance related visual event that characterizes a 
relevant interaction, e.g., the capability of lifting (lift-ability) an object using an appropriate 
robotic actuator. The recognition of this event should be performed by identifying a process 
of evaluating spatio-temporal information that leads to a final state. This final state should be 
unique in perceptual feature/state space, i.e., it should be characterized by the observation of 
specific feature attributes that are abstracted from the stream of sensory-motor information.  

The second functional component of affordance cueing encompasses the key idea on affor-
dance based perception, i.e., the prediction aspect on estimating the opportunity for interac-
tion from the incoming sensory processing stream. In particular, this component is embedded 
in the perception-action cycle of the robotic agent. The agent is receiving sensory information 
in order to build upon arbitrary levels of feature abstractions, for the purpose of recognition of 
perceptual entities. In contrast to classical feature and object recognition, this kind of recogni-
tion is purposive in the sense of selecting exactly those features that efficiently support the 
evaluation of identifying an affordance, i.e., the perceptual entities that possess the capability 
to predict an event of affordance recognition in the feature time series that is immediately 
following the cueing stage of affordance based perception. The outcome of affordance cueing 
is in general a probability distribution on all possible affordances, providing evidence for a 
most confident affordance cue by delivering a hypothesis that favours the future occurrence of 
a particular affordance recognition event. This cue is functional in the sense of associating the 
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related feature representation with a specific utility with respect to the capabilities of the 
agent and the opportunities provided by the environment, thus representing predictive fea-
tures in the affordance-based perception system. 

 
Fig. 7 Concept of affordance perception, depicting the key components of affordance cueing and 

recognition embedded within (left) an agents perception-action cycle (cf. Sec. 4.1b, Def. 2).  

c. Implementation: Perception Module  

The perception module includes an Entity Structure Generation Module (Fig. 4, Fig. 8, cf. 
also [33]) that generates appropriate data structures from sensory data in a framework of en-
tity structures. Starting from simple structures (e.g. raw sensory data) these data structures are 
processed via transformation and/or combination into more abstract ones, describing the 
scene (e.g. regions of different colours and their relation) as well as affordances (e.g. regions 
with attributes like liftable, traversable, etc.).  

 
Fig. 8 System architecture of the Perception Module, depicting individual functional components and 

interfaces to other modules of the overall MACS system architecture (Fig. 4). Entity structures 
are generated in the ESGM. Each computational unit within the Computational Perception 
Toolbox (CPT) provides functions that output time stamped feature attributes which in turn are 
represented in the Entity Trajectory Cache (ETC) and can be read out from any other module.  

The concept of computational units is employed to process these structures within an overall 
abstraction hierarchy. Computational units use Entity Trajectory Streams (i.e. series of entity 
structures over time) as input and produce entity trajectory streams as output. These entity 
trajectory streams provide input for the learning module, which learns suitable combinations 
of computational units for affordance cueing. For an example, several entity trajectory 
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streams are combined in a final computational unit that classifies a particular region in the 
camera images into ‘liftable’ or ‘non-liftable’. This classifier is encapsulated in the concept of 
the computational unit, with the benefit of a clear interface to other modules in the architec-
ture of the system.  

For finding salient locations that might be interesting during the robot’s learning and mission 
phases, we employ a visual attention system called VOCUS [54]. VOCUS allows ‘bottom up’ 
detection of salient features in the environment as well as a ‘top-down’ search for certain fea-
tures related to affordance cues [55]. The VOCUS system was also enhanced to work with 
two cameras in order to allow a triangulation of the position of salient regions relative to the 
robot. In order to accelerate VOCUS and to reduce CPU workload, it has been re-
implemented such that it can run on a GPU. The latter variant can compute foci of attention at 
60 fps, i.e. it can detect salient regions in both camera images at frame rate with little CPU 
usage [56]. This frees the CPU for other control tasks. 

VOCUS is employed in terms of a curiosity drive for perceiving interesting locations. It com-
putes foci of attention based on a saliency measure applied to elementary features like colour, 
brightness and orientation contrasts. The feature vector describing a salient location in an im-
age is also provided as a computational unit in the Computational Perception Toolbox, i.e., to 
constrain the area in the image where affordance cueing is processed. The output of VOCUS 
can also be used by the learning module. 

Fig. 9 shows sample results using the VOCUS attention system for the localization of test 
objects in the MACS scenario. VOCUS is here applied in bottom-up mode in the left camera 
image and, using the features from the attended region, in top-down mode in the right camera 
image in order to focus on a corresponding part of the environment. Then a colour region in 
the basin of attraction of the focus of attention is determined with a mean shift colour seg-
mentation algorithm. Using triangulation the position of the coloured test object can be esti-
mated with a distance error of 1cm within a maximum distance of 2 m in the demonstrator 
scenario. The estimated 3D position is then used to approach the object and proceed with 
affordance cueing and lifting behaviour to verify the affordance hypothesis if needed.  

 

 
Fig. 9 Application of the VOCUS visual attention system for the estimation of 3D coordinates of ob-

jects in the MACS scenario. The left camera image shows the focus of attention (FOA; left 
square) as a result of the VOCUS bottom-up mode and a spatially associated colour region 
(right square). The system uses then the features of the FOA in order to find a corresponding 
FOA in the right camera image (left square) and the associated region. Triangulation using 
both FOA determines then the 3D coordinates for further execution of robot behaviours. 
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(a) (b) 

  
(c) (d) 

 
Fig. 10 Visual processing stages in affordance cueing. (a) Firstly, colour blobs are detected and the 

identity of the corresponding regions of interest are tracked using the KLT tracking methodol-
ogy. (b) In each region of interest, local SIFT descriptors are extracted and classified into in-
termediate feature abstractions (circular and rectangular features or indicators). (c) For each 
region of interest, normalized voting provides then confidences (colour, region size, etc.) that 
will be classified by means of a decision tree. (d) Classification of single regions into affor-
dance cues (bold and gray coloured bounding box) and no cues (bold and black bounding 
box; only top object regions are classified in this example). 

 

Fig. 10 shows the application of local (SIFT) descriptors for the characterisation of regions of 
interest in the field of view. For this purpose, we first segment the colour based visual infor-
mation within the image, and then associate integrated descriptor responses sampled within 
the regions to the region feature vector. The integration is performed via a histogram on local 
descriptors that are labeled with ‘rectangular’ and ‘circular’ attributes, respectively. 

d. Learning of affordance cues 

There are affordances that are explicitly innate to the agent through evolutionary development 
and others that have to be learned [1]. Learning the chains of affordance driven actions can 
lead to learning new, more complex affordances (cf. Sec. 4.4). In contrast to previous work on 
functional feature and object representations, we stress the fact that functional representations 
must necessarily contain purposive features, i.e., represent perceptual entities that refer to 
interaction patterns and thus must be selected from an existing pool of features by means of 
machine learning.  

In this context we demonstrated the learning of causal relationships between visual cues and 
predictable interactions, using both 3D and 2D information ([51],[52]). We verified the con-
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cept with a concrete implementation applying state-of-the-art visual descriptors [57] and re-
gions of interest that were extracted from a simulated robot scenario and prove that these fea-
tures were successfully selected for their relevance in predicting opportunities of robot inter-
action by means of decision trees [58].  

 

 
Fig. 11 Decision tree as classifier for affordance cueing. The outcome of the learning stage is the 

prioritizing of the attributes ‘top region’ (region geometrically on top of another region) and the 
focus on rectangular (i.e., not circular) features.  

 

 
Fig. 12 Schematic diagram of closed-loop learning of affordance cues. The visual attention system 

VOCUS provides a focus of attention on objects in the environment, features are extracted 
and contribute to a multi-sensor state description. Based on the rewarding of approaching the 
goal state (e.g., lifting an object), the system can determine in an exploratory learning phase 
how to apply robotic actions (move, move magnetic gripper, etc.) in order to arrive at the goal. 
However, the affordance cue is associated with a perceptual state that is able to predict as 
early as possible the opportunity to interact and finally to arrive at the goal of the interaction, 
e.g., to end up with a lifted object.  

Additional work was done in the direction of extending the scope of predictability via visual 
cueing using reinforcement learning [53]. Reinforcement learning ([59],[60]) as an on-line 
version of Markov decision processes (MDP) [61] is able to determine a specific perceptual 
state that owns the predictive characteristics for the representation of an affordance-like visual 
cue. The learning process is applied to bridging two basic components characterising the in-
teraction component, i.e., affordance recognition, and the predictive aspect, i.e., affordance 
cueing, respectively. [62] presents the underlying theory and the experimental results from a 
robotic system scenario demonstrating how affordance recognition can provide the rein-
forcement signal to drive the propagation of reward information back in the affordance per-
ception process. Upon convergence of the stochastic learning algorithm, we are able to iden-
tify an early perceptual state that enables to discriminate the capability to predict a future in-
teraction opportunity with high confidence. 
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(a) (b) 

 
Fig. 13 Affordance based cueing of region determined perceptual states from learned predictive cu-

mulative rewards. (a) On the basis of a colour blob detector, local descriptors are classified 
into rectangular/circular (R/C) ones and the associated histogram feeds here into the recogni-
tion of an affordance cue (with respect to lift-ability). (b) Analysed top and bottom regions are 
correspondingly classified as cues for lift-ability or non-lift-ability, visualized in terms of green 
and red bars with bar sizes correlating to positive or negative reward, respectively (monitoring 
boxes, top), anticipating a lift-able event.  

There is huge potential in research on affordance perception towards extending the feature 
based representations towards object driven affordance-based interaction, grounding the work 
on the visual descriptor information presented here. Furthermore, the learning of affordance 
cues can be viewed in the frame of developmental learning of meaningful sequences of affor-
dance triplets [63], opening a broad avenue for future research. 
 

4.4 Learning of affordances 

The learning approach that was developed within the MACS project is an approach to acquire 
knowledge about relations that determine the interaction possibilities between an agent and its 
environment. Within this approach an artificial agent starts with basic interactions and uses 
more and more complex interactions over time and thus gathers experience about what hap-
pens before, during and after these interactions. These experiences are generalized by the 
agent, enabling it to act also in novel situations. Therefore the robot used starts with an initial 
set of reflex like actions and is designed to be able to deal with a growing set of (learned) ac-
tions. Thereby the approach is not limited to a special kind of actions.  

The set of basic reflex-like actions shall enable the robot to stack building blocks. Whether 
two objects can be stacked or not dependents on the top region surface of the element that 
should provide the base, and depends on the bottom region surface of the element that should 
be stacked on this base. The two surfaces must be in a certain relation to each other for a suc-
cessful stacking trial. In simple cases the necessary complementary shape is given over the 
entire top and bottom regions. More complicated objects may only share some of those com-
plementary regions, but at least enough to keep a stacking element grounded on the base.  

When objects are provided to an agent, the relevant surfaces cannot be perceived directly. 
Nevertheless humans are able to assume whether an object is stackable or not, without seeing 
this surface. They do it by using several cues based on their own experience to fulfil this task.  

Consequently, in the MACS project, affordances within a robotic system are represented by 
relations between cues, behaviours,and outcomes.The space of learned affordances is thus a 
multi-relational repository from which cue-behaviour-outcome triples can be derived. To be 
able to extract these triples is not only crucial for learning by self-experience and for planning 
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but also for learning by imitation to match observed cue and outcomes to previously made 
self-experience. That means that triples, which are 1:1:1 relations, are derived from that 
o:m:n relations database.  

The cues and outcomes, their inter-relations as well as the relation to the causing actions are 
learnt from the incoming perceptual data stream. For a detailed description of the learning 
approach see paper Learning of Interaction Possibilities in this volume.  

