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ABSTRACT 

 

IMPLEMENTATION OF NOISE FILTERING ALGORITHM FOR 

AUTOMATED PRESSURE TRANSIENT ANALYSIS 

 

 

 

 

Coşar, Doğuhan 

Master of Science, Petroleum and Natural Gas Engineering 
Supervisor: Assoc. Prof. Dr. Çağlar Sınayuç 

Co-Supervisor:  
 
 

September 2022, 102 pages 

 

In order to estimate reservoir parameters such as permeability and skin factor, well 

tests are performed. Pressures are recorded periodically during these tests. These 

parameters are crucial in predicting the amount of oil or gas that can be produced. 

The analysis of pressure changes provide information about the reservoir 

characteristics and its ability to produce hydrocarbons at a certain amount of time. 

Three different cases of drawdown tests are analyzed. Derivative curves are plotted 

using data points that are separated by certain intervals, ranging from 0.10 to 0.50 of 

a log cycle, because using adjacent data points results in very noisy derivative values 

while differentiating. Forty one different differentiation intervals are used in total. A 

new method is developed to find the log cycle interval that eliminates the highes t 

level of noise without overly flattening the derivative curve. Second and third 

derivatives are also calculated for each and every log cycle interval and checked in 

order to find the most suitable one.  
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Early, middle and late time regions, hence different flow regimes, of both cases are 

identified using this log cycle interval. Pressure and time data from middle time 

region are selected and used for the estimation process since best estimates of 

permeability can be made from this region.  

Skin factor and permeability values for both cases are estimated with two different 

methods. The first one is an iterative method and takes around 1-5 minutes to run 

while the second one is a graphical method and takes just seconds. Both methods can 

estimate permeability and skin factor with high accuracy and low error. Negligib le 

amount of difference occurs between the two methods, the first method being slightly 

more accurate.  

The results obtained are compared with the results from KAPPA’s Saphir Module, 

an industry standard PTA module and it is seen that the Python code can make more 

accurate estimations of permeability and skin factor. Also, it can handle noises up to 

±2.5%. 

 

Keywords: Well Test Analysis, Derivative Plot, Reservoir Parameter Estimation, 

Skin Factor, Permeability 
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ÖZ 

 

OTOMATİKLEŞTİRİLMİŞ GEÇİCİ BASINÇ ANALİZİNDE GÜRÜLTÜ 

FİLTRELEME ALGORİTMASININ KULLANIMI 

 

 

 

Coşar, Doğuhan 
Yüksek Lisans, Petrol ve Doğal gaz Mühendisliği 

Tez Yöneticisi: Doç. Dr. Çağlar Sınayuç 
Ortak Tez Yöneticisi:  

 

 

Eylül 2022, 102 sayfa 

 

Rezervuar parametrelerinin belirlenebilmesi için kuyu testleri yapılır ve bu testler 

sırasındaki basınç değerleri periyodik olarak kaydedilir. Bu parametreler belirli bir 

zamanda üretilebilecek olan petrol veya doğal gaz miktarının belirlenebilmesi için 

son derece önemlidir. Testler sırasında kaydedilen basınç değerleri arasındaki 

farklara bakılarak rezervuarın karakteristik özellikleri ve hidrokarbon üretim 

kapasitesi hakkında önemli bilgiler elde edilir. Toplamda üç farklı basınç düşüm testi 

analiz edilmiştir. Türev grafikleri oluşturulurken çok fazla gürültüye neden olan 

ardışık noktaları kullanmak yerine 0.10 ile 0.50 arasında değişen logaritmik periyot 

aralıkları kullanılmıştır. Toplamda kırk bir farklı aralık kullanılmıştır. Python 

kullanılarak yeni bir metod geliştirilmiş, gürültüyü en çok elimine eden ve türev 

grafiğini aşırı düzleştirmeden en pürüzsüz olacak şekilde oluşturan logaritmik 

periyot aralık değeri bulunmuş ve parametre tahminlerinde kullanılmıştır. En uygun 

logaritmik periyot aralığını bulabilmek için kırk bir farklı aralık için de ikinci ve 

üçüncü türev değerleri hesaplanmış ve kontrol edilmiştir. Erken, orta ve geç zaman 

bölgeleri ve dolayısıyla farklı akış rejimleri bu aralık kullanılarak belirlenmişt ir. 

Estimasyon aşamasında orta zaman bölgelerindeki basınç verileri kullanılmaktad ır 
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çünkü en isabetli saptamalar bu bölgeden yapılmaktadır. Her iki rezervuarın da skin 

faktörü ve geçirgenlik değerleri iki farklı metod kullanılarak hesaplanmıştır.  

İlk metod tekrarlı metoddur ve estimasyon süreci yaklaşık bir ile beş dakika arasında 

değişen süreleri bulmaktadır. İkinci metod ise grafiksel metoddur ve saniyeler içinde 

estimasyon yapabilmektedir. İki metod da geçirgenlik ve skin faktör değerlerini 

yüksek isabet ve düşük hata ile tahmin etmektedir. İlk metod biraz daha isabetli 

tahminler yapsa da iki metod arasındaki fark ihmal edilebilecek seviyelerdedir. 

Elde edilen sonuçlar, endüstri standardı PTA programı olan KAPPA’nın Saphir 

Modülü ile elde edilen sonuçlarla kıyaslanmış ve Python kodunun daha isabetli 

geçirgenlik ve skin faktörü tahminleri yaptığı gözlemlenmiştir. Ayrıca Python kodu 

±%2.5 gürültüye kadar dayanım göstermektedir. 

 

Anahtar Kelimeler: Kuyu Test Analizi, Türev Grafiği, Rezervuar Parametre 

Estimasyonu, Skin Faktörü, Geçirgenlik 
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CHAPTER 1  

1 INTRODUCTION  

In order to make the most meaningful decisions on any reservoir and maximize 

profitability, the reservoir, and every parameter, and characteristics it has should be 

identified before decision making processes. There are different methods to identify 

these parameters and characteristics, and a most important one is well test analysis.  

1.1 Traditional Graphical Analysis 

Well test analysis was first used for groundwater hydrology before it became an 

essential analysis method in the petroleum industry. Well tests had been interpreted 

by traditional graphical analysis, way before computer aided analysis. The flow 

periods are identified by checking derivative plots and semi-log plots. Reservoir 

parameters are estimated from the log-log and semi-log plots. As the final step, type 

curve matching of the log-log derivative type curves are made and reservoir 

parameters are re-estimated if necessary. 

The flow periods that take place during a well test, which are also mentioned on the 

next page, can be interpreted from the corresponding characteristic plots. Some of 

these plots are used for estimating parameters.  
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Table 1.1 Characteristics of Different Flow Periods[3] 

Flow Period Plot Characteristic 

Infinite Acting Radial 

Flow Drawdown 
P vs log∆t Semilog Straight Line 

Infinite Acting Radial 

Flow Buildup 

P vs 

log(tP+∆t)/∆t 
Straight Line 

Wellbore Storage log∆P vs log∆t 
Unit Slope 

Straight Line (P vs t) 

Finite Conductivity 

Fracture 
log∆P vs log∆t Straight Line with Slope ¼ 

Infinite Conductivity 

Fracture 
log∆P vs log∆t Straight Line with Slope ½ 

Double Porosity P vs log∆t 
S-Shaped Transition Between 

Semilog Straight Lines 

Closed Boundary P vs ∆t 
Pseudosteady State 

Pressure Linear with Time 

Impermeable Boundary P vs log∆t 
Doubling of Slope on Semi-log 

Straight Line 

Constant Pressure 

Boundary 
any 

Constant Pressure Flat Line on All 

P/t Plots 
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 In addition to these characteristic plots, derivative plots were introduced by Bourdet 

et al. in 1983, which became one of the greatest milestones of the modern well test 

analysis. Derivative plots contain ∆𝑡 log 𝜕𝑃
𝜕𝑡⁄  vs log ∆𝑡, diagnostic plots on the 

other hand contain both log ∆𝑃 vs log ∆𝑡 and ∆𝑡 log 𝜕𝑃
𝜕𝑡⁄  vs log ∆𝑡 . They are 

arguably the most useful tools for diagnosis and will be the main focus of this study.  

1.2 Computer Aided Analysis 

Computer aided analysis is much faster compared to traditional graphical techniques. 

It also eliminates human error that can occur while plotting or reading the graph. 

Computer aided analysis can handle situations that would be impossible to handle 

with traditional methods, such as complex geometries, varying rate etc. 

Table 1.2 Characteristics of Different Flow Periods on Derivative Plots[3]  

 

 

  

Flow Period Characteristic 

Wellbore Storage Unit Slope Line plus a Hump 

Infinite Acting Radial Flow Buildup Flat Region 

Infinite Acting Radial Flow Drawdown Flat Region 

Finite Conductivity Fracture Straight Line with Slope ¼ 

Infinite Conductivity Fracture Straight Line with Slope ½ 

Double Porosity  Reverse Hump with a Minimum 

Closed Boundary Steep Rising Straight Line 

Impermeable Boundary Second Flat Region 

Constant Pressure Boundary Continuously Decreasing Line 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Well Tests 

It is a necessity for a reservoir engineer to have sufficient information about 

well/reservoir to be able to analyze the reservoir performance and predict the future 

performance under various circumstances.[4] Well tests provide information about 

in situ reservoir conditions. These conditions determine the production capacity of a 

reservoir. Pressures and their changes over time make it possible to determine 

unknown reservoir parameters such as permeability and skin factor. Hence well tests 

are the most valuable for reservoir engineering without a doubt.  

 

Primary objectives of the oil well tests are: 

 Evaluating well conditions 

 Reservoir characterization 

 Obtaining unknown reservoir parameters for reservoir description 

 Estimating damage caused during drilling/completion and deciding if 

stimulation is necessary or not. 

 Determining pay zones 
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2.1.1 Drawdown Test 

A well that was initially shut-in and at static condition is opened to flow. Ideally, the 

flow rate should be kept constant in order to conduct traditional analysis but in reality 

this is hard to achieve. This type of test is mostly used for testing the reservoir’s 

limits.  

The pressure is constant until the beginning of production. As production begins, 

pressure starts to drop. Initially produced fluids comes from the wellbore itself, not 

the reservoir and this period is called “wellbore storage”. Analyzing the pressure 

drops make it possible to estimate some unknown reservoir parameters, such as 

permeability and skin factor. One of the advantages of this type of testing is that fluid 

production continues while conducting the test.  

 

Figure 2.1 P vs t and q vs t Plot of an Ideal Drawdown Test 
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2.1.2 Buildup Test 

The well that was initially flowing, ideally at a constant rate, is shut-in. Pressure 

begins to increase right after this shut-in. A short period of flow called “afterflow” 

occurs from reservoir to the wellbore right after the well is shut-in.  

It is much easier to sustain a constant flow rate compared to a drawdown test because 

desired flow rate is zero. Biggest disadvantage of this test is that the well is not 

producing any fluids and this means a loss of profit. 

 

Figure 2.2 P vs t and q vs t Plot of an Ideal Buildup Test 
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2.2 Well Test Analysis 

 

The main aim of the well test analysis is to interpret the pressure response due to 

change in flow rate. Well test analysis plays a crucial role in reservoir management. 

