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ABSTRACT

IMPLEMENTATION OF NOISE FILTERING ALGORITHM FOR
AUTOMATED PRESSURE TRANSIENT ANALYSIS

Cosar, Doguhan
Master of Science, Petroleum and Natural Gas Engineering
Supervisor: Assoc. Prof. Dr. Caglar Smayug
Co-Supervisor:

September 2022, 102 pages

In order to estimate reservoir parameters such as permeability and skin factor, well
tests are performed. Pressures are recorded periodically during these tests. These
parameters are crucial in predicting the amount of oil or gas that can be produced.
The analysis of pressure changes provide information about the reservoir
characteristics and its ability to produce hydrocarbons at a certain amount of time.
Three different cases of drawdown tests are analyzed. Derivative curves are plotted
using data points that are separated by certain intervals, ranging from 0.10 to 0.50 of
a log cycle, because using adjacent data points results in very noisy derivative values
while differentiating. Forty one different differentiation intervals are used in total. A
new method is developed to find the log cycle interval that eliminates the highest
level of noise without overly flattening the derivative curve. Second and third
derivatives are also calculated for each and every log cycle interval and checked in

order to find the most suitable one.



Early, middle and late time regions, hence different flow regimes, of both cases are
identified using this log cycle interval. Pressure and time data from middle time
region are selected and used for the estimation process since best estimates of

permeability can be made from this region.

Skin factor and permeability values for both cases are estimated with two different
methods. The first one is an iterative method and takes around 1-5 minutes to run
while the second one is a graphical method and takes just seconds. Both methods can
estimate permeability and skin factor with high accuracy and low error. Negligible
amount of difference occurs between the two methods, the first method being slightly

more accurate.

The results obtained are compared with the results from KAPPA’s Saphir Module,
an industry standard PTA module and it is seen that the Python code can make more
accurate estimations of permeability and skin factor. Also, it can handle noises up to
+2.5%.

Keywords: Well Test Analysis, Derivative Plot, Reservoir Parameter Estimation,

Skin Factor, Permeability
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oz

OTOMATIKLESTIRILMIS GECICI BASINC ANALIZINDE GURULTU
FILTRELEME ALGORITMASININ KULLANIMI

Cosar, Doguhan
Yuksek Lisans, Petrol ve Dogal gaz Miihendisligi
Tez Yoneticisi: Dog. Dr. Caglar Smayug
Ortak Tez Yoneticisi:

Eylil 2022, 102 sayfa

Rezervuar parametrelerinin belirlenebilmesi icin kuyu testleri yapilir ve bu testler
srrasindaki basmng degerleri periyodik olarak kaydedilir. Bu parametreler belirli bir
zamanda Uretilebilecek olan petrol veya dogal gaz miktarinin belirlenebilmesi igin
son derece Onemlidir. Testler srasmda kaydedilen basmng degerleri arasmdaki
farklara bakilarak rezervuarin karakteristik Ozellikleri ve hidrokarbon dretim
kapasitesi hakkinda 6nemli bilgiler elde edilir. Toplamda U¢ farkli basmng diistim testi
analiz edimistir. Tirev grafkleri olusturulurken cok fazla giiriiltiiye neden olan
ardisik noktalari kullanmak yerine 0.10 ile 0.50 arasmda degisen logaritmik periyot
aralklar1 kullanmilmustir. Toplamda kwk bir farkh arabk kullanidmistir. Python
kullanilarak yeni bir metod gelistirilmis, giiriiltiiyi en ¢ok elimine eden ve tirev
grafigini asm diizlestirmeden en piiriizsiz  olacak sekilde olusturan logaritmik
periyot aralk degeri bulunmus ve parametre tahminlerinde kullanilmistir. En uygun
logaritmik periyot araligini bulabilmek icin kwk bir farkh aralk icin de kinci ve
tiglincli tiirev degerleri hesaplanmis ve kontrol edimistir. Erken, orta ve ge¢ zaman
bolgeleri ve dolayisiyla farkh akis rejimleri bu arabk kullanilarak belirlenmistir.