The schema in Fig. 14 depicts the key components of the developed Learning Module that is 
connected to and interacts with the overall affordances based architecture (see Sec. 4.1). The 
image shows which modules are required and how they are interconnected to realize the re-
quired data and control flow. The depicted modules, the used data structures, and the data / 
control flow are described in the following sub-sections.  

a. Application Spaces Module  

The agent applies actions to the environment. While doing that the agent permanently moni-
tors its environment and the internal states before, during and after the application. The sets of 
resulting time series are stored within behaviour specific Application Spaces in the Applica-
tion Spaces Module to be available for the learning processes. The begin and the end of the 
application of the actions must be marked within each stored time series. To be able to learn a 
cue for the existence of an affordance and the concerning outcomes (consequences of using 
an affordance), the recorded time series have to include data from a certain time interval be-
fore and after the application of the behaviour.  

During the learning process, the Application Spaces are divided into partitions. This partition-
ing information, i.e. a Partitioner Object, as created by the Partitioning Module (see Sec. 
4.4b), is stored in relation to its corresponding application space. 

 
Fig. 14 The key components of the developed learning architecture, its modules, and the data 

(dashed lines) and control flows (solid lines) between the components.  

The relevant sensor channel information that is extracted during the learning process (see Sec. 
4.4c) as well as the characterization of these sensor channels (see Sec. 4.4d) are to be stored 
within the Application Spaces as well.  
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b. Partitioning  

In the application space of an action sets of similar action application results should exist after 
a sufficient number of trials. For example in case of the application space of action “close 
gripper”, the following subsets could emerge:  

• a set of results where the involved objects were gripped,  

• a set of results where the objects slipped away,  

• a set of results where the objects were not grippable at all.  

As input the Partitioning Module receives the data of an Application Space. This Application 
Space contains a set of time series, resulting from several applications of the same action. The 
Partitioning Module provides a mechanism to discriminate these different types of action 
application results from each other.  

The output of the Partitioning Module is a Partitioner Object that is stored and linked to the 
belonging application space. The Partitioner Object provides a function to decide for a given 
time series to which partition it belongs. A partition is thus defined as the set of all time series 
that are mapped to the same partition identifier.  

When there is already a Partitioner Object assigned to an Application Space and the agent 
acquired new experiences concerning the related behaviour (new time series are stored within 
the Application Space) the partitioner must be adapted to these new experiences, if they devi-
ate from the previous made ones. This re-learning process could change the Partitioner Ob-
ject and thus could cause previously recorded time series to change their partition. It is also 
possible that new partitions emerge.  

c. Relevant Sensor Channel Extraction  

In the next step sensor channels are extracted from the time series of each partition of an ap-
plication space that are representative for these partitions. Representative means, that these 
channels are in direct relation with the differing cues and outcomes, respectively. In case of 
performing an action that causes lifting an object, the partitions resulting from liftable and 
non-liftable objects will differ in the height (y-position time series) and (optionally) in the 
force sensor channel. For learning cues in this given example, the channel of the colour blob 
filter (y-position of the blobs) could be representative for the partitions. As input, the Relevant 
Sensor Channel Extraction Module (RSCEM) receives the data of an Application Space that is 
already partitioned.  

To find characteristic channels concerning cues, the same process is applied to the pre-
application part of the recorded time series of a partition. These partitions are sub-partitioned 
further.  

As output, the RSCEM provides  

• for each partition a set of channel identities of the relevant sensor channels concerning the 
cue events for the Application Space  

• for each partition a set of channel identities of the relevant sensor channels concerning 
outcome events for the Application Space  

These sets are stored in the relevant application space.  

When there is already a Partitioner Object assigned to an Application Space and the two sets 
of relevant sensor channels, and the agent acquired new experiences in applying the related 
action (new data time series are stored within the Application Space) an adaptation of the set 
of relevant sensor channels for the partitions could be necessary in the case, that e.g.  

• the previously gained knowledge was incomplete (new environmental configurations, e.g. 
new objects occurred)  
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• the configuration of the sensors or actuators has changed (e.g. broken or altered because 
of growth or enhancement)  

• the partitioning has changed (e.g. partitions altered or new partitions emerged, see Sec. 
4.4b).  

d. Event Characterization  

After the extraction of the relevant sensor channel(s), descriptions of what is characteristic for 
the relevant channel(s) of the partitions are to be derived, i.e. cue characteristics and outcome 
characteristics. These characteristics are used to enable the agent to recognize affordances (in 
case of characterizing cue related channels) or to monitor the outcome of the application of an 
action (in case of characterizing outcome related channels).  

As input, the Event Characterizer Module (ECM) receives data of an Application Space in 
which the sets of relevant sensor channels for each partition (derived by the Relevant Sensor 
Channel Extraction Module, section 6.3) are stored.  

As output the Event Characterizer Module provides  

• for each partition a set of cue characteristics for the Application Space,  

• for each partition a set of outcome characteristics for the Application Space.  

Similar considerations to above with respect to new experiences apply.  

e. Characteristics Abstraction  

The task of the Characteristics Abstraction Module (CAM) is first to find similarities between 
the elements of a given set of outcome characteristics. Two or more characteristics could 
share a subset of characteristics, e.g. two different outcomes (different ball trajectories) of two 
behaviours applied to a ball (beating and kicking) share the characteristics, that the ball is 
moved and that the space in front of the agent is free after the behaviour application. On an 
abstract level of observation, looking at these examples regarding the ‘change location’ char-
acteristic and neglecting the different time series that occur, both action applications and the 
corresponding outcomes are equal.  

The described abstraction process, and the storage of this gathered abstracted outcome infor-
mation in the Application Spaces, enable an artificial agent to treat two or more actions as 
equal, with regard to the expected outcome of applying these actions in the context of the re-
lated cue characteristics. Regarding the above mentioned example where two different behav-
iours (beating and kicking) are applied on the same object (a ball), the two different behav-
iours are equal for reaching the outcome described by the derived abstracted ‘change location’ 
characteristic.  

Additionally, objects or entities can be treated as equal, regarding the outcome that occurs by 
applying such equal actions. Even if objects or entities do not share visual features, they can 
be treated as equal under the context of applying those equal actions and gaining the ab-
stracted outcome characteristics.  

The outcome of the characterization process together with the extraction of abstracted charac-
teristics by using similarity measurements on the level of characteristics (done by the CAM) 
enables the agent to measure similarities between entities on the abstract level of functional-
ity. Thus the agent is enabled to achieve a level of semantic similarity measurement based on 
its perceptional similarity measurement abilities together with its behavioural experiences, 
which provides one method of solution to the complex problem of semantic similarity meas-
urement in robotics [64]. 
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4.5 Formalisation of affordances 

In agreement with Chemero [3], we view affordances as relations within an ecology of acting, 
observing agents and the environment. Our starting point for formalising affordances is: 

Definition 1 ((Agent) Affordance).4 An affordance is a relation between the 
agent and its environment as acquired from the interaction of the two. � 

Based on this definition, an affordance is said to be a relation that can be represented as 

(environment, agent). 
However, this formalism is too generic to be useful, and needs to be refined. As Chemero also 
asked in his formalisation, “which aspect of the environment is related to which aspect of the 
organism (agent), and in what way?” Therefore in this relationship, the environment and the 
agent should be replaced with “environmental relata” and “agent’s (organismal) relata” (as in 
Chemero’s terminology), to indicate the relevant aspects of the two. First, we use the term, 
entity, to denote the environmental relata of the affordance instead of features (as used by 
Chemero) or object (as generally used). In our formalism, entity represents the proprioceptive 
state of the environment (including the perceptual state of the agent) as perceived by the 
agent. The term entity is chosen since it has a generic meaning that is less restricting than the 
term object. Although for some affordances the term object perfectly encapsulates the envi-
ronmental relata, for others, the relata may not be confined to an object and may be more 
complex. Second, the agent’s relata should represent the part of the agent that is generating 
the interaction with the environment that produced the affordance. Ideally, the agent’s relata 
should consist of the agent’s embodiment that generates the perception-action loop that can 
realize the affordance. We chose the term behaviour to denote this. In Autonomous Robotics, 
a behaviour is defined as a fundamental perception-action control unit to create a physical 
interaction with the environment. We argue that this term implicitly represents the physical 
embodiment of the interaction and can be used to represent the agent’s relata. Third, the inter-
action between the agent and the environment should produce a certain effect. More specifi-
cally, a certain behaviour applied on a certain entity should produce a certain effect, e.g. a 
certain perceivable change in the environment, or in the state of the agent. For instance, the 
lift-ability affordance implicitly assumes that, when the lift behaviour is applied to a stone, it 
produces the effect lifted, meaning that the stone’s position, as perceived by the agent, is ele-
vated. 

Based on these discussions, we refine our first definition as: 

Definition 3. An affordance is an acquired relation between a certain effect and a 
(entity, behaviour) tuple, such that when the agent applies the behaviour on the 
entity, the effect is generated. � 

and our formalisation as 

(effect, (entity, behaviour)).5 
This formalisation explicitly states that an affordance is a relation which consists of an (entity, 
behaviour) pair and an effect such that there exists a potential to generate a certain effect when 
the behaviour is applied on the entity by the agent. In this formalism, we assume that this rela-
tion resides within the interacting agent. This means that all three components are assumed to 
be sensed by the agent. The behaviour denotes the executed perception-action routine that 
generated the interaction as sensed by the agent. The entity refers not to an abstract concept of 

                                                
4 Definition repeated from Sec. 4.1b. 
5
 Within the MACS project, it was agreed to use this formalisation with a change of terminology in the form of: 

(cue, behaviour, outcome), where cue and outcome denoted <entity> and <effect>. 
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an entity (such as a stone) but to its perceptual representation by the agent. Similarly, the ef-
fect refers to the change inflicted in the environment (including changes in the state of the 
agent) as a result of the behaviour acting on the entity as perceived by the agent. 

The proposed formalisation, with its explicit inclusion of effect, can be seen as a deviation 
from J.J. Gibson’s view at its outset. It is not. In J.J. Gibson’s writings, the issue of effect had 
always remained implicit. For instance in the definition of the lift-ability affordance, the ex-
pected effect of lifted is implicitly present. Similarly, this has been implicitly included in 
Chemero’s formalism where he named the relation as Affords-� to exclude the instances that 
did not produce the affordance. On the other hand, in Turvey and Stoffregen’s formalisations, 
the desired effect is represented as h and r respectively. The proposed formalisation is differ-
ent from these, by not only making it explicit, also putting it on a par with the entity and the 
behavior. 

Affordances should be relations with predictive abilities. We will propose four aspects 
through which multiple instances of interactions can be bound together towards discovering 
affordances. 

 

Entity Equivalence 

The class of entities which support the generation of the same effect upon the application of a 
certain behaviour is called an entity equivalence class. We would like to note that the concept 
of entity equivalence is related to the concept invariance, defined as “persistence under 
change” in broad terms by J.J. Gibson. He mentioned the concept in many contexts through 
his book and devoted one section in the Appendices to it. These invariants correspond to the 
properties which remain constant under various transformations, i.e. invariants of optical 
structure under changing illumination or under change of the point of observation. Although 
J.J. Gibson did not explicitly define these invariances, he gave some clues about the percep-
tion and usage of them. 