In order to be able to make the most meaningful decisions on any reservoir and 

maximize profitability, the reservoir and every parameter and characteristics it has 

should be identified before decision making processes.  

There are different methods to identify these parameters and characteristics and one 

of the most important methods is well test analysis.  

2.2.1 Previous Studies on Well Test Analysis 

Gringarten summarized the most important developments in well test analysis in 

detail with his paper.[2] 

2.2.1.1 Well Test Analysis Between 1930s-1950s 

Well test analysis techniques started with the groundwater hydrology. Semilog 

straight line analysis and type curve matching was introduced by Theis in 1935[5]. 

In 1946, Cooper and Jacob[6] applied semilog straight line analysis and suggested a 

generalized graphical method that evaluates reservoir parameters. 
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2.2.1.2 Well Test Analysis Between 1950s-1960s 

The interpretation techniques that were used during the 1950s and 1960s are mostly 

developed by oil companies and illustrated by the works of Miller et al.[7], 

Horner[8], Warren and Root[9], Odeh and Jones[10], Matthews et al.[11]. These 

interpretation methods were composed of semilog straight lines that apply to middle 

time data and simple boundary effects that can be inferred from late time data. Due 

to the technological constraints at those times, analysis were performed by hand, 

using pencil and graph papers. The data was obtained from production operations 

and well tests. Interpretable parameters at these years were limited to average 

reservoir pressure, permeability, drainage area and skin factor. 

2.2.1.3 Well Test Analysis Between 1960s-1980s 

The development of well test analysis in the late 1960s and early 1970s was mostly 

led by universities. The scope of analysis shifted to early time behavior because of 

the ambiguity of some obtained results from straight line analysis[2]. Ramey[12] 

introduced type curves in 1970 and the understanding of skin factor greatly improved 

during these years. He found out that positive skin factor may result from well 

damage or partial penetration and negative skin factor can be achieved by well 

stimulation operations such as acidizing and fracturing. Type curve matching greatly 

enhanced semilog straightline analysis by making it possible to select the most 

applicable straight line. Agarwal et al.[13] focused on the wellbore storage while 

Gringarten et al.[14] and Mavor and Cinco-Ley[15] focused on the fractures.  

Gringarten et al.[16] and Bourdet and Gringarten[17] greatly enhanced the type 

curve analysis by introducing the concept of independent variables and integrated 

well test analysis methodology. Thanks to these developments, analysis results were 

more consistent and reliable. They also ended the era of manual analysis and started 

the era of computers in well test analysis which caused it to become more useful 

reservoir description tool.  
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2.2.1.4 Well Test Analysis Between 1980s-2000s 

Identification of more complex reservoir behaviors such as double porosity became 

possible thanks to the new interpretation models based on Stehfest’s Laplace 

inversion algorithm[18]. With these developments, well test analysis became more 

descriptive during exploration and reservoir simulation. In addition to the type curve 

developments in 1970s and 1980s, derivative plots were introduced in 1983 by 

Bourdet et al.[19], which became one of the greatest milestones of the modern well 

test analysis. It made well test analysis a true reservoir characterization method. 

2.2.1.4.1 Diagnostic Plots 

A diagnostic plot contains both log ∆𝑃 vs log ∆𝑡 and ∆𝑡 log
𝜕𝑃

𝜕𝑡
 vs log ∆𝑡. According 

to Horne[3], it was by far the most useful diagnosis tool at those times. 

 

Figure 2.3 A diagnostic plot [1] 
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Thanks to the derivative plots: 

 Heterogeneous reservoir behaviors such as double permeability can be 

recognized.[20, 21] 

 Partial penetration, limited entry and other effects near wellbore can be 

identified.[22] 

 Horizontal wells can be analyzed.[23] 

 Wide range of boundary effects can be recognized.[24] 

 

 

 

Figure 2.4 Shapes of Log-Log Derivative Curves at Different Flow Regimes[2] 
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2.2.1.5 Well Test Analysis From 2000s to Present 

Schroeter et al. introduced an effective deconvolution algorithm in 2001.[25] It 

greatly enhanced the capability of well test analysis by converting variable rate 

pressure data into constant rate single drawdown with duration of all variable rate 

test durations combined. Thanks to this, more data become interpretable, hence 

identifying the interpretation model is an easier task. 

 

The table below summarizes the history of well test analysis. 

Table 2.1 History of Well Test Analysis[2] 
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2.3 Pressure Data Measurements 

Pressure measurements were made by Bourdon-tupe mechanical gauges until early 

1970s. Their resolution and accuracy were limited. Electronic gauges were invented 

in early 1970s and improved greatly throughout 1980s. They enhanced the quality of 

pressure data recorded and made it possible to monitor bottomhole pressure at the 

surface. Permanent downhole pressure gauges were commonly used after late 1980s, 

as the name implies, they continuosly monitor and record pressure, flow rate and 

temperature changes during production phase. They are installed during the well 

completion phase. 

 

Figure 2.5 Illustration of PDG[25] 
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2.4 Reservoir Parameters 

2.4.1 Permeability 

Permebility is a measure of the capacity of a porous medium to transmit fluids. It 

directly affects the flow rate and directional movement of the reservoir fluids, hence 

it is one of the most important rock properties.  

Henry Darcy defined it mathematically for the first time in 1856. It is called Darcy’s 

Law and can be seen from the equations below. Eq 2.1 is in linear form while Eq 2.2 

is in radial form. 

1 Darcy is a very high permeability and the term millidarcy(md) is used. Most of the 

reservoir rocks have permeabilities less than 1 Darcy. 

 

                                                                                        Eq 2.1 

 

Eq 2.2 

 

where 

Q = flow rate of fluid, 𝑏𝑏𝑙
𝑑𝑎𝑦⁄  

A = cross sectional area, 𝑓𝑡2 

v = apparent fluid flowing velocity, 𝑏𝑏𝑙
𝑑𝑎𝑦 × 𝑓𝑡2⁄  

µ = viscosity of the fluid, 𝑐𝑝 

k = permeability of the rock, 𝐷𝑎𝑟𝑐𝑦 

P = pressure, 𝑝𝑠𝑖 

L = length, 𝑓𝑡 

r = radius, 𝑓𝑡 

 

𝑣 =
𝑄

𝐴
= −

𝑘

µ

𝑑𝑃

𝑑𝐿
 

                                                               

𝑄 =
𝑘 𝐴

µ

𝑑𝑃

𝑑𝑟
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Figure 2.6 Linear Flow Model[26] 

 

 

 

Figure 2.7 Radial Flow Model[26] 
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2.4.2 Porosity  

Porosity is the ratio of the total void volume to the bulk volume of the rock. Reservoir 

rocks composed of rock grains(matrix) and pore spaces. Most of these pore spaces 

are filled with reservoir fluids such as oil, water and gas. Some pore spaces are 

connected with each other and some are isolated. In general, there are three main 

types of pores: 

i) Interconnected Pores: The network of empty spaces that are 

interconnected with each other. 

ii) Dead End Pores: The empty spaces that are connected with each other 

but they are trapped inside the rock with dead end.  

iii)  Isolated Pores: The empty spaces that are completely isolated from other 

empty spaces mostly due to cementation. 

Total Porosity is the ratio of the total pore spaces to the bulk volume and can be 

calculated as: 

                                                                  Eq 2.3 

                                                                                                                                                                                                          

 

 

where 

 

 

 

 

 

𝜙 =
𝑉𝑃

𝑉𝐵

 

Eq 2.4                                                  𝑉𝑃 =  𝑉𝐵 − 𝑉𝐺  

 

VP: Pore volume 

VB : Bulk volume 

VG : Grain volume 

ϕ: Total porosity 
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Effective Porosity is the ratio of the volume of interconnected and dead end pores to 

the bulk volume and can be calculated as: 

                   𝜙 =
𝑉𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑  𝑝𝑜𝑟𝑒𝑠 +𝑉𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑑𝑒𝑎𝑑 𝑒𝑛𝑑 𝑝𝑜𝑟𝑒𝑠

𝐵𝑢𝑙𝑘  𝑉𝑜𝑙𝑢𝑚𝑒
               Eq 2.5 

Ineffective Porosity is the ratio of the volume of isolated pores to the bulk volume 

and can be calculated as: 

                                            𝜙 =
𝑉𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑝𝑜𝑟𝑒𝑠

𝐵𝑢𝑙𝑘  𝑉𝑜𝑙𝑢𝑚𝑒
                                    Eq 2.6 

The porosity is one of the most important reservoir rock properties and it directly 

affects the amount of reservoir fluids present in the reservoir and hence a reservoir 

with high porosity is much desired. Porosity is affected mostly by the grain size 

distribution, grain shape, grain sorting, clay content, compaction and cementation. 

All of these factors determine the porosity of the rocks. Porosity values are accepted 

as: 

 

Table 2.2. Porosity Values 

Negligible 𝜙 < 5% 

Low 5% < 𝜙 < 10% 

Good 10% < 𝜙 < 15% 

Very Good 𝜙 < 20% 
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2.4.3 Skin Factor 

Skin factor is actually a measure of the damage given during drilling/complet ion 

operations or enhancement to near wellbore payzone. This causes a pressure drop 

between the wellbore and formation[27].  

Positive skin factor values indicate wellbore damage, hence reduced permeability 

while negative values indicate enhanced permeability.  

Van Everdingen[28] and Hurst[29] defined the skin factor based on this pressure 

drop as can be seen from Eq 2.7. 

                                                     𝑆 =
2𝜋𝑘ℎ

𝑄𝜇
∆𝑃𝑠                                                 Eq 2.7 

Hawkins[30] defined it as a zone with finite radius rs having a permeability ks as can 

be seen from Eq 2.8. 

                                                     𝑆 = (
𝑘

𝑘𝑠
− 1) ln

𝑟𝑠

𝑟𝑤
                                         Eq 2.8 

 

 

Figure 2.8 Schematic of wellbore skin effect[27]
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CHAPTER 3  

3 STATEMENT OF THE PROBLEM 

Determination of the reservoir parameters such as permeability, porosity, skin factor 

etc. is crucial in petroleum engineering. In order to conduct a feasibility analysis, it 

is a must to determine these parameters as accurate as possible since millions of 

dollars are being spent throughout discovery and development of reservoirs. Well 

testing gives precious data for production evaluation and optimization. The accuracy 

of these data is crucial for the decision making processes and their feasibility. In 

order to make the most logical decisions, the reservoir parameters and characterist ic s 

should be known. Despite all the efforts given for the reliability of the well test data, 

some uncertainties are still present due to the multiphase flow measurement, 

complex fluid flow dynamics etc. They all cause noise in the data and they should 

be eliminated in order to be able to make the most logical decisions. Derivative plots 

can provide us with important information about reservoirs but calculating pressure 

derivatives is a sensitive process since the noise in the data can easily be amplified 

while doing so.  