Estimasyon asamasinda orta zaman bdlgelerindeki basmng verileri kullanilmaktadir

Vil



cunku en isabetli saptamalar bu bélgeden yapilmaktadir. Her iki rezervuarin da skin
faktorli ve gegirgenlik degerleri iki farklh metod kullanilarak hesaplanmistur.

Ik metod tekrarh metoddur ve estimasyon siireci yaklasik bir ile bes dakika arasmda
degisen siireleri bulmaktadrr. Ikinci metod ise grafiksel metoddur ve saniyeler icinde
estimasyon yapabilmektedir. Iki metod da gecirgenlik ve skin faktdr degerlerini
yikksek isabet ve diisilk hata ile tahmin etmektedir. Ik metod biraz daha isabetli
tahminler yapsa da iki metod arasmdaki fark thmal edilebilecek seviyelerdedir.

Elde edilen sonuglar, endiistri standardi PTA programu olan KAPPA’nn Saphir
Modiili ile elde edilen sonuglarla kiyaslanmig ve Python kodunun daha isabetli
gecirgenlik ve skin faktorii tahminleri yaptigi gézlemlenmistir. Ayrica Python kodu

+%2.5 giriltuye kadar dayamm gostermektedir.

Anahtar Kelimeler: Kuyu Test Analizi, Tirev Grafigi, Rezervuar Parametre

Estimasyonu, Skin Faktorl, Gegirgenlik
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CHAPTER 1

INTRODUCTION

In order to make the most meaningful decisions on any reservoir and maximize
profitability, the reservoir, and every parameter, and characteristics it has should be
identified before decision making processes. There are different methods to identify

these parameters and characteristics, and a most important one is well test analysis.

1.1  Traditional Graphical Analysis

Well test analysis was first used for groundwater hydrology before it became an
essential analysis method in the petroleum industry. Well tests had been interpreted
by traditional graphical analysis, way before computer aided analysis. The flow
periods are identified by checking derivative plots and semi-log plots. Reservoir
parameters are estimated from the log-log and semi-log plots. As the final step, type
curve matching of the log-log derivative type curves are made and reservoir

parameters are re-estimated if necessary.

The flow periods that take place during a well test, which are also mentioned on the
next page, can be interpreted from the corresponding characteristic plots. Some of

these plots are used for estimating parameters.



Table 1.1 Characteristics of Different Flow Periods[3]

Flow Period

Infinite Acting Radial
Flow Drawdown
Infinite Acting Radial
Flow Buildup

Wellbore Storage

Finite Conductivity
Fracture
Infinite Conductivity

Fracture

Double Porosity

Closed Boundary

Impermeable Boundary

Constant Pressure

Boundary

Plot

P vs logAt

Pvs
log(te+At)/At

logAP vs logAt

logAP vs logAt

logAP vs logAt

P vs logAt

P vs At

P vs logAt

any

Characteristic

Semilog Straight Line

Straight Line

Unit Slope
Straight Line (P vs t)

Straight Line with Slope %

Straight Line with Slope %

S-Shaped Transition Between
Semilog Straight Lines
Pseudosteady State
Pressure Linear with Time
Doubling of Slope on Semi-log
Straight Line
Constant Pressure Flat Line on All
P/t Plots



In addition to these characteristic plots, derivative plots were introduced by Bourdet

et al. in 1983, which became one of the greatest milestones of the modern well test

analysis. Derivative plots contain Atlog ap /at vs logAt, diagnostic plots on the

other hand contain both logAP vs logAt and Atlogap/at vs log At . They are

arguably the most useful tools for diagnosis and will be the main focus of this study.

1.2 Computer Aided Analysis

Computer aided analysis is much faster compared to traditional graphical techniques.
It also eliminates human error that can occur while plotting or reading the graph.
Computer aided analysis can handle situations that would be impossible to handle

with traditional methods, such as complex geometries, varying rate etc.