“. . . There must be invariants for perceiving the surfaces, their relative layout, 
and their relative reflectances. They are not yet known, but they certainly involve 
ratios of intensity and colour among parts of the array.” (J.J. Gibson, 1979/1986, 
p. 310) 

 

Behaviour Equivalence 

The concept of affordance starts with equidistance to perception (through the entity in the 
environment) and action (through behaviour of the agent). Yet the role of action is often less 
pronounced than the role of perception, and most of the discussions concentrate on the per-
ception aspect of affordances. We argue that, if we wish to maintain a fair treatment of the 
action aspect of affordances, then the same equivalence concept should be generalized to that 
aspect as well. For instance, our robot can lift a can using its lift-with-right-hand behaviour. 
However, if the same effect can be achieved with its lift-with-left-hand behaviour, then these 
two behaviours are said to be behaviourally equivalent. We would like to note that, similar to 
the entity equivalence, the use of behavioural equivalence will bring in a similar flexibility for 
the agent. Through discovery of the perceptual invariants of an entity equivalence class, the 
agent gains the competence to use a different entity to generate a desired effect, even if the 
entities that had generated the effect in the past are not present in its environment. Such a 
‘change of plan’ is directly supported by the entity equivalence classes. A similar competence 
is gained through behavioural equivalence classes. For instance, a humanoid robot which 
lifted a can with one of its arms, loses its ability to lift another can. However, through behav-
ioural equivalence it can immediately have a “change of plan” and accomplish lifting using its 
other hand. 
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Affordance Equivalence 

Taking the discussion one step further, we come to the concept of affordance equivalence. 
Affordances like traversability, are obtainable by “walking across a road” or “swimming 
across a river” 

 

Effect Equivalence 

The concepts of entity, behaviour and affordance equivalence classes implicitly relied on the 
assumption that the agent, somehow, has effect equivalence. For instance, applying the lift-
with-right-hand behaviour on a blue-can would generate the effect of “a blue blob rising in 
view”. If the robot applies the same behaviour to a red-can, then the generated effect will be 
“a red blob rising in view”. If the robot wants to join the two relation instances learned from 
these two experiments, then it has to know whether the two effects are equivalent or not. In 
this sense, all the three equivalences rely on the existence of effect equivalence classes. 

We propose that an affordance can be formalised as: 

(<effect>,<(entity, behaviour)>). 
This formalism represents affordance from an agent’s perspective. We will make this perspec-
tive explicit, and revise our definition as: 

Definition 4 (Affordance (agent perspective)). An affordance is an acquired re-
lation between a certain <effect> and a certain <(entity, behaviour)> tuple 
such that when the agent applies a (entity, behaviour) within <(entity, behav-
iour)>, an effect within <effect> is generated. � 

Different from the previous version of the definition, this one explicitly states that affordance 
is a relation between equivalence classes, rather than a relation instance between an effect 
and a (entity, behaviour). 
 

4.6 Simulator and Demonstrator  

In this section, we describe the physical demonstrator and the physics-based simulator MAC-
Sim. The physical demonstrator consists of a demonstrator environment and a six-wheeled 
mobile robot with a simple crane arm manipulator, named KURT3D. The robot is available 
both in MACSim, and as a physical system (four units). 

a. Physical demonstrator  

The main elements of the physical demonstrator are a mobile robot, KURT3D, an experimen-
tation arena called the demonstrator environment, and test objects for perception and manipu-
lation experiments.  

The MACS version of the KURT3D mobile robot platform consists of the KURT2 base plat-
form, the KURT3D sensory enhancements, the MACS rack and a newly developed crane ma-
nipulator. The KURT2 base platform is a six-wheeled mobile robot platform of roughly one by 
one foot width and depth, and eight inches height. The robot has three wheels on each side, 
which are connected by a tooth-belt. Per side, a single DC motor drives all wheels via the 
tooth-belt. The drives and other low-level functions are controlled via a C167 and a TMC 200 
controller board and special firmware. These microcontrollers are connected via CAN bus to 
an on-board notebook computer that runs the high-level control programs under Linux. The 
standard sensory equipment consists of tilt sensors and a number of distance transducers 
along the perimeter of the robot.  

The KURT3D configuration consists of two additional enhanced sensor systems: a 3D Laser 
scanner and a stereo pan-tilt camera system, which both were developed at Fraunhofer IAIS. 
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An additional rack has been mounted on top of the robot in order to support a reversible note-
book mount and the MACS crane arm (Fig. 15). 

     
Fig. 15 The mobile robot KURT3D, equipped with a crane arm manipulator and a magnetic gripper. 

The crane arm has three degrees of freedom. The arm itself can be rotated around a vertical 
axis. A small lorry can be moved horizontally along the crane’s extension arm, and a mag-
netic griper can be raised and lowered along a rope that is hanging from the movable lorry. 
This construction allows most simple manipulation tasks, namely trying to ‘grip’ items in the 
environment with the electromagnetic gripper and lift them. 

The demonstrator environment setup consists of a defined mission area with the dimensions 
of 2.5m x 3.5m. The area is surrounded by walls that are 40cm high and 5cm wide, made of 
heavy and robust wooden elements (Fig. 16(a)). As first passive elements to be manipulated 
by the crane arm we use tin cans with different colours, sizes and top designs. Some of them 
are magnetizable, some are not. Their weight can easily be altered by butting in heavy mate-
rial at any time.  

 
(a)    (b)  

Fig. 16 (a) The physical test arena, called demonstrator scenario, including a separating wall, a slid-
ing door, and a (red) switch to open the door. (b) The switch can be operated by putting a 
weight on it, which will open the door. Removing the weight will close the door. This particular 
set-up has been chosen to train the robot to observe effects of its manipulation actions.  

The demonstrator scenario contains also active components: a movable dividing wall with a 
motor driven sliding door that can divide the mission area into two separate rooms. The door 
can be opened and closed via a switch. The switch is operated depending on the weight put on 
it by the robot (Fig. 16(b)). The switch has a weighing area of 25cm x 25cm, is working on a 
high sensitive pressure sensor (strain gauge element) and is adjustable to trigger on weights 
between 15g and 7kg. This particular setup has been chosen to train the robot to observe ef-
fects of its manipulation actions.  
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The demonstrator environment and the test objects have been constructed both physically and 
in simulation (Fig. 17).  

 
(a)    (b)  

Fig. 17 (a) Simple experimentation environment, showing robot KURT3D (FhG/AIS). (b) Total view of 
the demonstrator environment in MACSim.  

b. Simulator MACSim  

MACSim (Fig. 18) is a high fidelity simulation environment that models the KURT3D robotic 
platform and its environment. Built on top of a commercial quality open-source engine, ODE6 
(Open Dynamics Engine), MACSim accurately simulates the objects, robot parts, and their 
dynamics in a 3D world.  

 
Fig. 18 A snapshot from MACSim where the KURT3D robot is modelled in an environment which is 

created for the demonstrator scenario.  

The simulation model of our mobile robot provided in MACSim closely matches the real 
KURT3D robot in many aspects. Based on their physical properties, such as mass, size, and 
centre of mass, all parts that constitute the robot are modelled as rigid bodies. Later, junction 
locations of these components were measured, and they were assembled with appropriate 
joints to acquire the complete simulated robot. In order to simulate different actuators of the 

                                                
6 http://ode.org 
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robot, such as wheel systems or camera servo motors, the joints are virtually constrained and 
motorized with the parameters obtained from the real robot.  

Realistic sensor modelling is also very crucial, since robot actions and control rely on the ro-
bot’s perception of the world. While ODE provides excellent support for modelling rigid 
body dynamics based on laws of physics, similar to many low level engines, virtual sensors 
are not explicitly supported. For example, there is no ready-to-use acoustic signal or infra-red 
beam that could be sent or received. For laser scanner and infrared proximity sensors, ODE’s 
ray geometry and collision detection routines are utilized, and ray intersection method is used. 
For colour cameras, OpenGL’s back-buffer data is employed. Moreover, in order to close the 
gap between reality and simulation, sensor and actuator parameters are calibrated, based on 
the “same setup experiments” in virtual and real worlds.  

The reality of the simulator is further verified in ([66]–[67]), where the robot controllers 
trained in the simulator are successfully transferred to the real robot. For example, in [66], a 
large set of training data (approximately 3000 samples) obtained from interactions of the ro-
bot with its environment is required to learn the perception of traversability affordances. 
MACSim is utilized in a training phase to decrease the time and cost of the learning process 
and to remove any risk of physical damage that might occur on the real robot. It is later shown 
that the robot is able to perceive the same affordances offered by the environment when en-
countered with same situations either in simulated or real world. Moreover, the physical ef-
fects created in the simulator and real world are compatible when the robot executes a certain 
action in that particular situation.  
 

4.7 Proof-of-concept: Experimental results 

a. Introduction 

We have designed a demonstrator scenario and sketched a number of proof-of-concept ex-
periments [65] that are suited to demonstrate the novelty of the MACS approach. The robot 
experimented with a variety of test objects and learned cues for the presence of certain func-
tions or affordances. Cues in this sense may be invariants across a range of test objects with 
different appearances. The robot should use these test objects for different tasks, like operat-
ing a weight-sensitive switch for opening a door, or for freeing its way by pushing away 
pushable test objects. The final challenges were the use of new test objects that offer the same 
functions but have different appearances than the test objects that have been employed in the 
initial learning phase, and difficulties like taking away test objects that the robot needs for 
executing a plan.  

Separate real-world experiments have been conducted with all modules of the architecture 
(perception of affordances, learning of affordances, planning using affordances, basic skills). 
Also, various experiments have been conducted in the simulator MACSim.  

In this section, we provide an overview of the experiments we have conducted and which are 
described in several publications.  

b. Experiments 

The final demonstrator scenario has been employed for the proof-of-concept of the MACS 
approach to affordance-inspired robot control. In this scenario, our robot demonstrated the 
capabilities of its integrated affordance-inspired control architecture, where the planner cre-
ates affordance related operators using affordance maps (Fig. 19), and tasks related to learn-
ing and goal-directed use of affordances are performed based on these operators. However, 
for demonstrating and evaluating the benefits of our new robot control approach we do not 
rely on the final demonstrator alone. Instead, we decided to provide also proofs of concept for 
several significant steps during the development process. For this purpose, we defined a 
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framework for selected experiments allowing us to analyse the performance of our approach 
in an isolated and well defined way, starting with simple tasks and increasing the complexity 
step by step towards the final demonstrator scenario ([65]–[68]). In the phase of the project 
where the basic skills and perceptual feature detectors necessary for performing affordance-
related tasks were developed, specific experiments were performed to prove the explicit sup-
port for our affordance concept.  

 
Fig. 19 The world (cf. Fig. 18) is separated into several regions. If the robot perceives an affordance 

within one of those regions the affordance type is added to the map. Plans are made based 
on the constructed affordance map. 

For introducing affordance support into robot perception, we first examined the generation of 
a traversability map based on laser scanner input and a pre-programmed classification of 
traversable areas in the environment [33]. Next, we developed feature filters based on SIFT 
descriptors that enable ‘top down’ and ‘bottom up’ detection and classification of simple im-
age features. This enables the robot to distinguish features in the top, body and bottom regions 
of test objects in the environment. These filters work equally well on simulated and real cam-
era data ([69]–[72]).  

A desired basic skill of our robot is the autonomous exploration of its environment. One ques-
tion here was: Based on simple features alone, how can the robot find interesting spots in its 
environment that potentially contain items that it can manipulate, and thus enable it to learn 
from its actions. For this purpose, a special variant of the visual attention system VOCUS 
([54], cf. Sec. 1.1) has been successfully employed. For driving towards the salient location, 
the robot’s Behaviour System provides basic navigational skills, namely driving through free 
space that is computed based on data of the 3D Laser scanner. The combination of basic navi-
gational skills with salient region detection by VOCUS enables the robot to explore its envi-
ronment by selecting potentially interesting areas and driving towards them until they are in 
range of the robot’s manipulator. We have informally named this combination ‘curiosity 
drive’ behaviour. For the creation of an appropriate Behaviour System, we also performed 
experiments in autonomous navigation and map generation with basic support for affordance 
information ([38],[73]). 