I will try to estimate the crucial reservoir parameters as accurate as possible in order 

to minimize the risk of spending unnecessary money. When a well is drilled for the 

first time and a reservoir is discovered, the first thing to consider is "Should I invest 

more and develop this reservoir?". The correct answer for this question can only be 

given after the determination of reservoir parameters, which is the ultimate goal of 

this Master's thesis. Various methods are used to estimate these parameters and they 

are used with more recent technological applications in order to further increase the 

accuracy and minimize errors of predictions.  
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CHAPTER 4  

4 RESERVOIR PARAMETER ESTIMATION 

4.1 Derivative Plots 

Bourdet et al. introduced the derivative plots in addition to the characteristic plots in 

1983[31]. As Horne stated in his book[3], derivative plot was the most useful 

diagnosis tool at the time. 

Calculating pressure derivatives is a sensitive process since the noise in the data can 

easily be amplified while doing so. There are several different differentiat ion 

methods that can be applied.  

The first one is numerically differentiating the adjacent points by using Eq 4.1. It is 

almost never used in well test analysis because it results in a very noisy derivative.  

 

 

     Eq 4.1 

 

 

 

  

𝑡 (
𝜕𝑃

𝜕𝑡
)

𝑖

= 𝑡𝑖 [
(𝑡𝑖 − 𝑡𝑖−1)𝛥𝑝𝑖+1

(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖+1 − 𝑡𝑖−1)

+
(𝑡𝑖+1 + 𝑡𝑖−1 − 2𝑡𝑖)𝛥𝑝𝑖

(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖 − 𝑡𝑖−1 )

−
(𝑡𝑖+1 − 𝑡𝑖)𝛥𝑝𝑖−1

(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖−1 )
]
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72 hour long drawdown test data is taken from Horne book.[3].  

Table 4.1 Drawdown Test Data for Case I 

 

 

  

t, hours Pwf, psi t, hours Pwf, psi t, hours Pwf, psi t, hours Pwf, psi 

0 6009.00 0.14972 5009.74 1.55366 3318.80 16.1223 3018.23 

0.0167 5867.82 0.1733 4886.13 1.79829 3289.38 18.6608 3002.85 

0.01933 5845.93 0.20058 4769.13 2.08144 3263.02 21.60 2988.93 

0.02237 5819.44 0.23217 4635.16 2.40918 3231.28 24.25 2939.30 

0.0259 5792.50 0.26872 4501.08 2.78852 3216.27 26.37 2921.50 

0.02997 5765.01 0.31103 4365.35 3.22758 3200.34 28.67 2902.30 

0.03469 5720.90 0.36001 4219.70 3.73579 3175.40 31.17 2881.40 

0.04016 5688.36 0.41669 4089.84 4.32401 3162.30 33.90 2858.70 

0.04648 5642.92 0.4823 3960.16 5.00485 3139.87 36.86 2834.00 

0.0538 5597.43 0.55824 3835.59 5.79289 3133.46 40.07 2807.20 

0.06227 5521.66 0.64614 3727.20 6.70502 3114.87 43.57 2778.00 

0.07207 5459.70 0.74788 3630.08 7.76076 3092.78 47.38 2746.20 

0.08342 5389.75 0.86564 3538.77 8.98274 3081.99 51.51 2711.70 

0.09655 5306.48 1.00194 3465.23 10.3971 3062.07 56.01 2674.20 

0.11176 5211.11 1.1597 3411.56 12.0342 3047.29 60.90 2633.40 

0.12935 5117.79 1.3423 3361.60 13.9291 3037.98 72.00 2540.70 
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A derivative plot is formed in Excel by using a straightforward numerica l 

differentiation of the adjacent points, Eq 4.1, and it is quite clear that high amount of 

noise is present in the derivative values, as can be seen from the figure below: 

 

 

 

 

 

 

  

Figure 4.1 Derivative Plot Formed by Using Eq 4.1 
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4.1.1 Noise Elimination of Derivative Plots 

It is suggested in the literature that numerical differentiation with respect to natural 

logarithm of time by using Eq 4.2 would reduce the noise in the derivative 

calculation compared to the previous method. 

 

 

 

        where                                                          Eq 4.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑡 (
𝜕𝑃

𝜕𝑡
)

𝑖

= (
𝜕𝑃

𝜕 ln 𝑡
)

𝑖

= 𝐴 + 𝐵 − 𝐶 

𝐴 =
ln (

𝑡𝑖

𝑡𝑖−1
) Δ𝑝𝑖+1

ln (
𝑡𝑖+1

𝑡𝑖
) ln (

𝑡𝑖+1
𝑡𝑖−1

)
  

𝐵 =

ln (
𝑡𝑖+1𝑡𝑖−1

𝑡𝑖
2 ) Δ𝑝𝑖

ln (
𝑡𝑖+1
𝑡𝑖

) ln (
𝑡𝑖

𝑡𝑖−1
)

  

 𝐶 =
ln (𝑡𝑖+1/𝑡𝑖)Δ𝑝𝑖−1

ln (𝑡𝑖/𝑡𝑖−1)ln (𝑡𝑖+1/𝑡𝑖−1)
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Another derivative plot is drawn in Excel, this time using Eq 4.2 

 

 

It can be easily seen that there is not much of a difference between the Figure 4.1 

and Figure 4.2, meaning that there is still quite high noise in the derivative plot and 

we need do something else to get rid of the noise. 

 

 

 

 

Figure 4.2 Derivative Plot Formed by Using Eq 4.2 
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It is said that while differentiating with respect to natural logarithm of time, using 

data points that are separated by at least 0.2 of a log cycle instead of using adjacent 

points would further reduce the noise. One of the shortcomings of this method 

includes running out of data during the first and last differentiation intervals. So the 

third differentiation method is 

 

 

                                             Eq 4.3 

 

  

 

                                                                                    

                                                                    where 

 

 

 

Horne[3] stated that this differentiation interval can be replaced by values in between 

0.1-0.5 depending on the case.  

When differentiating the late time data, length between the points becomes larger 

than the last data point and the previous differentiation point. This is called the end 

effect and smoothing is not possible on the right side. The shape of the derivative 

curve can be distorted by this effect. Bourdet[32] suggests a solution in which we 

add a pseudo point to the right and fix it, such that the difference ∆X between the 

pseudo point and the point before it, is greater than this length or at least equal to it. 

𝑡 (
∂𝑝

∂𝑡
)

𝑖

= (
∂𝑝

∂ln 𝑡
)

𝑖

= 𝐴 + 𝐵 − 𝐶 

 

𝐴 =
ln (𝑡𝑖/𝑡𝑖−𝑘)Δ𝑝𝑖+𝑗

ln (𝑡𝑖+𝑗 /𝑡𝑖)ln (𝑡𝑖+𝑗/𝑡𝑖−𝑘)
 

𝐵 =
ln (𝑡𝑖+𝑗 𝑡𝑖−𝑘/𝑡𝑖

2 )Δ𝑝𝑖

ln (𝑡𝑖+𝑗/𝑡𝑖)ln (𝑡𝑖/𝑡𝑖−𝑘)
 

𝐶 =
ln (𝑡𝑖+𝑗/𝑡𝑖)Δ𝑝𝑖−𝑘

ln (𝑡𝑖/𝑡𝑖−𝑘)ln (𝑡𝑖+𝑗 /𝑡𝑖−𝑘)
 

ln 𝑡𝑖+𝑗 − ln 𝑡𝑖 ≥ 0.2 

ln 𝑡𝑖 − ln 𝑡𝑖−𝑘 ≥ 0.2 
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A Python code is written that reads the pressure and time data and uses data points 

that are separated by a proportion of a log cycle while calculating the derivative 

values. New derivative values are calculated with 0.10 to 0.50 of a log cycle with 

increments of 0.01. In total, 41 different derivative values with different separation 

intervals are calculated. The results for 0.10 log cycle interval, 0.50 log cycle 

interval, and the average of all 41 different derivative values can be seen from the 

figures below. 

 

It is quite obvious that the derivative plot is still too noisy, so using 0.10 log cycle 

intervals didn’t make that much of a difference. 

Figure 4.3 Derivative Plot Formed by Using Eq 4.3 (0.10 Log Cycle Interval) 
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When 0.5 log cycle intervals are used, much smoother derivative plot is obtained but 

this time overly smoothing can be an issue. Also notice that there are very few points  

compared to the 0.1 log cycle interval case. As the log cycle interval increases, 

number of calculated derivative values decreases, hence 0.50 log cycle has the lowest 

amount of data points among the all 41.  

 

 

 

 

Figure 4.4 Derivative Plot Formed by Using Eq 4.3 (0.50 log cycle interval) 
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The average first derivative plot looks a lot like the one in Figure 4.4, but with slight 

differences. It contains the same amount of points as the 0.50 log cycle case since it 

had the lowest number of data points.  

 

 

 

 

 

 

Figure 4.5 Derivative Plot Formed by Using Eq 4.3 (Average 0.10-0.50) 
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4.1.1.1 Selecting the Smoothest Derivative Plot for Drawdown Case I 

The new aim is to find the best log cycle interval among the 41 different 

intervals(between 0.10-0.50), the one that eliminates the most amount of noise 

without overly smoothing the derivative plot. In order to be able to do that Python is 

used again. 

Second and third derivative values are calculated for every one of the 41 different 

derivative values. Number of sign changes in the second and third derivatives are 

calculated separately and divided to the total number of data points.  

For example when using 0.26 log cycle intervals, 

Number of sign changes is 2 for the second derivative values and 8 for the third 

derivative values, meaning that there are 8 different inflection points. There are 53 

data points in total and the ratio for the second derivative is: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛 𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
=

2

53
= 0.03774 

 

And the ratio for the third derivative is: 

 

8

53
= 0.15094 
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It has the lowest ratio among the all 41 second derivative values meaning that it is 

the smoothest of them. The first and second derivative plots combined can be seen 

from the figure below.  

 

Figure 4.6 1st and 2nd Derivative Plots(0.26 Log Cycle Interval) 

Please notice that this is a semi-log plot, because there are negative values in the 

second derivative and log-log plots can only contain positive values. The first and 

second derivatives both look smooth enough. Some noise can be seen in the second 

derivative values at the early and late times. 
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On the other hand, the ratio for the third derivative is quite high and can be seen from 

the figure below. 

 

Figure 4.7 1st and 3rd Derivative Plots(0.26 Log Cycle Interval) 

It is quite clear from the Figure 4.7 that third derivative values contain high amount 

of noise, as expected from the high ratio. 
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For the 0.31 log cycle interval case, numbers of sign changes are 2 for both of the 

second and third derivatives. The total number of data points is 45 so the ratio for 

the second and third derivatives is 0.04444, it is the interval that has the lowest ratio 

combined, which might mean that it is the best interval to use for derivative plot. The 

resulting first, second and third derivatives can be seen from the figures below. 

 

Figure 4.8 1st and 2nd Derivative Plots(0.31 Log Cycle Interval) 

First and second derivatives look quite smooth, maybe smoother than the previous 

case.  



 

 
34 

 

Figure 4.9 1st and 3rd Derivative Plots(0.31 Log Cycle Interval) 

There are still some noise present in the third derivative but it is much smoother 

compared to the previous case. 
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Now that the possible best intervals are selected, the first, second and third 

derivatives will be compared. 

 

Figure 4.10 Comparison of First Derivatives of 0.26 and 0.31 Log Cycle Intervals 

Although that there isn’t much difference between the two, the one with 0.31 log 

cycle interval is slightly more smooth and seems to be the interval that gives the 

derivative plot with least amount of noise, without overly smoothing the curve.  