Table 1.2 Characteristics of Different Flow Periods on Derivative Plots[3]

Flow Period Characteristic

Wellbore Storage Unit Slope Line plus a Hump
Infinite Acting Radial Flow Buildup Flat Region

Infinite Acting Radial Flow Drawdown Flat Region

Finite Conductivity Fracture Straight Line with Slope %4
Infinite Conductivity Fracture Straight Line with Slope %
Double Porosity Reverse Hump with a Minimum
Closed Boundary Steep Rising Straight Line
Impermeable Boundary Second Flat Region

Constant Pressure Boundary Continuously Decreasing Line






CHAPTER 2

LITERATURE REVIEW

2.1 Well Tests

It is a necessity for a reservoir engineer to have sufficient information about
wellreservoir to be able to analyze the reservoir performance and predict the future
performance under various circumstances.[4] Well tests provide information about
in situ reservoir conditions. These conditions determine the production capacity of a
reservoir. Pressures and their changes over time make it possible to determine
unknown reservoir parameters such as permeability and skin factor. Hence well tests

are the most valuable for reservoir engineering without a doubt.

Primary objectives of the oil well tests are:

e Evaluating well conditions

e Reservoir characterization

e Obtaining unknown reservoir parameters for reservoir description

e Estimating damage caused during drilling/completion and deciding if
stimulation is necessary or not.

e Determining pay zones



211 Drawdown Test

A well that was initially shut-in and at static condition is opened to flow. Ideally, the
flow rate should be kept constant in order to conduct traditional analysis but in reality
this is hard to achieve. This type of test is mostly used for testing the reservoir’s
limits.

The pressure is constant until the beginning of production. As production begins,
pressure starts to drop. Initially produced fluids comes from the wellbore itself, not
the reservoir and this period is called “wellbore storage”. Analyzing the pressure
drops make it possible to estimate some unknown reservoir parameters, such as

permeability and skin factor. One of the advantages of this type of testing is that fluid

production continues while conducting the test.

Figure 2.1 P vs tand g vs t Plot of an Ideal Drawdown Test



2.1.2 Buildup Test

The well that was initially flowing, ideally at a constant rate, is shut-in. Pressure
begins to increase right after this shut-in. A short period of flow called “afterflow”

occurs from reservoir to the wellbore right after the well is shut-in.

Itis much easier to sustain aconstant flow rate compared to a drawdown test because
desired flow rate is zero. Biggest disadvantage of this test is that the well is not

producing any fluids and this means a loss of profit.

Figure 2.2 P vstand q vs t Plot of an Ideal Buildup Test



2.2  Well Test Analysis

The main aim of the well test analysis is to interpret the pressure response due to
change in flow rate. Well test analysis plays a crucial role in reservoir management.
In order to be able to make the most meaningful decisions on any reservoir and
maximize profitability, the reservoir and every parameter and characteristics it has

should be identified before decision making processes.

There are different methods to identify these parameters and characteristics and one

of the most important methods is well test analysis.

2.2.1 Previous Studies on Well Test Analysis

Gringarten summarized the most important developments in well test analysis in

detail with his paper.[2]

2.2.1.1  Well Test Analysis Between 1930s-1950s

Well test analysis techniques started with the groundwater hydrology. Semilog
straight line analysis and type curve matching was introduced by Theis in 1935[5].
In 1946, Cooper and Jacob[6] applied semilog straight line analysis and suggested a

generalized graphical method that evaluates reservoir parameters.



2.2.1.2  Well Test Analysis Between 1950s-1960s

The interpretation techniques that were used during the 1950s and 1960s are mostly
developed Dby oil companies and illustrated by the works of Miller et al.[7],
Horner[8], Warren and Root[9], Odeh and Jones[10], Matthews et al.[11]. These
interpretation methods were composed of semilog straight lines that apply to middle
time data and simple boundary effects that can be inferred from late time data. Due
to the technological constraints at those times, analysis were performed by hand,
using pencil and graph papers. The data was obtained from production operations
and well tests. Interpretable parameters at these years were limited to average

reservoir pressure, permeability, drainage area and skin factor.