Based on these concepts and results, the next development phase was dedicated to the integra-
tion of the architecture components and to the introduction of learning mechanisms. The latter 
ones are mainly employed to determine the descriptive feature sets that are either cues for a 
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certain affordance, or descriptors of the outcomes of the robot’s acting upon an affordance. 
The results of reinforcement learning experiments of predictive cues in affordance-based per-
ception were presented in ([62],[53],[51],[52]). Learning mechanisms for environmental cues 
needed for perceiving the traversability affordance were demonstrated in ([74],[66]) and used 
in ‘curiosity drive’ experiments in [67]. Here, we tried to formally define the ‘curiosity’ 
notion beyond saliency measures by introducing an SVM based measure that helps the robot 
to decide whether an interaction possibility is worthwhile exploring (cf. also below). In this 
phase, we have used extensively both the MACSim simulator and synthetic data for our de-
velopments and experiments related to learning, which was beneficial. 

In our recent experiments we accomplished the transition of primitive behaviours to goal-
directed behaviour by using learnt behaviour-effect relations and situation awareness to 
achieve more complex behaviours ([66],[76]–[78]). In this study, the robot interacts with its 
environment by executing a set of primitive behaviours and collecting interaction samples. 
Based on these experiences, the robot discovers the different effects it can create in the envi-
ronment, and associates an observed effect with the primitive behaviours and environmental 
situations that resulted in this effect. The robot then uses the learnt relations to achieve more 
complex behaviours. In our experiment, we used three primitive behaviours (turn-left, turn-
right, and move-forward) and the learnt affordance relations of these behaviours to achieve 
three different goal-directed behaviours (traverse, approach, and avoid). Since the robot learns 
the affordance relations from its own experiences, it is not trivial for a human observer to 
specify a goal that ‘makes sense’ to the robot. One solution is to use as goal descriptors effect 
prototypes that can be learned from a range of similar observed effects. As an evaluation cri-
terion, priorities can be assigned to learnt effect prototypes. This enables the robot to select 
and execute a primitive behaviour that would result in an effect similar to the goal, i.e. to the 
effect prototype having the highest priority. The results of this study are sketched in Fig. 20. 

 
Fig. 20 Three cases in which different goal-directed behaviours (traverse, avoid, approach) make use 

of different primitive behaviours (move-forward, turn-right, turn-left) in the same setting of the 
environment (source: [75]).  

The learned affordance relations can also be used as operators for planning, since they pro-
vide the capability to predict the effects of behaviours as discussed in the context of cue-
outcome based planning [41]. In a recent study [79], we used these predictions to generate 
totally ordered plans which are composed of sequences of primitive behaviours. Forward 
chaining is used for this purpose. The robot starts with perceiving the present entity, and pre-
dicts the effects that each of its (five) primitive behaviours will create. Next, it estimates the 
five future entities that the robot will perceive after execution of corresponding behaviours by 
summing up the predicted effects and current entity. The robot then proceeds by predicting 
the effects of behaviours on those future entities and estimating next entities. This process can 
be viewed as the breath-first construction of a plan tree where the branching factor is the 
number of behaviours. Planning stops when any future entity or total predicted effect of the 
behaviour sequence satisfies the desired goal. Fig. 21 shows a number of sample plans gener-
ated using learned affordance relations for different goals in various environments.  
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Fig. 21 The generated plans are shown as sequences of primitive behaviours. For lifting and stacking 

tasks the goals are defined as increase in the crane rope tension and decrease in the distance 
features on middle grids of the scan image, respectively. The primitive behaviours used in 
these experiments are turn-left, turn-right, and move-forward, lift, and release. (source: [80]).  

In another series of experiments, we studied the learning of traversability affordances and 
investigated how the required number of interactions with the environment can be minimized 
with minimal degradation on the learning process. Specifically, we applied a two step learn-
ing process which consists of bootstrapping and curiosity-based learning phases. In the boot-
strapping phase, a small set of initial interaction data were used to find the relevant perceptual 
features for the affordance, and were used to train a Support Vector Machine classifier. In the 
curiosity-driven learning phase it was determined whether a given interaction opportunity is 
worth exploring or not [67] (see Fig. 22 below). 

 

 
Fig. 22 This sequence shows how the perception of traversability affordance are used to navigate in 

blocked situations. The initial position of the robot is shown in the left-most figure. The robot 
first goes forward, then turns left since trash-bin does not afford traversability. Third snapshot 
shows the robot driving over the spherical object. The path of the robot is shown in the last 
figure. (source: [67]).  

The effects of two parameters of our learning system that serve as the curiosity threshold and 
the number of bootstrap samples were examined in systematic experiments. Selecting a small 
threshold keeps the system away from interacting with interesting situations, and selecting a 
large one slows down learning, since uninteresting samples are used for training. As for the 
number of bootstrap samples, small values degrade the performance of the system and large 
values beyond a certain threshold do not improve the performance. The affordance perception 
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system, trained using optimized parameters, was tested in our scenario cluttered with objects 
of varying shapes. In this environment, the robot was able to predict the traversability affor-
dances of the objects and wander around the room. 

The trained controller was transferred to the real robot and was also successful in predicting 
the traversability affordance of real world objects. Further experiments will make use of the 
completely integrated robot control architecture until the full complexity of the final demon-
strator scenario tasks will be achieved. 

 

 

5 OVERALL CONCLUSIONS 

5.1 Progress beyond State-of-the-Art 

a. Formalisation 

We believe that the proposed formalism [37] has laid out a good framework over which the 
concept of affordance can be utilized for autonomous robot control. The review of the affor-
dance concept and its use in different fields, with special emphasis on Autonomous Robotics 
has provided a complete snapshot of the confusion surrounding the concept and through the 
formalisation has provided its implications at different aspects of robot control ranging from 
learning to planning. This is clearly a progress beyond state-of-the-art since the affordance 
theory has mostly been used as a source of inspiration in robotics. Most of the studies re-
viewed preferred to refer to J.J. Gibson’s original ideas as formulated in his books, ignoring 
modern discussions on the concept. As a result, only certain aspects of the theory have been 
used, and no attempts to consider the implications of the whole theory towards autonomous 
robot control have been made.  

The affordance-based robot control architecture has provided a proof-of-concept implementa-
tion of how the formalism can be implemented and used in real-world. The experimental re-
sults obtained from partial implementations of the architecture has also provided convincing 
examples that the approach generates results that are beyond the current state-of-the-art in the 
field. 

b. Representation for deliberation and planning 

AI has envisaged for a long time robots acting as aided by symbolic plans, which are gener-
ated on the fly by state-of-the-art action planners. However, plan-based robot control has 
turned out to be difficult; one bag of problems associated with it is anchoring of objects in 
sensor data and of plan operators in physical action at execution. Using affordances as a first-
class citizen in the control architecture has shed some new light upon the problem. Whenever 
the planner's symbolic domain representation can be made to include actions that correspond 
to affordances (like, e.g., a ‘lift’ action in the MACS scenario, derived from the ‘liftability’ 
affordance), then grounding its execution comes practically for free. The same is true for rep-
resentations of affordances that appear in the preconditions of symbolic actions: Determining 
their validity at execution means to attend to the respective affordance. 

As a result from our study, it turns out that affordance-based and plan-based control appear to 
be easy fellows in a joint robot control architecture. This is not too surprising, given that they 
both deal with action, under different perspectives. We are not aware, however, that this has 
been explored in robotics.7 

                                                
7 The planning literature includes some hints towards that, e.g., in work about situated action [90]. 
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c. Perception 

Affordance perception has been considered so far only in the frame of functional object rec-
ognition and in the context of action based perception. A key aspect that has been neglected in 
previous approaches is the novel type of generalisation that refers to the interaction of an 
agent with parts of its environment. Visual features should not be selected by the engineer but 
should be extracted for their relevance to predict opportunities for action. For this purpose we 
considered in MACS numerous types of 2D and 3D features and demonstrated that machine 
learning methodology can determine a meaningful selection of features that generalise across 
various appearances while they at the same time characterise a specific physical property 
which can be exploited in the predicted interaction. A particular contribution in MACS is not 
only to argue but also to verify that affordances are not associated to objects—a notion which 
is derived from an ontology that is grounded in human perception—but can be related to arbi-
trary chunks of information, such as visual regions, that possess a predictive nature in estimat-
ing future outcomes of an agent's interaction with the world and its physical properties. The 
predictive nature of affordance cues requires to perform feature selection with respect to the 
goal-directedness of behaviours, the relevance of the outcome: irrelevant outcomes of actions 
are negligible for the agent and therefore negligible for perception. Consequently we intro-
duced a framework of feature selection and extraction in the context of the utility of actions 
through the association of behaviours to reward functions, rendering classification of features 
impacted by utility instead of identity as it is done in classical recognition frameworks. 

The investigations performed in MACS contributed to pave the way for a new understanding 
of machine perception, moving away from manual labelling of image databases towards the 
autonomous emergence of symbols that are grounded in sensory-motor interactions with the 
real world and the associated relevance for the agent. 

d. Learning 

The learning approach that was developed within MACS and used in the Learning Module of 
the architecture is an approach to acquire knowledge about relations that determine the inter-
action possibilities between an agent and its environment. Affordances are thus represented in 
form of entity-action-outcome triples and thus refer to both, the agent (its capabilities) and its 
environment, as initially claimed by Gibson. In our work we describe how an artificial agent, 
starting with basic interactions and using more and more complex interactions, acquires this 
knowledge by using its gathered experience. These experiences are generalized by the agent, 
enabling it to act also in novel situations. 

The approach is a general framework in which unsupervised learning methods as well as rein-
forcement learning methods are utilized. Hence the approach does not depend on a special 
learning mechanism and is thus open to future developments. Statistical approaches as well as 
traditional and novel self-organizing algorithms (as neural networks, Multi-SOMs [92], and 
ROLF [93]) are used. 

The developed learning approach clearly addresses and defines how an artificial agent can 
gain the necessary knowledge required for the purposeful usage of affordances and the com-
bination of different learning methods within this approach instead of using a monolithic 
learning method, which is novel compared to the state of the art. The approach starts with an 
initial set of reflex like actions and is designed to be able to deal with a growing set of 
(learned) actions. Thereby the approach is not limited to a special kind of actions. 

Therefore the MACS affordance learning approach closes the developmental gap between an 
‘infant agent’ and an agent that is able to use affordances purposefully. This provides a strong 
basis for using affordances in robotics to gain a more flexible and robust goal driven behav-
iour in artificial agents; and since the approach is a general concept that can be used to enable 
a wide range of artificial agents to learn affordances within its environment, it is not limited to 
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a special scenario or agent. The final software implemented within MACS, demonstrated 
through a number of experiments, shows the viability of the approach in practice. 

e. Architecture 

We would like to note that before MACS, the affordance theory of J.J. Gibson was mostly 
used either as a source of inspiration for isolated features of control in autonomous robotics, 
or the concept of affordances was used to merely describe the behaviour of a robotic system. 
Consequently, only certain aspects of the theory were used, and no attempts to consider the 
implications of the whole theory towards autonomous robot control were made. In this sense, 
the development of a complete affordance-inspired robot control architecture that is designed 
to learn, detect, and use the affordances in the environment is an important contribution of 
MACS to the field. 

 

5.2 MACS Objectives and Results 

Although other researchers occasionally attempted to relate affordances to robotics 
([19],[23],[27],[28],[30]), it is valid to state that MACS was the first dedicated investigation 
of using the concept of affordances in all stages of robot control, in perception, learning and 
planning. MACS has achieved its general goal “to explore and exploit the concept of affor-
dances for the design and implementation of autonomous mobile robots acting goal-directedly 
in a dynamic environment.” In this section, we summarise the MACS results and their rela-
tion to the project’s objectives. 

As far as perception of affordances is concerned, the concept of affordance cueing, i.e. apply-
ing a trained ‘matched filter’ when looking for affordances, is considered to be an important 
project result. Affordance cueing provides perceptual economy for robot perception, since it 
uses only a relevant fraction of the available perceptual input. Affordance cueing has been 
implemented in two different ways, namely first by using reinforcement learning for training, 
and second by using Support Vector Machines for training classifiers (the ‘matched filters’). 