 

 

 

 

 



 

 
36 

 

Figure 4.11 Comparison of Second Derivatives of 0.26 and 0.31 Log Cycle Intervals 

Both intervals have two sign changes in their second derivatives. 0.31 interval results 

in smoother derivative curve at late times. 0.26 interval has a lower ratio due to 

having more number of data points.  
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Figure 4.12 Comparison of Third Derivatives of 0.26 and 0.31 Log Cycle Intervals 

0.31 log cycle interval has a lower ratio and results in a smoother third derivative 

curve as can be seen from Figure 4.12  
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Figure below shows the log cycle intervals and their sign change ratios for Case I. 

 

Figure 4.13 Log Cycle Interval vs Sign Change Ratio Plot for Case I 

As can be seen from the Figure 4.13, lowest sign change ratio sum occurs at 0.31 

interval, meaning that it plots the smoothest derivative curve. 
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4.1.1.2 Selecting the Smoothest Derivative Plot for Drawdown Case II 

A drawdown test with a flowrate of 500 stb/day that lasts 327.6 hours is to be 

analyzed and flow periods are going to be estimated. 

Table 4.2 Drawdown Test Data for Case II 

t, hours Pwf, psi t, hours Pwf, psi t, hours Pwf, psi t, hours Pwf, psi 

0 3000 0.164 2693 3.28 1712 38.2 1533 

0.0109 2976 0.218 2611 3.82 1696 43.7 1525 

0.0164 2964 0.273 2536 4.37 1684 49.1 1517 

0.0218 2953 0.328 2469 4.91 1674 54.6 1511 

0.0273 2942 0.437 2352 5.46 1665 65.5 1500 

0.0328 2930 0.491 2302 6.55 1651 87.4 1482 

0.0382 2919 0.546 2256 8.74 1630 109.2 1468 

0.0437 2908 1.09 1952 10.9 1617 163.8 1440 

0.0491 2897 1.64 1828 16.4 1588 218.4 1416 

0.0546 2886 2.18 1768 27.3 1554 273 1393 

0.109 2785 2.73 1734 32.8 1543 327.6 1370 

 

Same Python code and methodologies are used and pressure and time data is fed into 

the code. 0.32 and 0.40 log cycle intervals turn out to be the possible best intervals 

that can be used.  

0.40 interval has the minimum sign change ratio for second derivatives with 0.05128 

while 0.32 interval has a ratio of 0.08333. For the third derivatives the ratio for 0.32 

interval is 0.08333 and 0.10256 for 0.40 interval.  

The comparisons of first, second and third derivatives of both intervals can be seen 

from the figures below. 
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Figure 4.14 Comparison of the Derivative Plots of 0.32 and 0.40 Log Cycle Intervals 

Their first derivatives look quite similar so the second and third derivatives will also 

be checked. 
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Figure 4.15 Comparison of the 2nd Derivatives for 0.32 and 0.40 Log Cycle Intervals  

Although they look similar, 0.40 interval is slightly smoother. This was expected as 

it has less sign change ratio for second derivatives compared to the 0.32 interval. 
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Figure 4.16 Comparison of the 3rd Derivatives for 0.32 and 0.40 Log Cycle Intervals 

When you look at Figure 4.16, the smoother one seems to be the one calculated with 

0.40 log cycle interval. This wasn’t expected because 0.32 has a lower sign change 

ratio for third derivatives. There are 4 sign changes and hence 4 inflection points for 

both cases. The reason for 0.32 interval to have smaller sign change ratio is that it 

has more data points than 0.40 interval case. So the 0.40 interval is selected as the 

the interval that gives the derivative plot with least amount of noise, without overly 

smoothing the curve.  
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Figure below shows the log cycle intervals and their sign change ratios for Case II. 

 

Figure 4.17 Log Cycle Interval vs Sign Change Ratio Plot for Case II 

 

Please note that the best intervals for both drawdown cases are the ones that have the 

smallest sum of sign change ratios of second and third derivatives.  

0.31 interval for the first drawdown case had the smallest sum of second and third 

derivative sign change ratios with 0.04444 + 0.04444 = 0.08888  

0.40 interval for the second drawdown case had the smallest sum of second and third 

derivative sign change ratios with 0.05128 + 0.10256 = 0.15384. 
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4.2 Determination of the Middle Time Region  

Now that we are able to identify and select the best log cycle interval that gives us 

the derivative plot with least amount of noise without overly smoothing the curve, 

we need to determine middle time regions because the most accurate estimates of 

permeability can be inferred from this middle time region[33]. Our ultimate goal is 

to estimate the permeability(k) and skin factor(S) as accurate as possible. 

Infinite acting radial flow is present for both of the drawdown cases at the middle 

time regions, meaning that the derivative curve should be horizontal at middle time 

regions. In  other words, first derivative values should stay fairly constant and second 

derivative values should be close to 0.  

Python is used again to identify the middle time regions and in order to be able to do 

that all three of the first, second and third derivative values are checked. 
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4.2.1 Determination of the Middle Time Region for Drawdown Case I 

0.31 log cycle interval was selected as the best interval and will be used in the 

determination of the middle time region. First things first, diagnostic plot is formed 

in Excel, from the output data of the Python code.  

 

Figure 4.18 Eyeball Estimation of Middle Time Region for Case I 

The middle time region is eyeball estimated by just looking at the diagnostic plot, 

probably with a low accuracy but this is more or less the region that we are trying to 

identify. We know that the middle time region comes after a specific inflect ion 

point(t = 0.933 hours, first derivative = 509.92), the dark blue dot that can be seen 

from the Figure 4.18.  
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Inflection points are the points that the third derivative values are 0. If we are able to 

identify that specific inflection point using Python, then we can get one step closer 

to correctly identifying the middle time region.  

When using different log cycle intervals, the location of this specific inflection point 

and number of total inflection points changes. A method to identify the correct one 

is needed. First, second and third derivatives are plotted on the same plots for log 

cycle intervals of 0.31 and 0.26 in order to be able to find that method. 

 

Figure 4.19 1st, 2nd and 3rd Derivative Plots (0.31 Log Cycle Interval) 

That specific inflection point that we are after can be seen from the Figure 4.19. It is 

the dark blue point and lies at t = 0.933 hours, first derivative = 509.92. It is the 

second inflection point.  
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Figure 4.20 1st, 2nd and 3rd Derivative Plots (0.26 Log Cycle Interval) 

That specific inflection point that we are after can be seen from the Figure 4.20. It is 

the brown point and lies at t = 0.943 hours, first derivative = 511.38. It is the fourth 

inflection point this time. 

It caught my attention that both inflection points are the first inflection points that 

come after the minimum second derivative values. This was tested for the other 39 

different differentiation intervals and they stand correct for each and every one of 

them. 

So necessary additions to the Python code was made and it was able to identify these 

specific inflection points, the ones that are the first inflection points after the 

minimum value of second derivatives.  
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Now we have to find the region that comes after these specific inflection points 

previously found, where the first derivative values are fairly constant, also meaning 

that the second derivative values are close to 0.  

This has been done easily by adding a constraint to the same Python code that selects 

points that come after the inflection point, where the second derivative values are in 

between -100 and +100.  

The middle time region estimation result can be seen below. 

Table 4.3 Middle Time Region Estimation For Drawdown Case I 

Time(hours) 1st Derivative 2nd Derivative 

3.780 126.21 -74.25 

5.153 106.89 -44.05 

7.026 104.97 -2.61 

9.580 106.30 2.24 

13.061 105.75 69.48 

 

The infinite acting radial flow starts approximately at t = 3.78 hours and ends at t = 

13.061 hours. 
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Figure 4.21 1st and 2nd Derivative Plots of Drawdown Case I with Early, Middle 

and Late Time Regions 

So far the flow regions of early time, middle time and late time have been identified, 

as can be seen from the figure above. The semi-log plot shows clearly that the time 

region estimates are accurate for the Drawdown Case I.  

At the early time region, wellbore and near wellbore effects such as wellbore storage, 

formation damage/stimulation etc. dominate the flow.  

At the middle time region, the flow is expected to be infinite acting. If the reservoir 

is homogenous(it is in both cases), the pressure derivatives will be horizontal. 
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4.2.2 Determination of the Middle Time Region for Drawdown Case II 

By feeding the pressure and time data of Drawdown Case II into the same Python 

code, time region estimations are as follows. 

Table 4.4 Middle Time Region Estimation For Drawdown Case II 

Time(hours) 1st Derivative 2nd Derivative 

4.902 85.18 -66.35 

7.313 71.50 -27.05 

10.910 68.78 -6.46 

16.275 66.91 -4.97 

24.280 64.99 -3.68 

36.222 64.76 -3.20 

54.036 61.36 -5.97 

80.613 61.61 5.71 

120.260 68.05 23.58 

179.407 83.84 55.46 

267.645 116.67 86.40 

 

The infinite acting radial flow starts approximately at t = 4.902 hours and ends at t = 

267.645 hours. It lasts much more longer than the previous case, which could mean 

that the permeability is much less. 
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Figure 4.22 1st and 2nd Derivative Plots of Drawdown Case II with Early, Middle 

and Late Time Regions 

The semilog plot above shows clearly that the time region estimates are also accurate 

for the drawdown case II. The Python code written can select the best derivation 

interval and correctly identify the infinite acting radial flow region.   
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4.3 Permeability and Skin Factor Estimation with Iterative Approach 

In order to estimate permeability and skin factor, a MATLAB code is written. It reads 

the pressure and time data from Excel and uses data that lies in the middle time 

region(infinite acting radial flow) to estimate permeability and skin factor. Infinite 

acting radial flow equation is used in calculation process.  

 

                                                                       (Eq. 4.4) 

 

or in oilfield units; 

 

   (Eq. 4.5) 

 

The working principle of the code is that it calculates Pwf values with k values 

ranging from 0 to 1000 md and s values ranging from -15 to +15, with an 

incremention of 0.01 for each parameter, hence it is an iterative method. These 

ranges and incrementation values can be adjusted, but it should be noted that it will 

impact the running time of the code.  

Since only the data that lie in the middle time region are needed for the estimation 

of both parameters, pressure readings that lie in between early time region and late 

time region are used.  

The best match is obtained by selecting k and s values that give the minimum value 

of ∑ (Pwf(measured)− Pwf(calculated) )2n
i=1 . Thanks to this method, human error factor 

is eliminated completely. 

 

 

pwf = p𝑖 −
q𝜇

4𝜋kh
(ln 

4kt

𝛾𝜙𝜇crw
2

+ 2𝑆) 

𝑝𝑤𝑓 = 𝑝𝑖 −
162.6𝑞𝜇𝐵0

𝑘ℎ
(log 𝑡 + log 

k

𝜙𝜇cr𝑤
2

− 3.23 + 0.87S) 
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4.3.1 Drawdown Case I  

 

Table 4.5 Known Parameters of Drawdown Case I 

Parameters 

ϕ 0.21 

h, ft 23 

Bo, bbl/stb 1.21 

µ, cp 0.92 

rw, ft 0.401 

Ct, 1/psi 8.72x10-6 

 

 

The infinite acting radial flow period has been identified successfully for the case I 

and the values from Table 4.3 and Table 4.5 are used for permeability and skin factor 

estimation. 