2.2.1.3  Well Test Analysis Between 1960s-1980s

The development of well test analysis in the late 1960s and early 1970s was mostly
led by universities. The scope of analysis shifted to early time behavior because of
the ambiguity of some obtained results from straight line analysis[2]. Ramey[12]
introduced type curves in 1970 and the understanding of skin factor greatly improved
during these years. He found out that positive skin factor may result from well
damage or partial penetration and negative skin factor can be achieved by well
stimulation operations such as acidizing and fracturing. Type curve matching greatly
enhanced semilog straightline analysis by making it possible to select the most
applicable straight line. Agarwal et al.[13] focused on the wellbore storage while
Gringarten et al.[14] and Mavor and Cinco-Ley[15] focused on the fractures.

Gringarten et al.[16] and Bourdet and Gringarten[17] greatly enhanced the type
curve analysis by introducing the concept of independent variables and integrated
well test analysis methodology. Thanks to these developments, analysis results were
more consistent and reliable. They also ended the era of manual analysis and started
the era of computers in well test analysis which caused it to become more useful

reservoir description tool.



2.2.1.4  Well Test Analysis Between 1980s-2000s

Identification of more complex reservoir behaviors such as double porosity became
possible thanks to the new interpretation models based on Stehfest’s Laplace
inversion algorithm[18]. With these developments, well test analysis became more
descriptive during exploration and reservoir simulation. In addition to the type curve
developments in 1970s and 1980s, derivative plots were introduced in 1983 by
Bourdet et al.[19], which became one of the greatest milestones of the modern well

test analysis. It made well test analysis a true reservoir characterization method.

2.2.1.4.1 Diagnostic Plots

A diagnostic plot contains both log AP vs log At and Atlog‘z)—ivs log At. According

to Horne[3], it was by far the most useful diagnosis tool at those times.
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Figure 2.3 A diagnostic plot [1]
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Thanks to the derivative plots:

Log of Ap and dAp/d(ogAr)

Heterogeneous

recognized.[20, 21]

Partial penetration, limited entry and other effects near wellbore can be

identified. [22]

Horizontal wells can be analyzed.[23]

Wide range of boundary effects can be recognized.[24]

Wellbore storage

High K fracture

Low K fracture

reservoir behaviors such as double permeability can be

Spherical flow
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Figure 2.4 Shapes of Log-Log Derivative Curves at Different Flow Regimes|[2]
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2.2.1.5  Well Test Analysis From 2000s to Present

Schroeter et al. introduced an effective deconvolution algorithm in 2001.[25] It
greatly enhanced the capability of well test analysis by converting variable rate
pressure data into constant rate single drawdown with duration of all variable rate
test durations combined. Thanks to this, more data become interpretable, hence
identifying the interpretation model is an easier task.

The table below summarizes the history of well test analysis.

Table 2.1 History of Well Test Analysis[2]

Date Interpretation Tools Emphasis
Method
50s Straight lines Laplace transform Homogeneous reservoir
behavior
Late 60s |Pressure type-curve | Green's functions Near-wellbore effects

Early 70s | analysis

Late 70s | Type curves with Integrated methodology Dual-porosity behavior
independent Stehfest algorithm
variables

Early 80s | Derivatives Computerized analysis Heterogeneous reservoir

behavior and boundaries

90s Computer-aided analysis Multilayered reservoir
downhole rate measurements
integration with interpretation
models from other data

Early 00s Deconvolution Enhanced radius of
investigation
boundaries

12



2.3 Pressure Data Measurements

Pressure measurements were made by Bourdon-tupe mechanical gauges until early
1970s. Their resolution and accuracy were limited. Electronic gauges were invented
in early 1970s and improved greatly throughout 1980s. They enhanced the quality of
pressure data recorded and made it possible to monitor bottomhole pressure at the
surface. Permanent downhole pressure gauges were commonly used after late 1980s,
as the name implies, they continuosly monitor and record pressure, flow rate and
temperature changes during production phase. They are installed during the well

completion phase.