Although it has not been an initial goal of MACS, it turned out in the first year of the project 
that we need a formalisation of the affordance notion in order to make use of it. Such a for-
malisation provides clear definitions that aid defining representations and implementing the 
control architecture. A first formalisation has been drafted in our deliverable D4.2.1+4.3.1. It 
provided first definitions of agent affordances and their representations. Later in the project, a 
second formalisation has been developed that introduced a formalisation of the equivalence 
concepts (entity, affordance, and outcome/effect equivalence) that are the basis for the pro-
posed flexibility. This second formalisation has been published in the Adaptive Behavior 
journal, and thus MACS has also fulfilled its aim to embed its results into Cognitive Science. 

An integrated affordance-inspired robot control system including perception module, behav-
iour system, execution control module, planner, learning module and affordance representa-
tion repository has been implemented, tested and used. The proof-of-concept has been shown 
in various experiments with the simulator MACSim and the real robot KURT3D. 

The dissemination of project results is a standard goal for all EU research projects. MACS has 
produced 16 peer-reviewed publications, two edited books, five book contributions, four the-
ses, two online articles and twelve posters.  

Research results have been presented at all major Robotics conferences (IROS, ICRA, ICDL, 
SAB), other relevant conferences and workshops, and at seminars and invited talks. MACS 
has organized a Dagstuhl seminar dedicated to its central topic, affordances for robot control. 

The general public has been addressed by several press releases that have been echoed in print 
media and on more than two dozens web sites. An Industry Day for informing interested 
companies about the research being performed in the EU’s Cognitive Systems objective has 
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been organized and conducted by MACS, with the support of the Coordination Action eu-
Cognition. At the Industry Day, six projects, including MACS, have been presented to 47 
attendees, half of them from industry. A detailed list of the project’s dissemination activities 
can be found in Annex B2. All in all, MACS has achieved its dissemination objective. 

 

5.3 Conclusions and recommendations for future work 

The concept of affordances has a strong appeal, since it seems to be intuitively understandable 
and applicable to a variety of areas. Several groups and researchers have been inspired by the 
concept of affordances. Affordances have been used in design of human-computer interfaces, 
in the development of new approaches for robot control, in linguistics, and in investigations 
of human way-finding strategies in large man-made infra-structures [81]. 

In all these areas, the major problem for utilization is to find a model that is suitable for the 
particular usage or implementation of the affordance concept. One major difficulty for finding 
operational models of the affordance concept is the vast generality of J.J. Gibson’s affordance 
definition which he simply defined for all ‘animals’. The questions arose whether it is really 
applicable to beings as different as crickets and humans, and whether it is applicable to ani-
mals at different levels of individual development. 

In this final report of the MACS project, we have presented a comprehensive approach to af-
fordance-inspired robot control. The approach is based on our own formalisation and opera-
tional model of affordances in the context of Robotics. It is built on a representational con-
cept, the affordance representation triples, consisting of cue–behaviour–outcome descriptors. 
Such representations can be generated during an initial learning phase by analysing the 
streams of basic and complex perceptual features and applying a three stage learning ap-
proach. This comprises the ‘bottom-up’ part in the proposed architecture. The ‘top-down’ part 
of the architecture foresees the use of affordances for deliberate action, i.e. mission planning 
and execution. Thus, affordance support is built into all components of the presented robot 
control architecture.  

The learned representations are grounded in the robot’s actions and perceptions, thus they 
‘make sense’ for the robot. However, for a human observer, the general comprehensibility of 
the learned affordance representations currently remains an open problem. Schönherr [82] 
presented a solution for a similar case by letting a human assign a symbol to a set of features 
designating a ‘situation’. A similar solution could be applied to assign ‘meaning’ to affor-
dance representations.  

The presented approach to affordance-based planning foresees the goal-directed selection of 
the proper kind of affordance to act upon. This first version of the planner uses PDDL to de-
fine the plan operators. A future version of an affordance-based planner could introduce new 
operators that use the full range of cue-behaviour-outcome descriptors.  

Current state-of-the-art appearance-based robot perception approaches typically can handle 
only about 100 everyday objects (German BMBF project DESIRE). This is an impressively 
high number of objects in terms of the state-of-the-art, but it is rather low compared to the 
number of objects that a human can recognize or that typically occur in a human environment 
like a flat. So for a human environment, a limited set of known everyday objects clearly limits 
a robot’s interaction possibilities. The affordance-inspired approach helps overcoming these 
limitations by introducing a different ontological slice based on functional categories as pro-
vided by affordance perception. Here, a set of features that are characteristic for a certain in-
teraction possibility are bundled as a ‘matched filter’ that works for a large number of objects 
that may belong to several different appearance categories. For example, the affordance or 
interaction possibility to drink from a drinking vessel for a human is offered by objects with 
quite different appearances like glasses, china cups, tin cups, paper cups, mugs, jars etc. Simi-
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larly, our robotic agent may traverse along a path by pushing differently looking things out of 
its way. These things must afford ‘pushability’, defined by spherical form features or cylin-
drical form features with a certain orientation (composing the matched filter). Sizes may vary 
in a certain range, and texture is irrelevant. In this way, the robot may interact with objects of 
quite different appearances. 

However, there are also many situations and tasks where (object) recognition capabilities are 
indeed required. Some tasks require the ability to identify and recognise objects and to distin-
guish individual objects. For example, humans want to distinguish a coffee cup from a water 
glass, and ‘my coffee cup’ from ‘your coffee cup’. Neisser [83] proposed an approach that 
includes both affordance-related perception and object recognition. To date this approach has 
not been realized in robot control either. Thus, as a long term research question, the interac-
tion between affordance perception and object recognition seems to be worthwhile to pursue. 
Investigating the little explored affordance-inspired perception and control is a prerequisite 
for a combined system along Neisser’s considerations.  

One of the partners of MACS project (METU-KOVAN) is now involved in the ROSSI pro-
ject. Funded within the first call of FP7 by the Cognitive Systems and Robotics unit, ROSSI 
aims at understanding the link between affordances and concepts in the form of language con-
structs such as nouns and verbs. The proposed affordance formalisation has already provided 
the framework for concept formation and will be used in the ROSSI project. 
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sectors of innovation, both at national and international levels. The Institute of Digital Image 
Processing is internationally recognised as a centre of excellence in the fields of industrial 
machine vision, cognitive vision, mobile mapping, and remote sensing, having a staff of over 
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The Computational Perception Group researches and develops in cognitive vision and ma-
chine learning with the aim to provide efficient, robust and fast image interpretation in active 
perception and mobile mapping being inspired from cognitive science. Related projects inves-
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tigate attentive image analysis, in particular on mobile visual object detection and positioning 
in urban environments, with the aim to achieve autonomous and robust interpretation of visual 
context in dynamic scenes. The Group consists of 4 permanent and 4 associated academic 
members that were and are being involved in EU-funded projects on Cognitive Vision (DE-
TECT, MACS, ECVision), multimodal interfaces (coordinator of MOBVIS) and Remote Im-
age Understanding (FIREGUARD, GMOSS), as well as national projects (JRP-ASF “Cogni-
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Organisation description:  

The Department of Computer and Informatin Science at Linköping University, Sweden, is 
one of the largest departments for computer and information science in northern Europe. It 
has more than 270 employees, of which over 50 faculty members (Ph.Ds), including 17 full 
professors. There are approximately 175 Ph.D students enrolled in Ph.D programs, including 
80 doctoral student positions. The department is divided into five divisions of which AIICS – 
The Artificial Intelligence and Integrated Computer Systems Division is one.  

AIICS is led by Patrick Doherty and has 34 members with 2 research labs and 2 research 
groups. The main focus of interest for the AIICS division is intelligent artifacts, that is, man-
made physical systems containing computational equipment and software that provide them 
with capabilities for receiving and comprehending sensory data, for reasoning, and for ra-
tional action in their environment. Such artifacts range from PDAs to UAVs and mobile ro-
bots.  

 
B1.3.4 Middle East Technical University, Ankara, Turkey 

Main researcher: 

Asst. Prof. Dr. Erol ahin is the MACS Local Manager of the Middle East 
Technical University. He is also head of the KOVAN Research Lab. 

Organisation description:  

The Middle East Technical University (METU) (http://www.metu.edu.tr) is the leading tech-
nical university in Turkey. METU is a point of reference for Turkey’s industry, engineering, 
production and new e-based activities. The fast developing and expanding Turkish economy 
and industry has traditionally looked to renowned institutions like METU for attracting engi-
neers for leadership, for consulting and problem solving collaboration.  

KOVAN research group (http://www.kovan.ceng.metu.edu.tr) consists of two staff members, 
two Ph.D. and three M.Sc. students. The team is founded and headed by Dr. Erol ahin to 
study the design of artificial autonomous systems through understanding natural systems. We 
have four active research tracks. The design and understanding of swarm robotic systems is 
the main active research track. Current research topics include; a) development of a parallized 
evolutionary system for evaluating fitness values of robot systems in parallel over a group of 
networked computers, b) physics-based modelling and simulation of swarm robotics systems, 
c) self-organized pattern formation in swarm robotic systems, d) study the use of evolutionary 
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methods in developing behaviours for a swarm of robots. The second track focuses on the 
measurement of large closed spaces by mobile robots. Inspired by ant scouts which can suc-
cessfully assess the area of potential nest sites, we investigate how we can use the same 
strategies on mobile robots as an engineering method. Our third track is on the use of evolu-
tionary methods for solving problems. We have successfully developed DARWIN, a pro-
gramming language that enables easy programming in Evolutionary Computing. Our fourth 
track explores the use of adaptation models (evolution and learning) to be used on mobile 
robots. We have made some preliminary studies on how a neural model of conditioning can 
be applied to on-line learning of simple behaviours on simple robots.  

KOVAN is participating to the Swarm-bots Project (IST-2000-31010) as a sub-contractor. 
KOVAN is also awarded a METU grant for the “Virtual Robot Colony” project.  
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Austria  

Main researcher: 

Prof. Dr. Georg Dorffner was the MACS Local Manager of the Austrian Research Institute 
for Artificial Intelligence (OFAI). He was also the head of OFAI’s Neural Computation 
Group. 
Organisation description: 

The Austrian Research Institute for Artificial Intelligence (OFAI) was founded in 1984 with 
support from the Austrian Federal Ministry for Science and Research. Within the framework 
of the Federal Development Program of the Austrian Government Microelectronics and In-
formation Processing the Institute was assigned key institute for research area S7 Artificial 
Intelligence. According to this development program, OFAI maintains close links to the De-
partment of Medical Cybernetics and Artificial Intelligence of the University of Vienna (IM-
KAI). At OFAI basic and applied research is performed in several areas of AI, such as neural 
computation, machine learning, knowledge based systems, software agents and natural lan-
guage processing.  
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ing and Diagnosis Applications), the BIOMED 1 and 2 projects ANNDEE and SIESTA on 
EEG signal analysis and the ongoing IST-FET project SIGNAL (Systemic Architectures for 
Growing Up Artefacts that Live) on cognitive robotics. Today, the group is one of the largest 
and most renowned neural computation research groups in Austria. The main foci of work at 
the group include time series and signal processing, cognitive neuroscience and cognitive 
modelling.  

 
B1.3.6 Universität Osnabrück, Osnabrück, Germany 

Main researcher: 

Prof. Dr. Joachim Hertzberg was the MACS Local Manager of Univer-
sity of Osnabrück’s (UOS) Department of Mathematics/Computer Science. He is also the 
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head of the Knowledge-based Systems Research Group and currently the dean of the Depart-
ment of Mathematics/Computer Science. 