 

The k and s values that give the best match to the recorded pressure values in the 

middle time region are calculated, and in this case they are 75.58 md for permeability 

and +5.85 for skin factor.  
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Comparison of Pwf(calculated with k=75.58 md and s=+5.85) and Pwf(measured) values for each data 

point can be seen below. 

Table 4.6 Comparison of Pwf(calculated with k=75.58 md and s=+5.85) and 

Pwf(measured) 

t(hours) Pwf(measured)(psi) Pwf(calculated)(psi) 
Absolute 

Error(%) 

3.23 3200.34 3195.44 0.153 

3.74 3175.40 3178.91 0.111 

4.32 3162.30 3162.38 0.003 

5.00 3139.87 3145.85 0.190 

5.79 3133.46 3129.32 0.132 

6.71 3114.87 3112.79 0.067 

7.76 3092.78 3096.26 0.112 

8.98 3081.99 3079.73 0.073 

10.40 3062.07 3063.19 0.037 

12.03 3047.29 3046.66 0.021 

Total Error 0.899 

 

It is quite clear that pressure readings and calculated values are so close to each other. 

Highest amount of difference occurs at t=5.00 hours with 5.98 psi, an error equal to 

0.19%. The results are plotted in MATLAB and Excel, as can be seen from Figure 

4.19 and Figure 4.20. 
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Figure 4.23 Semilog Plot of Pwf vs t, with Best Match Semilog Straight Line(k=75.58 

md and s=+5.85)  

 

Figure 4.24 Comparison of ∆Pwf(measured) and ∆Pwf(calculated with k=75.58 md 

and s=+5.85)  
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4.3.2 Drawdown Case II 

 

Table 4.7 Known Parameters of Drawdown Case II 

Parameters 

ϕ 0.2 

h, ft 56 

Bo, bbl/stb 1.2 

µ, cp 0.8 

rw, ft 0.3 

Ct, 1/psi 1x10-5 

 

 

The infinite acting radial flow period has been identified successfully for the case II 

and the values from Table 4.4 and Table 4.7 are used for permeability and skin factor 

estimation. 

 

The k and s values that give the best match to the recorded pressure values in the 

middle time region are calculated, and in this case they are 9.16 md for permeability 

and +4.00 for skin factor.  
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Table 4.8 Comparison of Pwf(calculated with k=9.16 md and s=+4.00) and 
Pwf(measured) 

t(hours) Pwf(measured)(psi) Pwf(calculated)(psi) Absolute Error(%) 

4.91 1674.00 1669.96 0.241 

5.46 1665.00 1662.94 0.124 

6.55 1651.00 1650.92 0.005 

8.74 1630.00 1631.86 0.114 

10.90 1617.00 1617.26 0.016 

16.40 1588.00 1590.27 0.143 

27.30 1554.00 1556.59 0.167 

32.80 1543.00 1544.47 0.095 

38.20 1533.00 1534.39 0.091 

43.70 1525.00 1525.51 0.033 

49.10 1517.00 1517.81 0.053 

54.60 1511.00 1510.79 0.014 

65.50 1500.00 1498.76 0.082 

87.40 1482.00 1479.70 0.155 

109.20 1468.00 1464.99 0.205 

163.80 1440.00 1438.20 0.125 

218.40 1416.00 1419.19 0.225 

Total Error 1.889 

 

It is quite clear that pressure readings and calculated values are so close to each other. 

Highest amount of difference occurs at t=4.91 hours with 4.04 psi, an error less than 

0.25%. The results are plotted in MATLAB and Excel, as can be seen from Figure 

4.21 and Figure 4.22. 
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Figure 4.25 Semilog Plot of Pwf vs t, with Best Match Semilog Straight Line(k=9.16 

md, s=+4.00) 

 

Figure 4.26 Comparison of ∆Pwf(measured) and ∆Pwf(calculated with k=9.16 md 

and s=+4.00) 
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4.4 Permeability and Skin Factor Estimation with Graphical Analysis  

Graphical analysis method is much simpler and faster compared to the iterative 

method that has been used previously. Python is used again to estimate permeability 

and skin factor with graphical analysis method.  

Semilog plot of P vs t is drawn using Python. A best line passing through the middle 

time region points is drawn. By calculating the slope of this line, which is called m, 

the permeability can be estimated from the equation below. 

Eq 4.1 

 

In order to estimate the skin factor, S, following equation is used. 

Eq 4.2 

 

For the P1hr value, the point on the semi-log straight line should be used rather than 

the measured P value at 1 hour. 

 

 

 

 

 

 

 

𝑘 = −162.6
𝑄 × 𝐵 × µ

𝑚 × ℎ
 

 

𝑠 = 1.151 [
𝑃𝑖 − 𝑃1ℎ𝑟

|𝑚|
− log

𝑘

𝜙µ𝑐𝑡𝑟𝑤
2

+ 3.2274] 
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4.4.1 Drawdown Case I 

The values from Table 4.3 and Table 4.5 are used for the estimation process.  

The equation of the best line is: 

𝑦 = −256.932 x + 3324.82 

 

The permeability is calculated as 76.58 md using Eq 4.1 while the skin factor is 

calculated as +6.01 using Eq 4.2. 

Comparison of Pwf(calculated with k=76.58 md and s=+6.01) and Pwf(measured) values for each data 

point can be seen below.  

 

Table 4.9 Comparison of Pwf(calculated with k=76.58 md and s=+6.01) and 

Pwf(measured) 

t(hours) Pwf(measured)(psi) Pwf(calculated)(psi) 
Absolute 

Error(%) 

3.23 3200.34 3194.42 0.185 

3.74 3175.40 3178.10 0.085 

4.32 3162.30 3161.79 0.016 

5.00 3139.87 3145.47 0.178 

5.79 3133.46 3129.15 0.137 

6.71 3114.87 3112.84 0.065 

7.76 3092.78 3096.52 0.121 

8.98 3081.99 3080.20 0.058 

10.40 3062.07 3063.89 0.059 

12.03 3047.29 3047.57 0.009 

Total Error 0.915 
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Despite having a little bit more error than the iterative method, it is quite clear that 

pressure readings and calculated values are still close to each other. Highest amount 

of difference occurs at t=5.79 hours with 4.31 psi, an error less than 0.18%.  

The results are plotted in Excel and Python, as can be seen from Figure 4.23 and 

Figure 4.24. 

 

Figure 4.27 Comparison of ∆Pwf(measured) and ∆Pwf(calculated with k=76.58 md 

and s=+6.01) 
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Figure 4.28 Semilog Plot of Pwf vs t, with Best Match Semilog Straight 

Line(k=76.58 md and s=+6.01) 
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4.4.2 Drawdown Case II 

The values from Table 4.4 and Table 4.7 are used for the estimation process.  

The equation of the best line is: 

𝑦 = −152.529x + 1775.70 

The permeability is calculated as 9.14 md using Eq 4.1 while the skin factor is 

calculated as +3.97 using Eq 4.2. 

Table 4.10 Comparison of Pwf(calculated with k=9.14 md and s=+3.97) and Pwf(measured) 

t(hours) Pwf(measured)(psi) Pwf(calculated)(psi) Absolute Error(%) 

4.91 1674.00 1670.43 0.213 

5.46 1665.00 1663.39 0.096 

6.55 1651.00 1651.34 0.020 

8.74 1630.00 1632.23 0.137 

10.90 1617.00 1617.60 0.037 

16.40 1588.00 1590.54 0.160 

27.30 1554.00 1556.78 0.179 

32.80 1543.00 1544.62 0.105 

38.20 1533.00 1534.53 0.100 

43.70 1525.00 1525.62 0.040 

49.10 1517.00 1517.90 0.059 

54.60 1511.00 1510.87 0.009 

65.50 1500.00 1498.81 0.079 

87.40 1482.00 1479.70 0.155 

109.20 1468.00 1464.95 0.208 

163.80 1440.00 1438.09 0.133 

218.40 1416.00 1419.03 0.214 

Total Error 1.946 
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Despite having a little bit more error than the iterative method, it is quite clear that 

pressure readings and calculated values are still close to each other. Highest amount 

of difference occurs at t=4.91 hours with 3.57 psi, an error less than 0.22%. 

The results are plotted in Excel and Python, as can be seen from Figure 4.25 and 

Figure 4.29. 

 

Figure 4.29 Comparison of ∆Pwf(measured) and ∆Pwf(calculated with k=9.14 md 

and s=+3.97) 
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Figure 4.30 Semilog Plot of Pwf vs t, with Best Match Semilog Straight Line 

(k=9.14 md and s=+3.97) 
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4.5 Permeability and Skin Factor Estimation Using KAPPA Saphir Module 

KAPPA’s Saphir Module is an industry standard pressure transient analysis module,  

used by nearly all major international oil companies, national oil companies, 

independents and service companies.  

It should be noted that Saphir doesn’t find and use the best log cycle interval while 

calculating pressure derivatives. The default derivation interval is 0.1 of a log cycle 

and it is up to the user to find the appropriate interval with eyeball estimate.  

Both cases are analyzed using this module to see the results and compare them with 

the previous results.  

4.5.1 Drawdown Case I 

Known reservoir parameters, flow rate, pressure and time data for drawdown case I 

was entered into KAPPA’s Saphir Module as can be seen from the figure below. 

 

Figure 4.31 History Plot of P vs t and Q vs t for Drawdown Case I 
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Following derivative plot is drawn automatically by Saphir, with a default log cycle 

interval of 0.1. 

 

Figure 4.32 Derivative Plot Drawn by Saphir for Drawdown Case I (0.1 Log Cycle) 

It is quite clear that the derivative plot is very noisy. 

Following estimates of k and S had been made by Saphir. 

 

Figure 4.33 k and S Estimation Made by Saphir for Drawdown Case I(0.1 Log Cycle)  

It estimated permeability as 76.5316 md and skin factor as +6.02415. 
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When the differentiation interval of 0.31 log cycle is used, following results are 

obtained. 

 

Figure 4.34 Derivative Plot Drawn by Saphir for Drawdown Case I (0.31 Log Cycle)  

The derivative plot drawn with 0.31 log cycle interval is much more smooth 

compared to the Figure 4.29. 

Following estimates of k and S had been made.  
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Figure 4.35 k and S Estimation Made by Saphir for Drawdown Case I(0.31 Log 

Cycle) 

Even though the derivative plot is enhanced greatly by using 0.31 log cycle interva l 

instead of 0.1, the estimated permeability stayed the same while the skin factor only 

changed from +6.02415 to +6.01963. 

Comparison of Pwf(calculated with k=76.5316 md and s=+6.01963) and Pwf(measured) values for each 

data point can be seen from Table 4.11 on the next page.  
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Table 4.11 Comparison of Pwf(calculated with k=76.5316 md and s=+6.01963) and 

Pwf(measured) 

t(hours) Pwf(measured)(psi) Pwf(calculated)(psi) 
Absolute 

Error(%) 

3.23 3200.34 3191.15 0.287 

3.74 3175.40 3174.83 0.018 

4.32 3162.30 3158.50 0.120 

5.00 3139.87 3142.18 0.073 

5.79 3133.46 3125.85 0.243 

6.71 3114.87 3109.52 0.172 

7.76 3092.78 3093.20 0.014 

8.98 3081.99 3076.87 0.166 

10.40 3062.07 3060.55 0.050 

12.03 3047.29 3044.22 0.101 

Total Error 1.243 

 

 

Total error for the drawdown case I was 0.899% for the iterative method and 0.915% 

for the graphical analysis method. Saphir has a total error of 1.243%, which is larger 

than both methods, meaning that it is less accurate.  
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4.5.2 Drawdown Case II 

 Known reservoir parameters, flow rate, pressure and time data for drawdown case 

II was entered into KAPPA’s Saphir Module as can be seen from the figure below. 

 

Figure 4.36 History Plot of P vs t and Q vs t for Drawdown Case II 

 

Following derivative plot is drawn automatically by Saphir, with a default log cycle 

interval of 0.1. 

 

Figure 4.37 Derivative Plot Drawn by Saphir for Drawdown Case II (0.1 Log 

Cycle) 
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Following estimates of k and S had been made by Saphir. 

 

Figure 4.38 k and S Estimation Made by Saphir for Drawdown Case II(0.1 Log 

Cycle) 

It estimated permeability as 9.65699 md and skin factor as +4.58184. 

When the differentiation interval of 0.40 log cycle is used, following results are 

obtained. 

 

Figure 4.39 Derivative Plot Drawn by Saphir for Drawdown Case I (0.31 Log Cycle) 

The derivative plot drawn with 0.40 log cycle interval is smoother compared to the 

one drawn with 0.10 log cycle interval. 
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Following estimates of k and S had been made.  

 

Figure 4.40 k and S Estimation Made by Saphir for Drawdown Case I(0.31 Log 

Cycle) 

Even though the derivative plot is enhanced again by using 0.40 log cycle interva l 

instead of 0.1, the estimated permeability stayed the same while the skin factor only 

changed from +4.58184 to +4.59090. 

Comparison of Pwf(calculated with k=9.65699 md and s=+4.59090) and Pwf(measured) values for each 

data point can be seen from Table 4.12 on the next page.  
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Table 4.12 Comparison of Pwf(calculated with k=9.65699 md and s=+4.59090) and 

Pwf(measured) 

t(hours) Pwf(measured)(psi) Pwf(calculated)(psi) Absolute Error(%) 

4.91 1674.00 1661.02 0.775 

5.46 1665.00 1654.37 0.639 

6.55 1651.00 1642.96 0.487 

8.74 1630.00 1624.88 0.314 

10.90 1617.00 1611.04 0.369 

16.40 1588.00 1585.43 0.162 

27.30 1554.00 1553.49 0.033 

32.80 1543.00 1541.99 0.066 

38.20 1533.00 1532.44 0.037 

43.70 1525.00 1524.00 0.065 

49.10 1517.00 1516.70 0.020 

54.60 1511.00 1510.05 0.063 

65.50 1500.00 1498.64 0.091 

87.40 1482.00 1480.56 0.097 

109.20 1468.00 1466.60 0.095 

163.80 1440.00 1441.19 0.082 

218.40 1416.00 1423.16 0.505 

Total Error 3.900 

 

 

Total error for the Drawdown Case II was 1.889% for the iterative method and 

1.946% for the graphical analysis method. Saphir has a total error of 3.90%, more 

than double the error of both methods, meaning that it is much less accurate.  
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4.6 Drawdown Case III 

A drawdown test data without any noise have been simulated.  

Table 4.13 Drawdown Test Data for Case III 

t, hours Pwf, psi t, hours Pwf, psi t, hours Pwf, psi t, hours Pwf, psi 

0.000 5000.00 0.110 3905.00 1.000 2608.00 8.000 2316.56 

0.010 4900.00 0.120 3810.00 1.200 2580.67 9.000 2300.17 

0.015 4850.00 0.150 3580.00 1.400 2559.21 10.000 2285.50 

0.020 4800.00 0.180 3360.00 1.600 2540.62 12.000 2255.00 

0.025 4750.00 0.220 3170.00 1.800 2524.22 14.000 2224.50 

0.030 4700.00 0.250 3050.00 2.000 2509.56 16.000 2194.00 

0.040 4600.00 0.300 2940.00 2.500 2478.49 18.000 2163.50 

0.050 4500.00 0.350 2850.00 3.000 2453.11 20.000 2133.00 

0.060 4400.00 0.400 2800.00 3.500 2431.65 22.000 2102.50 

0.070 4300.00 0.500 2740.00 4.000 2413.06 24.000 2072.00 

0.080 4200.00 0.600 2692.00 5.000 2381.99 26.000 2041.50 

0.090 4100.00 0.700 2665.00 6.000 2356.61   

0.100 4000.00 0.800 2643.00 7.000 2335.15   
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Table 4.14 Known Parameters of Drawdown Case III 

Parameters 

Q, stb/day 1500 

ϕ 0.2 

h, ft 21 

Bo, bbl/stb 1.2 

µ, cp 0.92 

rw, ft 0.401 

Ct, 1/psi 9x10-6 

k, md 4.00 

S +2.90 

 

 

Figure 4.41 Diagnostic Plot of Drawdown Case III 
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It is known that the infinite acting radial flow starts at 1 hours and ends at 10 hours.  

Unlike the previous cases, using Eq 4.2 results in a perfectly smooth derivative curve 

as can be seen from Figure 4.41. 

Pressure and time data is fed into same Python code and following results are 

obtained. 

 

Figure 4.42 Log Cycle Interval vs Sign Change Ratio Plot for Case III 

0.26 interval turns out to be the best interval, having smallest sum of second and 

third derivative sign change ratios with 0.04082 + 0.04082 = 0.08164  
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Figure 4.43 First and Second Derivative Curves (0.26 Log Cycle Interval) 

Infinite acting radial flow is estimated to start at 0.90 hours and end at 10 hours. 

  



 

 
79 

 

Figure 4.44 Comparison of Derivative Plots 

Permeability is estimated as 39.915 md while skin factor is estimated as 2.88. 

Table 4.15 Comparison of Actual and Estimated Values 

Parameters Actual Value Estimated Value Error(%) 

k(md) 40.000 39.915 0.213 

S +2.90 +2.88 0.681 
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4.6.1 Gaussian Noise Addition 

To test the methods tolerance to noise, random artificial Gaussian noise of  ±0.5%, 

±1%, ±1.5%, ±2%, ±2.5%, ±3% is added to the Drawdown Case III pressure data. 

The Python code had been run 20 times for each case. It is seen that the Python code 

can handle noises up to ±2.5%. Confidence interval of 95% is used for the 

calculations.  

Figure 4.45 and Table below shows examples of Pwf vs t for ±0.5%, ±1%, ±1.5%, 

±2%, ±2.5%, ±3%. 

 

Figure 4.45 Pwf vs t Plots with Randomly Added Noises 
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Table 4.16 Permeability and Skin Factor Estimations with Randomly Added Noises 

Parameter ±0.5% ±1% ±1.5% ±2% ±2.5% ±3% 

k(md) 39.365 39.893 39.825 41.424 40.746 37.050 

S 2.758 2.973 2.833 3.133 3.086 2.170 

 

Permeability and skin factor estimates and their confidence interval results can be 

seen from the tables at Results and Discussion Part. 
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CHAPTER 5  

5               RESULTS AND DISCUSSION 

Despite all the efforts given for the reliability of the well test data, some uncertaint ie s 

are still present and they cause noise in the data and they should be eliminated in 

order to be able to make the most logical decisions. These noises are amplified while 

calculating pressure derivatives and make analysis and interpretation processes more 

complex.  

I have shown that these noises can be dealt with by finding the best log cycle interva l 

and using that interval while calculating the pressure derivatives. As stated earlier, 

pressure derivatives are arguably the most useful diagnosis tool when it comes to 

well test analysis. Accuracies of time region identifications and as a result 

permeability and skin factor estimations are enhanced.  

Two different methods are used for the estimation process and both had negligib le 

error. Iterative method was slightly more accurate compared to the graphical analysis 

method but it required more time to run. Graphical analysis method did calculations 

in matter of seconds while iterative one took around one to five minutes. The 

difference between the two methods can be checked from the tables on the next 

pages. 

It is shown that the Python code written can estimate permeability and skin factor 

more accurately than KAPPA’s Saphir Module, an industry standard Pressure 

Transient Analysis tool, as can be seen from Table 5.1.  

Table 5.2-5.7 show the permeability and skin factor estimates and their 95% 

confidence intervals. 
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Table 5.1 Absolute Error Percentages of Different Methods 

Case Iterative 

Method 

Graphical Analysis 

Method 

KAPPA Saphir 

Module 

Drawdown I 0.899% 0.915% 1.243% 

Drawdown II 1.889% 1.946% 3.900% 

 

Table 5.2 Results for ±0.5% Error 

Parameter Estimate Confidence 

Interval(Absolute) 

Confidence 

Interval(%) 

Permeability(md) 40.010 ±0.943 ±2.358 

Skin Factor 2.894 ±0.203 ±7.008 

 

Table 5.3 Results for ±1% Error 

Parameter Estimate Confidence 

Interval(Absolute) 

Confidence 

Interval(%) 

Permeability(md) 39.334 ±2.756 ±7.007 

Skin Factor 2.772 ±0.634 ±22.856 

 

Table 5.4 Results for ±1.5% Error 

Parameter Estimate Confidence 

Interval(Absolute) 

Confidence 

Interval(%) 

Permeability(md) 39.727 ±2.993 ±7.536 

Skin Factor 2.859 ±0.722 ±25.262 
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Table 5.5 Results for ±2% Error 

Parameter Estimate Confidence 

Interval(Absolute) 

Confidence 

Interval(%) 

Permeability(md) 40.454 ±4.671 ±11.547 

Skin Factor 3.017 ±0.941 ±31.175 

 

Table 5.6 Results for ±2.5% Error 

Parameter Estimate Confidence 

Interval(Absolute) 

Confidence 

Interval(%) 

Permeability(md) 39.713 ±6.044 ±15.219 

Skin Factor 2.833 ±1.239 ±43.714 

 

Table 5.7 Results for ±3% Error 

Parameter Estimate Confidence 

Interval(Absolute) 

Confidence 

Interval(%) 

Permeability(md) 37.210 ±19.242 ±51.711 

Skin Factor 2.377 ±4.001 ±168.370 

 

  



 

 
86 
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CHAPTER 6  

 

6           CONCLUSIONS 

Well testing gives precious data for production evaluation and optimization. It is an 

important part of reservoir management. The accuracy of these data is crucial for 

understanding the reservoir itself and making most logical decisions accordingly.  

Flow period identification is the first step of well test analysis and arguably the most 

important step. Derivative plots and hence diagnostic plots are crucial for flow 

period identification, reliability of these plots directly affect the accuracy of 

permeability and skin factor estimates. 

Despite the improvements in pressure and flow rate measurement technology, some 

noise is still present in most well test data and should be dealt with before making 

reservoir characterization and parameter estimation processes. 