Organisation description: 

The University of Osnabrück (UOS, www.uni-osnabrueck.de) is among the younger universi-
ties in Germany, starting operation in 1974. With about 10,000 students 600 PhD students and 
a staff of 1,350, it is also one of the smaller universities. Students can choose from over 80 
degree programmes in the Humanities, Social Sciences, Natural Sciences, Law, and Business 
Studies. Most study programmes follow the Bachelors/Masters scheme, using the ECTS cre-
dit point rating. Complementary to its classical faculty structure, the university features a high 
number of interdisciplinary units (such as the Institute for Cognitive Science) and study pro-
grammes, exploiting the flexibility of a young and small university.  

The Institute for Computer Science (www.inf.uos.de) is part of UOS’s Department of 
Mathematics/Computer Science. It currently comprises seven working groups, four of which 
have been founded (3) or re-founded (1) within the last three years. It is planned to further 
enlarge the institute, together with its move from offering only secondary-subject studies on 
Diploma, Bachelors, and Masters levels to additionally offering a consecutive Master in In-
formatics (starting in Winter Semester 2006/07). Three of the four recently founded working 
groups (Neuroinformatics, Knowledge-Based Systems, Technical Informatics) use mobile 
robots as a focus of their work in teaching and research.  

The Knowledge-Based Systems (KBS) Group (www.inf.uos.de/kbs) has been founded in Sep-
tember 2004, when Prof. Joachim Hertzberg joined UOS. In addition to him, the group cur-
rently consists of four full staff researchers (two on teaching positions, one in MACS, one on 
the BMBF-funded project LISA) plus secretariat and infrastructure staff. In 2006, three PhDs 
(two of them by externals), four Masters, and four Bachelors have graduated under primary 
supervision by KBS. The current research topics are grouped around robot navigation, 
SLAM, semantic mapping, plan-based robot control, and rescue robotics. Current equipment 
of the KBS group includes four KURT2 robot platforms and one KURT3D platform. Partners in 
formalised cooperations include Fraunhofer IAIS and IFF; the companies Fox GmbH, Schunk 
and Jenoptik. Currently informal cooperation is close with the Universities Bonn, Hannover 
and TU Munich; with AASS (Örebro, Sweden) and LAAS (Toulouse, France); and with Te-
lekom Labs (Berlin).  
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B2. MACS Dissemination Activities 

B2.1 Publications 

Peer-reviewed journal articles 

E. ahin, M. Çakmak, M.R. Doğar, E. Uğur, and G. Ücoluk (2007): To afford or not to af-
ford: A new formalisation of affordances towards affordance-based robot control. Adaptive 
Behaviour, volume 15, number 4, pp. 447–472, 2007. 

 

Peer-reviewed conference papers 

J. Irran, F. Kintzler and P.M. Pölz (2006): Grounding Affordances, In: Trappl R. (ed.): Cy-
bernetics and Systems 2006, Proc. Of 18th European Meeting on Cybernetics and Systems 
Research (EMCSR), Vienna: Austrian Society for Cybernetic Studies, ISBN 3 85206 172 5. 

L. Paletta, G. Fritz, E. Rome and G. Dorffner (2006): A computational model for visual learn-
ing of affordance-like cues. ECVP06 European Conference on Visual Perception, St. Peters-
burg, Russia, August 20–25, 2006, Perception, Vol. 35, abstracts, page 18, Pion Ltd., London, 
UK. 

G. Fritz, L. Paletta, R. Breithaupt, E. Rome, and G. Dorffner (2006):  Learning predictive 
features in affordance-based robotic systems. In: Proc. of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS 2006, pp. 3642–3647. Conference: Beijing, 
China, October 9–15, 2006. 

G. Fritz, L. Paletta, M. Kumar, G. Dorffner, R. Breithaupt, and E. Rome (2006):  Visual 
Learning of Affordance based Cues. In: Proc. Ninth International Conference on the Simula-
tion of Adaptive Behaviour, SAB 2006, pp. 52–64, Springer-Verlag, Berlin, LNAI 4095. Con-
ference: Rome, Italy, September 25–29, 2006. 

D. Holz and C. Lörken (2007): Continuous 3D Environment Sensing for Autonomous Robot 
Navigation and Mapping. In: Proc. of the 9. Fachwissenschaftlicher Informatik-Kongress, 
Lecture Notes in Informatics (LNI), Series of the Gesellschaft für Informatik (GI), ISBN 978-
3-88579-439-4, pp. 39–42, Bonn, Germany, March 2007. 

E. Uğur, M.R. Doğar, M. Çakmak, and E. ahin (2007):  The learning and use of traversa-
bility affordance using range images on a mobile robot. In: Proc. of IEEE International Con-
ference on Robotics and Automation, ICRA 2007, pp. 1721–1726, IEEE, 2007. Conference: 
Rome, Italy, 2007. 

L. Paletta and G. Fritz (2007):  Reinforcement Learning of Predictive Features. In: Proc. 31st 
Workshop of the Austrian Association for Pattern Recognition, AAPR / ÖAGM 2007, pp. 
105–112. Conference: Krumbach, Austria, May 3–4, 2007. 

L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner (2007): Learning to Perceive Affor-
dances in a Framework of Developmental Embodied Cognition. In: Proc. IEEE 6th Interna-
tional Conference on Development and Learning, ICDL 2007, pp. 110–115, IEEE. Confer-
ence: London, UK, July 11–13, 2007. 

E. Uğur, M.R. Doğar, M. Çakmak, and E. ahin (2007): Curiosity-driven Learning of Traver-
sability Affordance on a Mobile Robot. In: Proc. IEEE 6th International Conference on De-
velopment and Learning, ICDL 2007, pp. 13–18, IEEE. Conference: London, UK, July 11–
13, 2007. 

A. Bartel, F. Meyer, C. Sinke, T. Wiemann, A. Nüchter, K. Lingemann, and J. Hertzberg: 
Real-Time Outdoor Trail Detection on a Mobile Robot. In: Proc. of the 13th IASTED Interna-
tional Conference on Robotics and Applications, pp. 477–482, Würzburg, Germany, August 
2007. 
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L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner (2007): Perception and Developmen-
tal Learning of Affordances in Autonomous Robots. In: Proc. 30th German Conference on 
Artificial Intelligence, KI 2007, pp. 235–250, Springer-Verlag, Berlin, LNCS 4667. Confer-
ence: Osnabrück, Germany, September 10–13, 2007. 

S. May, M. Klodt, E. Rome, and R. Breithaupt (2007): GPU-accelerated Affordance Cueing 
based on Visual Attention. In: Proc. of IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems, IROS 2007, pp. 3385-3390, IEEE. Conference: San Diego, CA, USA, Oc-
tober 29 – November 2, 2007. 

M.R. Doğar, M. Çakmak, E. Uğur, and E. ahin (2007):  From Primitive Behaviours to Goal-
Directed Behaviour Using Affordances. In: Proc. of IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS 2007, pp. 729–734, IEEE. Conference: San Diego, CA, 
USA, October 29 – November 2, 2007. 

M. Çakmak. M.R. Doğar, E. Uğur, and E. ahin (2007):  Affordances as a Framework for 
Robot Control. In: Proc. of International Conference on Epigenetic Robotics (EpiRob 2007), 
Conference: Piscataway, NJ, USA, November 5–7, 2007. 

M.R. Doğar, E. ahin, E. Uğur, and M. Çakmak (2008): Using Learned Affordances for Ro-
botic Behaviour Development. Accepted for the IEEE International Conference on Robotics 
and Automation, ICRA 2008. 

Ch. Lörken and J. Hertzberg (2008): Grounding planning operators by affordance. Accepted 
for the International Conference on Cognitive Systems 2008 (CogSys 2008).  

 

Edited books 

E. Rome, J. Hertzberg, and G. Dorffner (eds): Towards Affordance-based Robot Con-
trol. Proceedings of Dagstuhl Seminar 06231. Springer-Verlag, Lecture Notes in Computer 
Science – LNAI 4760, Springer-Verlag, Berlin, Germany, February 2008. 

L. Paletta and E. Rome (eds): Attention in Cognitive Systems. Lecture Notes in Computer Sci-
ence – LNAI 4840, Springer-Verlag, Berlin, Germany, January 2008.  

 

Book chapters and online articles 

L. Paletta and G. Fritz (2007): Reinforcement Learning of Predictive Features in Affordance 
Perception. In: Towards Affordance-based Robot Control, Proceedings of Dagstuhl Seminar 
06231, Springer-Verlag, LNAI 4760, E. Rome, J. Hertzberg and G. Dorffner (eds.), February 
2008. 

L. Paletta and G. Fritz (2007): Reinforcement Learning for Decision Making in Sequential 
Attention, in Paletta, L., and Rome, E., Eds., Attention in Cognitive Systems, Lecture Notes in 
Computer Science – LNAI 4840, pp. 293-306, Springer-Verlag, Berlin, Germany. 

J. Hertzberg, K. Lingemann, C. Lörken, A. Nüchter, and S. Stiene (2007):  Does it Help a 
Robot Navigate to Call Navigability an Affordance?  In: Towards Affordance-based Robot 
Control, Proceedings of Dagstuhl Seminar 06231, Springer-Verlag, LNAI 4760, E. Rome, J. 
Hertzberg and G. Dorffner (eds.), February 2008. 

J. Irran, F. Kintzler, and G. Dorffner (2007): Learning of Interaction Possibilities.  In: To-
wards Affordance-based Robot Control, Proceedings of Dagstuhl Seminar 06231, Springer-
Verlag, LNAI 4760, E. Rome, J. Hertzberg and G. Dorffner (eds.), February 2008. 

E. Rome, L. Paletta, E. ahin, G. Dorffner, J. Hertzberg, R. Breithaupt, G. Fritz, J. Irran, F. 

Kintzler, C. Lörken, S. May, and E. Uğur (2007): The MACS project: An approach to affor-
dance-based robot control.  In: Towards Affordance-based Robot Control, Proceedings of 
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Dagstuhl Seminar 06231, Springer-Verlag, LNAI 4760, E. Rome, J. Hertzberg, and G. 
Dorffner (eds.), February 2008. 

E. Rome, J. Hertzberg, G. Dorffner and P. Doherty (2006): Towards Affordance-based Robot 
Control – Executive Summary of the Dagstuhl Seminar 06231. In: Online proceedings of 
Dagstuhl Seminar 06231  
http://drops.dagstuhl.de/opus/volltexte/2006/725/pdf/06231.SWM.Paper.725.pdf 

E. Rome, J. Hertzberg, G. Dorffner, P. Doherty et al. (2006): Towards Affordance-based Ro-
bot Control – Abstracts Collection of the Dagstuhl Seminar 06231. In: Online proceedings of 
Dagstuhl Seminar 06231  
http://drops.dagstuhl.de/opus/volltexte/2006/722/pdf/06231_abstracts_collection.722.pdf 

 

Posters 

M.R. Dogar and S. Eren (2005): MACS project overview. First EURON Summer School on 
Perception and Sensor Fusion in Mobile Robotics Conference: Ancona, Italy, September 1–7, 
2005. 

L. Paletta (2006): poster presentation, euCognition Inaugural Meeting, Conference: Nice, 
France, February 16–17, 2006. 

F. Kintzler and J. Irran (2006): poster presentation, euCognition Inaugural Meeting, Confer-
ence: Nice, France, February 16–17, 2006. 

F. Kintzler and J. Irran (2006): Affordance-based Learning. Robot Challenge 2006. Confer-
ence: Vienna, Austria, March 11, 2006. 

F. Kintzler and J. Irran (2006): Affordance-based Learning. Brain Awareness Week 2006. 
Conference: Vienna, Austria, March 13–18, 2006. 

F. Kintzler and J. Irran (2006): Affordance-based Learning Approach. CogSys II – 2nd Cog-
nitive Systems Networking Meeting. Conference: Nijmegen, The Netherlands, April 12–13, 
2006. 