It is shown that the Python code can handle noises up to ±2.5% and make accurate 

estimations of permeability and skin factor. 
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APPENDICES 

A. Python Code 

import math 

import sys 

import numpy as np 

import json 

 

def LN(x): 

  return math.log(x) 

 

def FDRV(i,T,DP): # calculate Derivative at point "i" for T and DP 

values 

  t1=LN(T[i]/T[i-1])*DP[i+1]/LN(T[i+1]/T[i])/LN(T[i+1]/T[i-1]) 

  print("t1=",t1) 

  t2=LN(T[i+1]*T[i-1]/T[i]**2)*DP[i]/LN(T[i+1]/T[i])/LN(T[i]/T[i-

1]) 

  print("t2=",t2) 

  t3=LN(T[i+1]/T[i])*DP[i-1]/LN(T[i]/T[i-1])/LN(T[i+1]/T[i-1]) 

  print("t3=",t3) 

  return t1+t2-t3 

 

def Ftik(T,i,k): 

  return math.log(T[i])-math.log(T[i-k]) 

 

def Ftij(T,i,j): 

  return math.log(T[i+j])-math.log(T[i]) 

 

def ReadWellFile(fname): # reads T and P columns from TEXT file 

  dt1= open(fname).read().split("\n") 

  dta1=[] 

  for x in dt1: 

    dta1.append( x.split("\t")) 

  wd2float(dta1) 

  return dta1 

 

def GetWellData(weda): 

  TT= [0]*(len(weda)-1) 

  PP= [0]*(len(weda)-1) 

  for i in range(1,len(weda)): 

    TT[i-1]= weda[i][0] 

    PP[i-1]= weda[i][1] 

  return (TT,PP) 

 

def Fdrv2(TL,PL,DT,DP,DRV): 

  for i in range(1,len(T)): 

    DT[i]= T[i]-T[0] 

    DP[i]= P[0]-P[i] 

  for i in range(2,len(T)-2): 

    DRV[i]= LN(TL[i]/TL[i-

1])*DP[i+1]/LN(TL[i+1]/TL[i])/LN(TL[i+1]/TL[i-1]) 
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    DRV[i] += LN(TL[i+1]*TL[i-

1]/TL[i]**2)*DP[i]/LN(TL[i+1]/TL[i])/LN(TL[i]/TL[i-1]) 

    DRV[i] -= LN(TL[i+1]/TL[i])*DP[i-1]/LN(TL[i]/TL[i-

1])/LN(TL[i+1]/TL[i-1]) 

 

def findInterval(T, val): 

  for i in range(len(T)-1): 

    if T[i]<=val and T[i+1]>val: 

      return i 

  return len(T)-1 

 

def calcDRV(T,DP,i,j,k): 

    DRV  = LN(T[i]/T[i-k])*DP[i+j]/LN(T[i+j]/T[i])/LN(T[i+j]/T[i-

k]) 

    DRV += LN(T[i+j]*T[i-

k]/T[i]**2)*DP[i]/LN(T[i+j]/T[i])/LN(T[i]/T[i-k]) 

    DRV -= LN(T[i+j]/T[i])*DP[i-k]/LN(T[i]/T[i-k])/LN(T[i+j]/T[i-

k]) 

    return DRV 

   

def Fdrv2LC(TL,PL,DT,DP,DRV): 

  for i in range(1,len(TL)): 

    DT[i]= TL[i]-TL[0] 

    DP[i]= PL[0]-PL[i] 

  for i in range(1,len(TL)-1): 

    DRV[i]= calcDRV(TL,DP,i,1,1) 

  DRV[-1]= DRV[-2]+(DRV[-2]-DRV[-3]) 

 

def Fdrv2JK(T,P,DT,DP,DRV,j,k): 

  for i in range(1,len(T)): 

    DT[i]= T[i]-T[0] 

    DP[i]= P[0]-P[i] 

  for i in range(k+1,len(T)-1-j): 

    DRV[i]= LN(T[i]/T[i-k])*DP[i+j]/LN(T[i+j]/T[i])/LN(T[i+j]/T[i-

k]) 

    DRV[i] += LN(T[i+j]*T[i-

k]/T[i]**2)*DP[i]/LN(T[i+j]/T[i])/LN(T[i]/T[i-k]) 

    DRV[i] -= LN(T[i+j]/T[i])*DP[i-k]/LN(T[i]/T[i-

k])/LN(T[i+j]/T[i-k]) 

 

def FLC(T,i,j): 

  return math.log(T[i]) - math.log(T[j]) 

 

def interpolate(x0,y0,x1,y1,X): 

  return y0+(X-x0)*(y1-y0)/(x1-x0) 

 

def findZero(x0,y0,x1,y1): # find the X-axis value intersected by 

LINE:(x0,y0)-(x1,y1) 

  My= (y1-y0)/(x1-x0) 

  return x0-y0/My 

 

def LCTP(T,P,LC): 

  tx= max(T[0],0.00001) 

  Tval=[tx] 

  Pval=[P[0]] 
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  while tx<T[-1]: 

    tx= math.exp(math.log(tx)+LC) 

    Tval.append(tx) 

    fint= findInterval(T,tx) 

    if fint<(len(T)-1): 

      Pvalint= interpolate(T[fint],P[fint],T[fint+1],P[fint+1],tx) 

    else: 

      Pvalint= interpolate(T[fint-1],P[fint-1],T[fint],P[fint],tx) 

    Pval.append(Pvalint) 

  return Tval,Pval 

 

def FindLCj(T, LC): # i+j 

  maxtmp=-1 

  for i in range(1, len(T)): 

    for j in range(1, len(T)-i): 

      if FLC(T,i+j,i)>=LC: 

         maxtmp=max(maxtmp, j) 

         break 

  return maxtmp 

 

def FindLCk(T, LC): # i-k 

  maxtmp=-1 

  for i in range(1,len(T)): 

    for k in range(1, i): 

      if FLC(T,i,i-k)>=LC: 

         maxtmp=max(maxtmp,k) 

         break 

  return maxtmp 

 

def main1(): 

  Fdrv2JK(T,P,DT,DP,DRV,5,5) 

  for i in range(len(DRV)): 

    print(T[i], DRV[i]) 

 

def isfloat(x): 

  for a in x: 

    if a.isdigit(): continue 

    if a==".": continue 

    return False 

  return True 

 

def wd2float(dta): 

  for i in range(len(dta)): 

    for j in range(len(dta[i])): 

      if isfloat( dta[i][j] ):#    

print("(",i,",",j,",",dta[i][j],")",end="") 

         dta[i][j]= float(dta[i][j]) 

 

def ffExp(t,a,b,c): 

  return a*np.exp(b*t)+c 

 

def getExp(T,P, deg=1): 

  import scipy.optimize as opt 

  x= np.asarray(T) 

  y= np.asarray(P) 
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  pfit,perr=opt.curve_fit(lambda t,a,b,c: 

a*np.exp(b*t)+c,x,y,maxfev=5000) 

  return ffExp(x, *pfit) 

 

def getLinear(T,P,deg): # fit a polynomial with DEGREE=deg to given 

T,P values 

  print("getlinear degree:",deg) 

  import numpy as np 

  import copy 

  x= np.asarray(T) 

  y= np.asarray(P) 

  print(T[:10]) 

  from sklearn.preprocessing import PolynomialFeatures 

  poly = PolynomialFeatures(degree=deg, include_bias=False) 

  poly_features = poly.fit_transform(x.reshape(-1, 1)) 

  poly.transform(x.reshape(-1,1)) 

  # 

  from sklearn.linear_model import LinearRegression 

  poly_reg_model = LinearRegression() 

  poly_reg_model.fit(poly_features,y) 

  y_predicted = poly_reg_model.predict(poly_features) 

  return y_predicted 

 

def drawPlot(X,Y, regtype="linear", deg=2,plog=""): 

  print("regtype:",regtype," deg:",deg," plog:", plog) 

  import numpy as np 

  npX= np.asarray(X) 

  npY= np.asarray(Y) 

  import matplotlib.pyplot as plt 

  plt.figure(figsize=(10,6)) 

  if plog=="loglog": 

    plt.xscale("log") 

    plt.yscale("log") 

  if plog=="semilog": 

    plt.xscale("log") 

  plt.scatter(X,Y) 

  if regtype=="linear": 

    ypredicted= getLinear(X,Y,deg) 

    plt.plot(X,ypredicted, c="red") 

  if regtype=="linear2": 

     import copy 

     mid=len(X)//2 

     X1=copy.copy(X[:mid+1]) 

     Y1=copy.copy(Y[:mid+1]) 

     X2=copy.copy(X[mid-1:]) 

     Y2=copy.copy(Y[mid-1:]) 

     ypred1= getLinear(X1,Y1,deg) 

     plt.plot(X1,ypred1,c="red") 

     ypred2= getLinear(X2,Y2,deg) 

     plt.plot(X2,ypred2, c="blue") 

  if regtype=="exp": 

     ypredicted= getExp(X,Y) 

     plt.plot(X,ypredicted,"b", label="fit") 

  if regtype=="exp2": 

     import copy 



 

 
97 

     mid=len(X)//2 

     X1=copy.copy(X[:mid]) 

     Y1=copy.copy(Y[:mid]) 

     X2=copy.copy(X[mid+1:]) 

     Y2=copy.copy(Y[mid+1:]) 

     ypred1= getExp(X1,Y1) 

     plt.plot(X1,ypred1,c="red") 

     ypred2= getExp(X2,Y2) 

     plt.plot(X2,ypred2, c="blue") 

  plt.show( ) 

 

def drawFigure(Xpoints, Ypoints, T, P): 

  tt=0 

  tt0=-1 

  for i in range(len(T)): 

    if tt0==-1 and T[i]>=3: 

      tt0=i 

    if T[i]>=Xpoints[0]: 

      tt=i 

      break 

  LLEN= len(Xpoints) 

  lineM, lineB= findMB(T[tt:tt+LLEN], P[tt:tt+LLEN]) 

  newX= [T[tt0], T[tt+LLEN-1]] 

  newY= [lineM*newX[0] + lineB,lineM*newX[1] + lineB] 

  # 

  import matplotlib.pyplot as plt 

  plt.figure(figsize=(10,6)) 

  # 

  plt.xscale("log") 

  plt.scatter(T[1:], P[1:]) 

  plt.plot([T[tt0],Xpoints[-1]],[P[tt0],Ypoints[-1]], c="red") 

  #plt.plot(newX, newY,c="red") 

  plt.show() 

 

def findInflection(D): 

   I=[] 

   for i in range(len(D)-1): 

     if (D[i]>0 and D[i+1]<0) or (D[i]<0 and D[i+1]>0): 

        I.append(i) 

   return I 

 

def DPTcalc(TLC,DERV,i): 

  if i==0 or i==len(TLC)-1: return 0 

  Ti=TLC[i] 

  Tim1= TLC[i-1] 

  Tip1= TLC[i+1] 

  DPi= DERV[i] 

  DPim1= DERV[i-1] 

  DPip1= DERV[i+1] 

  dpti=Ti*( (Ti-Tim1)*DPip1/(Tip1-Ti)/(Tip1-Tim1) + (Tip1+Tim1-

2*Ti)*DPi/(Tip1-Ti)/(Ti-Tim1) - (Tip1-Ti)*DPim1/(Ti-Tim1)/(Tip1-

Tim1)) 

  return dpti 

 

def CalcLCs(TLCv,ALL): 
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  AvgDRVs=[0]*len(TLCv) 

  Flag=True 

  for j in range(len(TLCv)): 

    x= TLCv[j] 

    for y in ALL.values(): 

      xx= list(map(lambda aa: aa[0], y)) 

      yy= list(map(lambda aa: aa[1], y)) 

      i= findInterval(xx, x) 

      #print(i,x, " xx:",xx) 

      #print("yy:",yy) 

      if i<len(xx)-1: 

        AvgDRVs[j] += interpolate(xx[i], yy[i], xx[i+1], yy[i+1], 

x) 

      else: 

        AvgDRVs[j] += interpolate(xx[-2], yy[-2], xx[-1], yy[-1], 

x) 

  return list(map(lambda x: x/len(ALL.keys()), AvgDRVs)) 

 

def find100(Point, D): # find +100/-100 range in 2nd Derivative 

   i= Point 

   while i<len(D) and (D[i]>100 or D[i]<-100): 

      i=i+1 

   basladi=i 

   while i<len(D) and (D[i]<100 and D[i]>-100): 

      i=i+1 

   bitti=i 

   if bitti>= len(D): 

      bitti= bitti-1 

   return (basladi,bitti) 

 

def LCval2digits(LCval): # truncate to 2 decimal points 

  return int(LCval*100)/100 

 

def findMB(pX,pY): # find SLOPE and B points of straight line fit 

to (pX,pY) 

  n= len(pX) 

  sumX= sum(pX) 

  sumY= sum(pY) 

  sumX2= sum(map(lambda a: a*a, pX)) 

  sumXY= sum(map(lambda a: a[0]*a[1], zip(pX,pY))) 

  calcM= (n*sumXY-sumX*sumY)/(n*sumX2 - sumX*sumX) 

  calcB= (sumY-calcM*sumX)/n 

  return calcM,calcB 

 

def findK(jx,m): 

  return -162.6*jx["Q"]*jx["B"]*jx["mu"]/(m*jx["h"]) 

 

def SkinFactor(Pi,P1hr,M,K,jx):   #phi,mu,ct,rw): 

  return 1.151*((Pi-P1hr)/abs(M)-

math.log10(K/(jx["phi"]*jx["mu"]*jx["ct"]*jx["rw"]*jx["rw"]))+3.227

4) 

 

if __name__ == "__main__":  #   <datafile.txt>  LCval LCend LCinc 

  args= sys.argv            #  

  print(args[0], "datafile:",args[1]," LCbegin:",args[2], " 
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LCend:",args[3]) 

  dta1= ReadWellFile(args[1]+".txt") 

  jx= json.loads(open(args[1]+".json").read()) 

  print("jx:",jx) 

  T,P= GetWellData(dta1) 

  if T[0]==0: T[0]= 0.0001 

  LCval=float(args[2]) 

  LCend=float(args[3]) 

  LCinc=float(args[4]) 

  # 

  minDRV2LC=-1 

  minDRV2Val=0 

  minDRV3LC=-1 

  minDRV3Val=0 

  ALL0={} 

  ALL1={} 

  ALL2={} 

  ALL3={} 

  DF100={} 

  MinRatio={} 

  while LCval<LCend+LCinc: 

     TLC,PLC = LCTP(T,P,LCval) 

     ALL0[LCval2digits(LCval)]= list(zip(TLC,PLC)) 

     print("TLC(", LCval,"):", len(TLC)) 

     DT=[0]*len(TLC) 

     DP=[0]*len(TLC) 

     DRV=[0]*len(TLC) 

     Fdrv2LC(TLC,PLC,DT,DP,DRV) 

     # 

     ALL1[LCval2digits(LCval)]=list(zip(TLC,DRV)) 

     # 

     for i in range(len(TLC)): 

       print("{:.6f}".format(TLC[i]),",",end="") 

     print() 

     print("First Derivative(", LCval,"):", len(DRV)) 

     DRV[0]=DRV[1] 

     for i in range(len(DRV)): 

       print("{:.2f}".format(DRV[i]),",",end="") 

     print() 

     DPT1=[0]*len(TLC) 

     DPT2=[0]*len(TLC) 

     # 

     for i in range(1,len(TLC)): 

       DPT1[i]= DPTcalc(TLC,DRV,i) 

     DPT1[0]=DPT1[1] 

     DPT1[len(TLC)-1]=DPT1[len(TLC)-2] 

     PMlist= list(map(lambda x: [-1,1][x>0], DPT1)) 

     Chgcnt= sum(map(lambda i: PMlist[i]*PMlist[i+1]==-1, 

range(len(PMlist)-1))) 

     print("Second Derivative(", LCval,"):", len(TLC)," Changes:", 

Chgcnt, " Ratio:",Chgcnt/len(TLC)) 

     MinRatio[LCval2digits(LCval)]= Chgcnt/len(TLC) 

     ALL2[LCval2digits(LCval)]=list(zip(TLC,DPT1)) 

     if minDRV2LC==-1 or minDRV2Val>Chgcnt/len(TLC): 

        minDRV2Val= Chgcnt/len(TLC) 
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        minDRV2LC= LCval 

     for i in range(len(TLC)): 

       print("{:.2f}".format(DPT1[i]),end=",") 

     print() 

     # 

     for i in range(1,len(TLC)): 

       DPT2[i]= DPTcalc(TLC,DPT1,i) 

     DPT2[0]=DPT2[1] 

     DPT2[len(TLC)-1]=DPT2[len(TLC)-2] 

     PMlist= list(map(lambda x: [-1,1][x>0], DPT2)) 

     Chgcnt= sum(map(lambda i: PMlist[i]*PMlist[i+1]==-1, 

range(len(PMlist)-1))) 

     print("Third Derivative(", LCval,"):", len(TLC)," Changes:", 

Chgcnt, " Ratio:",Chgcnt/len(TLC)) 

     # add to list of Ratio's, to calculate the minimum after all 

ratios are calculated 

     MinRatio[LCval2digits(LCval)] += Chgcnt/len(TLC) 

     ALL3[LCval2digits(LCval)]=list(zip(TLC,DPT2)) 

     if minDRV3LC==-1 or minDRV3Val>Chgcnt/len(TLC): 

        minDRV3Val= Chgcnt/len(TLC) 

        minDRV3LC= LCval 

     for i in range(len(TLC)): 

       print("{:.2f}".format(DPT2[i]),end=",") 

     print() 

     # inflection points 

     MinPos2ndDerivative= DPT1.index(min(DPT1)) 

     IP= findInflection(DPT2) 

     print("Inflection points:", IP, "Minimum 2nd Derivative 

position:", MinPos2ndDerivative, " Minimum 

value:","{:.2f}".format(min(DPT1))) 

     if MinPos2ndDerivative> max(IP): 

       LCval= LCval + LCinc 

       continue 

     FirstIPafterMin= min(list(filter(lambda x: 

x>=MinPos2ndDerivative, IP))) 

     print("FirstIPafterMin2ndDerivative:", FirstIPafterMin) 

     # 

     IP1=FirstIPafterMin 

     print("(TLC,Derivative)= 

(",TLC[IP1],DPT2[IP1],")","(",TLC[IP1+1],DPT2[IP1+1],")") 

     print("ZeroPoint LC:", 

findZero(TLC[IP1],DPT2[IP1],TLC[IP1+1],DPT2[IP1+1])) 

     F100= find100(IP1, DPT1) 

     print("F100 IP:",F100) 

     print("Second Derivative(+100/-

100):","{:.6f}".format(TLC[F100[0]]),"to 

{:.6f}".format(TLC[F100[1]-1]), " DRV:", ''.join(map(lambda x: 

"{:.2f} ".format(x), DPT1[F100[0]:F100[1]]))) 

     DF100[LCval2digits(LCval)]= (F100[0],F100[1]-1) 

     # 

     LCval = LCval + LCinc 

  # 

  TLCv= list(map(lambda x: x[0], ALL1[LCend])) 

  AvgDRV1= CalcLCs(TLCv,ALL1) 

  print("AvgDRV1:", len(AvgDRV1)) 
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  for x in AvgDRV1: 

    print(x,end=",") 

  print() 

  # 

  AvgDRV2= CalcLCs(TLCv,ALL2) 

  print("AvgDRV2:", len(AvgDRV2)) 

  for x in AvgDRV2: 

    print(x,end=",") 

  print() 

  # 

  AvgDRV3= CalcLCs(TLCv,ALL3) 

  print("AvgDRV3:", len(AvgDRV3)) 

  for x in AvgDRV3: 

    print(x,end=",") 

  print() 

  # 

  print("TLC values:", len(TLCv)) 

  for x in TLCv: 

    print(x,end=",") 

  print() 

  print("Minimum Change Ratio for Second Derivative: ", minDRV2Val, 

" LC:", minDRV2LC) 

  print("Minimum Change Ratio for Third Derivative: ", minDRV3Val, 

" LC:", minDRV3LC) 

  # 

  MinRatioLC= float(''.join(map(lambda x: 

['',str(x)][MinRatio[x]==min(MinRatio.values())], 

MinRatio.keys()))) 

  print("Minimum Change Ratio Second+Third:", 

min(MinRatio.values())," LC:", MinRatioLC,' 

TLC:',DF100[MinRatioLC]) 

  TLCbegin=DF100[MinRatioLC][0] 

  TLCvalbeg= ALL0[MinRatioLC][TLCbegin][0] 

  TLCend=DF100[MinRatioLC][1] 

  TLCvalend= ALL0[MinRatioLC][TLCend][0] 

  XY2points= ALL0[MinRatioLC][TLCbegin:TLCend+1] 

  X2points= list(map(lambda x: x[0], XY2points)) 

  Y2points= list(map(lambda x: x[1], XY2points)) 

  # 

  XYpoints = list(filter(lambda x: x[0]>TLCvalbeg and 

x[0]<TLCvalend, list(zip(T,P)))) 

  Xpoints = list(map(lambda x: x[0], XYpoints)) 

  Ypoints = list(map(lambda x: x[1], XYpoints)) 

  print("X2points:", X2points) 

  print("Xpoints:", Xpoints) 

  print("Y2points:", Y2points) 

  print("Ypoints:", Ypoints) 

  LXpoints= list(map(lambda a: math.log10(a), Xpoints)) 

  foundM, foundB= findMB(LXpoints, Ypoints) 

  # k= findK(Q,h,B,u,m) 

  foundK= findK(jx,foundM) 

  print("M:", foundM, " k:", foundK) 

  pfit= np.polyfit(list(map(lambda a: math.log10(a), Xpoints)), 

Ypoints,1) 

  print("Pfit:", pfit) 
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  P1hr= np.polyval(pfit, math.log10(1)) 

  for xx in Xpoints: 

    print("{:.2f}".format(np.polyval(pfit, xx)),end=" ") 

  print() 

  print("P1hrs({:.2f})={:.2f}".format(P[0],P1hr)) 

  print("Skin factor:", SkinFactor(P[0],P1hr,foundM,foundK,jx)) 

  # 

 