G. Fritz, L. Paletta, R. Breithaupt, E. Rome, and G. Dorffner (2006):  Affordance perception 
as a basis for cognitive development. poster for COGROB06 (The Fifth International Cogni-
tive Robotics Workshop / AAAI), Boston, MA, USA, July 16–17, 2006. 

L. Paletta and G. Fritz (2006): Reinforcement Learning for the Selection of Predictive Cues in 
Affordance-based Perception, ECVP06 European Conference on Visual Perception, St. Pe-
tersburg, Russia, August 20–25, 2006, Perception, Vol. 35, abstracts, page 48, Pion Ltd., 
London, UK. 

L. Paletta and G. Fritz (2006): Local Descriptor Groupings in Reinforcement Learning of 
Sensory-Motor Attention, ECVP06 European Conference on Visual Perception, St. Peters-
burg, Russia, August 20–25, 2006, Perception, Vol. 35, abstracts, page 48, Pion Ltd., London, 
UK. 

L. Paletta and G. Fritz (2008): poster presentation, Cognitive Systems Industry Day, Confer-
ence: Sankt Augustin, Germany, January 29, 2008. 

R. Breithaupt, E. Rome, S. May (2008): poster presentation, Cognitive Systems Industry Day, 
Conference: Sankt Augustin, Germany, January 29, 2008. 

J. Hertzberg, C. Lörken, F. Meyer, A. Bartel (2008): poster presentation, Cognitive Systems 
Industry Day, Conference: Sankt Augustin, Germany, January 29, 2008. 
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Theses 

Frank Meyer:  
Surface detection in 3D range data for mobile crane manipulation. Bachelor Thesis, Univer-
sity of Osnabrück, Institute for Cognitive Science, March 2008. 

Christopher Lörken:   
Introducing Affordances into Robot Task Execution. Masters Thesis, University of Os-
nabrück, Institute for Cognitive Science, 2006. Available online as PICS Volume 2-2007, 
URL: http://www.cogsci.uni-osnabrueck.de/cogsci/de/m.ikwPublications.php. 

Emre Uğur:  
Direct Perception of Traversability Affordance on Range Images Through Learning on a Mo-
bile Robot. M.Sc. Thesis, Middle East Technical University, Kovan Laboratory, 2006. 

Maya Çakmak:  
Robot Planning based on Learned Affordances. M.Sc. Thesis, Middle East Technical Univer-
sity, Kovan Laboratory, July 2007. 

Mehmet Remzi Doğar:  
Using Learned Affordances for Robot Behaviour Development. M.Sc. Thesis, Middle East 
Technical University, Kovan Laboratory, September 2007. 

 

B2.2 Conferences, Workshops, Seminars, Networking 

Conferences and Workshops organized by MACS staff 

June 5–9, 2006 

Wadern, Germany 

Dagstuhl Seminar "Towards Affordance-Based Robot Control” 

Erich Rome (FhG/AIS), Georg Dorffner (OFAI), Joachim Hertz-
berg (UOS): Seminar organisation 

Jan 8, 2007 

Hyderabad, India 

WAPCV 07 – 4th International Workshop on Attention in Cogni-
tive Systems 

Lucas Paletta (JR_DIB), Erich Rome (FhG/AIS): Workshop orga-
nization 

Sep 10–13, 2007 

Osnabrück, Germany 

KI 2007 – 30th German Conference on Artificial Intelligence 

Joachim Hertzberg (UOS): Organisation 

Jan 29, 2008 

Sankt Augustin, Ger-
many 

Cognitive Systems Industry Day 

Erich Rome (FhG/AIS): Organization  
Erich Rome (FhG/AIS): Presentation on MACS 

 

Presentations on Conferences and Workshops 

Mar 11, 2006 

Vienna, Austria 

Robot Challenge 2006 

Florian Kintzler and Jörg Irran (OFAI): poster presentation 

Mar 13–18, 2006 

Vienna, Austria 

Brain Awareness Week 2006 

Florian Kintzler and Jörg Irran (OFAI): poster presentation 

April 18–21 

Vienna, Austria 

EMCSR 2006 – 18th European Meeting on Cybernetics and Sys-
tems Research 2006 

Florian Kintzler and Jörg Irran (OFAI): Grounding Affordances 

Jul 16–17, 2006 

Boston, MA, USA 

COGROB 06 – The Fifth International Cognitive Robotics Work-
shop (in conjunction with AAAI) 

Gerald Fritz (JR_DIB): Affordance perception as a basis for cogni-
tive development 



EC-Project MACS – Final Activity Report  

 

Page 55 of 63  

Aug 20–25, 2006 

St. Petersburg, Russia 

ECVP 2006 – European Conference on Visual Perception 

Lucas Paletta (JR_DIB): 1. A computational model for visual lear-
ning of affordance-like cues, 2. Reinforcement Learning for the 
Selection of Predictive Cues in Affordance-based Perception 

Sep 25–29, 2006 

Rome, Italy 

SAB ’06 – FROM ANIMALS TO ANIMATS 9: The Ninth Inter-
national Conference on the Simulation of Adaptive Behaviour 

Lucas Paletta (JR_DIB): Visual Learning of Affordance based Cues 

Oct 9–15, 2006 

Beijing, PR China 

IROS 2006 – IEEE/RSJ International Conference on Intelligent 
Robots and Systems 

Stefan May (FhG/AIS): Learning predictive features in affordance-
based robotic systems 

Mar 30–31, 2007 

Bonn, Germany 

Informatiktage 2007 – 9. Fachwissenschaftlicher Informatik-Kon-
gress 

Dirk Holz (FhG/AIS): Continuous 3D Environment Sensing for 
Autonomous Robot Navigation and Mapping 

April 10–14, 2007 

Rome, Italy 

ICRA 2007 – 2007 IEEE International Conference on Robotics and 
Automation 

Emre Uğur (METU-KOVAN): The learning and use of traversa-
bility affordance using range images on a mobile robot 

July 11–13, 2007 

London, UK 

ICDL 2007 – 2007 IEEE International Conference on Develop-
ment and Learning (ICRA 2007)  

Lucas Paletta (JR_DIB): Learning to Perceive Affordances in a 
Framework of Developmental Embodied Cognition 

Emre Uğur (METU-KOVAN): Curiosity-driven Learning of Tra-
versability Affordance on a Mobile Robot 

Sep 10–13, 2007 

Osnabrück, Germany 

KI 2007 – 30th German Conference on Artificial Intelligence 

Joachim Hertzberg (UOS): Organisation 

Lucas Paletta et al. (JR_DIB): Developmental Learning of Affor-
dances in Autonomous Robots 

Oct 29 – Nov 2, 2007 

San Diego, CA, USA 

IROS 2007 – 2007 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems 

Stefan May (FhG/IAIS): GPU-accelerated Affordance Cueing ba-
sed on Visual Attention 

Mehmet Doğar (METU-KOVAN): From Primitive Behaviours to 
Goal-Directed Behaviour Using Affordances 

Nov 5–7, 2007 

Piscataway, NJ, USA 

EpiRob 2007 – International Conference on Epigenetic Robotics 

Maya Çakmak (METU-KOVAN): Affordances as a Framework for 
Robot Control 

April 2–4, 2008 

Karlsruhe, Germany 

CogSys 2008 – International Conference on Cognitive Systems 

Joachim Hertzberg (UOS): Affordances as a Framework for Robot 
Control 

May 19–23, 2008 

Pasadena, CA, USA 

ICRA 2008 – 2008 IEEE International Conference on Robotics and 
Automation 

Mehmet Doğar (METU-KOVAN): Using Learned Affordances for 
Robotic Behaviour Development 
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Presentations on Seminars 

June 5–9, 2006 

Wadern, Germany 

Dagstuhl Seminar "Towards Affordance-Based Robot Control” 

Erol ahin (METU-KOVAN): Oral presentation on formalising 
affordances 

Lucas Paletta (JR_DIB): Oral presentation on perception of affor-
dances 

Florian Kintzler (OFAI): Oral presentation on learning of affor-
dances 

Erich Rome (FhG/AIS): Oral presentation on MACS 

July 16, 2007 

Edinburgh, UK 

Seminar at University of Edinburgh, Institute for Perception, 
Action and Behaviour 

Emre Uğur (METU-KOVAN): The learning and use of traversabil-
ity affordance on a mobile robot 

 

Networking and other Dissemination 

Oct 28–30, 2004 

Bled, Slovenia 

Cognitive Systems Networking Meeting  

Erich Rome (FhG/AIS): oral presentation, introduction to MACS 

Nov 15–17 

The Hague, The Neth-
erlands 

IST Congress 2004  

Lucas Paletta (JR_DIB): Cognition networking session, Nov 16 

Feb 16–17, 2006 

Nice, France 

euCognition Inaugural Meeting  

Lucas Paletta (JR_DIB): poster presentation  

Florian Kintzler and Jörg Irran (OFAI): poster presentation  

April 12–13, 2006 

Nijmegen, The Neth-
erlands 

CogSys II – 2nd Cognitive Systems Networking Meeting 

Erich Rome (FhG/AIS): oral presentation on MACS 

Florian Kintzler and Jörg Irran (OFAI): poster presentation learning 
approach 

Jan 24, 2007 

Karlsruhe, Germany 

VDI-GMA Fachausschusssitzung 4.13 Robotersysteme 

Erich Rome (FhG/AIS): Invited MACS Overview Talk 

Jan 29, 2008 

Sankt Augustin, Ger-
many 

Cognitive Systems Industry Day 

Erich Rome (FhG/AIS): Presentation on MACS 

Lucas Paletta and Gerald Fritz (JR_DIB): poster presentation 

J. Hertzberg, C. Lörken, F. Meyer, A. Bartel (UOS): poster presen-
tation 

R. Breithaupt, E. Rome, S. May (FhG/AIS): poster presentation 

 

B2.3 MACS Website 

The MACS project is documented on its project web site at URL http://www.macs-eu.org. 

 

B2.4 Education 

During the execution of MACS, several students completed their theses on topics directly 
related to and contributing to MACS.  



EC-Project MACS – Final Activity Report  

 

Page 57 of 63  

Christopher Lörken:   
Introducing Affordances into Robot Task Execution. Masters Thesis, University of Os-
nabrück, Institute for Cognitive Science, 2006. Available online as PICS Volume 2-2007, 
URL: http://www.cogsci.uni-osnabrueck.de/cogsci/de/m.ikwPublications.php. 

Emre Uğur:  
Direct Perception of Traversability Affordance on Range Images Through Learning on a Mo-
bile Robot. M.Sc. Thesis, Middle East Technical University, Kovan Laboratory, 2006. 

Maya Çakmak:  
Robot Planning based on Learned Affordances. M.Sc. Thesis, Middle East Technical Univer-
sity, Kovan Laboratory, July 2007. 

Mehmet Remzi Doğar:  
Using Learned Affordances for Robot Behaviour Development. M.Sc. Thesis, Middle East 
Technical University, Kovan Laboratory, September 2007. 
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B3. List of Deliverables  

Del. 

no. 

MACS Deliverable title Nature 

D0.1.1  Project handbook and quality management plan  R 

D1.1.1 Specification of SW development environment R 

D2.1.1 Identification of architectural requirements of an affordance-based control R 

D4.1.1 A conference or journal article summarising the results of task 4.1. P 

D5.1.1 Overview of existing affordance learning approaches R 

D6.5.1 Project web site and Project Presentation S, W 

D1.1.2 Specification of module interfaces R 

D2.2.1 Evaluation of existing control architectures for using affordances S, R 

D4.2.1 A conference or journal article summarising the results of task 4.2. P 

D6.1.1 Specification of final demonstrator R 

D6.4.1 Report on experiment design R 

D1.1.3 Implementation of SW development environment S, DO 

D3.1.1 Top-down and bottom-up symbol grounding S, R 

D3.1.2 Affordance recognition from visual cues S, R 

D4.3.1 A specificationof a software module for affordance representation R 

D5.2.1 Implementation of unsupervised and reinforcement learning algorithms R, S 

D3.1.4 Prototypical affordance based object detection for MACS scenario R, S 

D5.3.1 Robotic learning architecture that can be taught by manually putting the robot 

through action sequences 

S, R 

D3.1.3 Saliency detection with visual attention R, S 

D1.2.1 Simulation of KURT2 Platform S, R 

D6.2.1 Simulation model of final demonstrator scenario S, R 

D1.3.1 Integrated implementation of reference control system S, R 

D2.2.2 Development of an affordance-based control architecture S, R 

D3.2.1 Multi-sensor affordance recognition DO, S, R 

D3.3.1 Prototypical sensormotor based affordance recognition R, S 

D4.3.2 A software prototype for affordance support S 

D5.3.2 Robotic learning architecture capable of autonomously segment action se-

quences into affordances 

S, R 

D5.4.2 Prototypical software for representing and learning visual affordance support R, S 

D6.3.1 Physical robot demonstrator and scenario R, DO, S 

D2.3.1 Implementation of the affordance-based control architecture S, R 

D4.4.1 A software prototype for an  affordance monitoring module with empirical test-

ing using various MACS robotics platforms 

S, R 

D5.3.3 Robot protoype learning affordances through self-experience S, R 

D6.4.2 Report on experimental results in simulator R 

D3.3.2 Sensorimotor decision making and affordance recognition S, R 

D2.3.2 A specification for a propositional planner and its interface to the MACS Execu-

tion Control Module 

R 

D5.4.5 Outlook towards affordance usage observation and imitation R 

D5.3.3 Robot prototype learning affordances through self-experience V2 S, R 

D6.4.3 Report on experimental results in demonstrator R 

D4.3.3 A software prototype of the propositional MACS planning module S, R 

D3.3.2 Sensorimotor decision making and affordance recognition S, R 

 

Legend: R: Report, S: Software, DO: Documentation, M: Meeting/Workshop 
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Del. 

no. 

MACS Deliverable title Nature 

D4.4.3 An evaluation of the MACS planning module in the context of the MACS archi-

tecture 

R 

D6.5.2 Industry Day M 

D4.4.4 Submission of a conference or journal article describing the results of D4.3.4 

and D4.4.3 

P 

D0.1.7 Publishable Final Activity Report R 

 

Legend: R: Report, S: Software, DO: Documentation, M: Meeting/Workshop 
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ANNEX C. Definitions, Terms & Acronyms 

C1. Definitions 
Initial Definition 1 ((Agent) Affordance). An affordance is a relation between the agent and 
its environment as acquired from the interaction of the two. � 

 

Definition 2 (Affordance Representation). An affordance representation or affordance triple 
is a data structure:  

(cue descriptor, behaviour descriptor, outcome descriptor).              (1) 
Here, a cue descriptor or an outcome descriptor is specified as a list of attribute value pairs. 
A behaviour descriptor consists of one or more behaviour identifiers. Optionally, parameters 
for these behaviours can be specified. � 

 

Refined Definition 3 ((Agent) Affordance). An affordance is an acquired relation between a 
certain effect and a (entity, behavior) tuple, such that when the agent applies the behavior on 
the entity, the effect is generated. � 

 

Definition 4 (Affordance (agent perspective)). An affordance is an acquired relation bet-
ween a certain <effect> and a certain <(entity, behavior)> tuple such that when the agent 
applies a (entity, behavior) within <(entity, behavior)>, an effect within <effect> is genera-
ted. � 

 

C2. A Glossary of Terms 
Affordance Representation Repository: Stores affordance representations (→def.) gener-
ated through manual design or through learning. 

Action: An action is a distinguished subset of events deemed under an agent’s control. In 
artificial intelligence, actions generally have a structure consisting of a precondition repre-
senting the constraints required to successfully invoke the action, durative conditions (if the 
action has duration) representing the causal dependencies and durative effects the action has 
during its execution and a post-condition representing the direct effects the action has. In the 
context of a causal theory, one often distinguishes direct effects from indirect effects or rami-
fications of the action. The term →outcome will be used as another term for the direct effect 
of an action, or in the case of causal theories, for the combination of direct, durative and indi-
rect effects. 

Actuators: “a mechanical device for moving or controlling something” (definition from Mer-
riam-Webster, [1]). 

Affordance-based behaviours: An affordance-based behaviour is an enhancement of a robot 
behaviour by enriching the sensor space and knowledge base of an artificial agent by affor-
dance information. Robot behaviours that are especially prepared for such enhancements are 

called →affordance-related behaviours. 

Affordance-related behaviours: A group of →high-level behaviours that are directly related 
to agent affordances (→def.) in terms of manipulating objects or trying to manipulate objects. 
Examples would be behaviours that lift, push or carry items. 

Affordance hypothesis verification: Suppose the robot perceives a cue c that supports the 
presence of an affordance A represented by at least triple (c,b,o). A offers the potential of 
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executing a behaviour b. The robot hypothesizes that the execution of the behaviour b leads to 
the outcome described by o. During the execution of b (and eventually a certain time thereaf-
ter) it observes the outcome o'. During the whole time period, the outcome o' must match to 
the hypothesized outcome o. In this case the affordace hypothesis is verified. The step of 
comparing o' and o is then called Affordance Hypothesis Verification. 

Behaviour system: The collection of →robot behaviours for a given robot. 

Behaviour: See →robot behaviour. 

Components: Refers to modules and other parts of the robot control architecture. Typically, a 
part of a module would be named component. 

Cue: “Something serving as a signal or suggestion ... <hint> ... a suggestion for action given 
briefly or in an indirect manner ...” [2]. Here: the perceptual data part of an →affordance rep-
resentation that supports the existence of the associated agent affordance. 

Deliberation module: →Components of the control architecture that enable deliberate or 
planned acts. 

Entity schema: An entity structure (→def.) that consists of pairs of attributes and value ran-
ges, e.g.—arbitrary notation used here—((form, circular), (sizes, (10:20, 30:50, 80:120))). 

External sensor: →Robot sensor for perceiving the world. An external or exteroperceptive 
sensor is a device that senses the surrounding environment, i.e. a sensor that takes measure-
ments of the surrounding environment and translates these measurements into useful data for 
the robot. Including, but not limited to: cameras, ranging sensors, odometry sensors, gyro-
scopes. 

Feature extraction: “Feature extraction is a special form of dimensionality reduction and is 
in the area of image processing also connected with shape recognition. ... It can be used in the 
area of image processing which involves using algorithms to detect and isolate various de-
sired portions or shapes (features) of a digitized image or video stream.” (definition from 
Wikipedia, [3]). Feature extraction may employ specialized →filters for implementing the 
extraction of particular features from an image. 

Filter: A computer program to transform or selectively reduce the amount of information in a 
set of data or a data stream. Also: analog or digital image processing (IP) operations to en-
hance or modify an image. Here, the data stream is a stream of sensory data. Filters for a 
stream of image data are called image filters. Image filters take an image as input, perform 
certain operations on it, and return the result image. An example is a Gaussian blur filter that 
smoothes a small image portion around a centre pixel in a specified radius. 

Goal: “Usually specified as one or a set of world states. There are three kinds of goals: main-
taining some condition, preventing some condition from occurring, or sequencing activities.” 
[4] 

High-Level / Complex behaviours: Goal-oriented robot behaviours that fulfil more complex 
tasks than merely reacting to perceptual stimuli. They often may use other high-level or 
→low-level behaviours to reach their →goal. For example, a behaviour that explores the en-
vironment by wandering around may use reactive behaviours for driving and for avoiding 
obstacles. All →affordance-related behaviours are high-level behaviours. 

Internal sensor: An internal or proprioceptive sensor is a →robot sensor device that moni-
tors and senses conditions of the robot and its hardware. Including, but not limited to: tem-
perature sensor for monitoring the internal temperature, inclinometers for sensing the robot 
pose, voltage sensors for monitoring the battery status. 
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Learning module: Uses →machine learning techniques for acquiring and structuring infor-
mation and for realizing adaptivity. 

Low-Level / Simple behaviours: See →reactive behaviours. 

Machine learning: “Machine learning refers to the ability of computers to automatically ac-
quire new knowledge, learning from, for example, past cases or experience, from the com-
puter’s own experiences, or from exploration. ... Machine learning enables computer software 
to adapt to changing circumstances, enabling it to make better decisions than non-AI soft-
ware.” (definition from Stottler Henke Associates, Inc. Glossary of AI terms, [5]).  

Outcome: Here: the perceptual data part of an →affordance representation that is employed 
to verify the robot’s hypothesis of the expected results of its behaviours (→affordance hy-
pothesis verification). Outcome refers to a situation and thus may have a temporal component. 

Perception module: “... 3a: awareness of the elements of environment through physical sen-
sation ...” (definition from Merriam-Webster online [6]). Also: “In perception the environ-
ment is scanned by means of various sensory organs, real or artificial, and the scene is de-
composed into separate objects in various spatial relationships.” (definition from Encyclope-
dia Britannica online, article on Artificial Intelligence [7]). In the context of robotic systems, 
this module should generate an interpretation, using the raw spatiotemporal multimodal data 
incoming from extero- and proprioceptive →robot sensors, for the benefit of the →execution 
module, the →behaviour system, and the →Learning module. 

Plan: “A plan is a representation of a course of action.” [4] 

Planning: “Deciding upon a course of action before acting. A →plan is a representation of a 
course of action. A finished plan is a linear or partially ordered sequence of operators. Plan-
ning is reasoning about future events in order to verify the existence of a reasonable series of 
actions to take in order to accomplish a →goal. ” [4] 

Planner: “Artificial Intelligence (AI) Planning is areas of study concerned with the automatic 
generation of a →plan to solve a problem within a particular domain. Given an initial state, 
the planner tries to find the actions required to achieve some →goal conditions.” [8] 

Raw sensor data: →Robot sensor data that are provided by the →Perception module without 
prior →feature extraction. For the MACS architecture, raw sensor data might have passed 
synchronisation services and/or transformation into a suitable data structure, like an entity 
frame (→def.). Such services are provided, for instance, by the →Entity Structure Generation 
Module. 

Reactive behaviours: →Robot behaviours with a very tight perception-action coupling that 
have the need to react fast to sensory input. For example, a reactive brake behaviour will stop 
the robot directly if an obstacle is detected in close proximity in heading direction. 

(Robot) behaviour: A robot control routine using a perception-action cycle for performing 
certain limited actions. For example, a “wall following behaviour” may use range sensors to 
keep the robot at a specified distance from a wall while driving along that wall at a specified 
speed. 

Robot sensors: A sensor for a mobile robot is a physical device that detects or senses a signal 
or physical condition of the robot or the robot’s environment. A robot sensor yields sensory 
data that can be processed by a robot’s perception software, e.g. the →perception module in 
general and its →feature extraction part, for instance. The robot’s hardware sensors are 
coarsely divided into →external and →internal sensors. →Virtual (software) sensors can be 
added. 
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Scheduler: “Scheduling is deciding how to allocate one or more resources to accomplish par-
ticular activities over time so that input demands are met in a timely and cost-effective man-
ner. Most typically, this involves determining a set of activity start and end times, together 
with resource assignments, which satisfy all temporal constraints on activity execution, satisfy 
resource capacity constraints and optimize some set of performance objectives to the extent 
possible.” [8] 

Virtual sensor: Virtual sensors are software modules that filter or combine sensory data in 
order to generate new information. →Feature extraction may be viewed as a virtual sensor. 
Monitors for control program state information may be implemented as virtual sensors, too. 
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