SO

C Fuaya.

Figure 2.5 lllustration of PDG[25]
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24 Reservoir Parameters

24.1 Permeability

Permebility is a measure of the capacity of a porous medium to transmit fluids. It
directly affects the flow rate and directional movement of the reservoir fluids, hence

it is one of the most important rock properties.

Henry Darcy defined it mathematically for the first time in 1856. It is called Darcy’s
Law and can be seen from the equations below. Eq 2.1 is in linear form while Eq 2.2
is in radial form.

1 Darcy is a very high permeability and the term millidarcy(md) is used. Most of the
reservoir rocks have permeabilities less than 1 Darcy.

_Q _ kap

VAT TudL Eq 2.1
_k AdP Eq 2.2
Couodr

where

Q = flow rate of fluid, bb l/day

A = cross sectional area, ft?

v = apparent fluid flowing velocity, bbl/ day x ft2
W = viscosity of the fluid, cp

k = permeability of the rock, Darcy

P = pressure, psi

L = length, ft

r=radius, ft
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Figure 2.6 Linear Flow Model[26]
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Figure 2.7 Radial Flow Model[26]
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2.4.2 Porosity

Porosity is the ratio of the total void volume to the bulk volume of the rock. Reservoir
rocks composed of rock grains(matrix) and pore spaces. Most of these pore spaces
are filled with reservoir fluids such as oil, water and gas. Some pore spaces are
connected with each other and some are isolated. In general, there are three main

types of pores:

i) Interconnected  Pores: The network of empty spaces that are
interconnected with each other.

i) Dead End Pores: The empty spaces that are connected with each other
but they are trapped inside the rock with dead end.

iii) Isolated Pores: The empty spaces that are completely isolated from other

empty spaces mostly due to cementation.

Total Porosity is the ratio of the total pore spaces to the bulk volume and can be

calculated as:

Ve
== Eq 2.3
b= q
VP — VB _ VG Eq 2.4

where

Vp:Pore volume
Vg :Bulk volume
Vi :Grain volume

¢: Total porosity

16



Effective Porosity is the ratio of the volume of interconnected and dead end pores to

the bulk volume and can be calculated as:

¢ __ Volume of interconnected pores+Volume of dead end pores Eq 25
Bulk Volume q<.

Ineffective Porosity is the ratio of the volume of isolated pores to the bulk volume

and can be calculated as:

¢) __ Volume of isolated pores Eq 2.6
- Bulk Volume gz

The porosity is one of the most important reservoir rock properties and it directly
affects the amount of reservoir fluids present in the reservoir and hence a reservoir
with high porosity is much desired. Porosity is affected mostly by the grain size
distribution, grain shape, grain sorting, clay content, compaction and cementation.
All of these factors determine the porosity of the rocks. Porosity values are accepted

as:

Table 2.2. Porosity Values

Negligible o <5%
Low 5% < ¢ < 10%
Good 10% < ¢ <15%
Very Good ¢ <20%

17



24.3 Skin Factor

Skin factor is actually a measure of the damage given during drilling/completion
operations or enhancement to near wellbore payzone. This causes a pressure drop

between the wellbore and formation[27].

Positive skin factor values indicate wellbore damage, hence reduced permeability

while negative values indicate enhanced permeability.

Van Everdingen[28] and Hurst[29] defined the skin factor based on this pressure

drop as can be seen from Eq 2.7.

2mkh
= Z==AP,
Qu

Eq 2.7

Hawkins[30] defined it as a zone with finite radius rs having a permeability ksas can

be seen from Eq 2.8.

k T
S=(——1)ln—S Eq 2.8
kg Tw
Wellbore

HL Static

T pressure
L}
| /
I 2N
! Pressure in
! formation

Skin or zone : APgin = Pressure drop
of damage > | across skin

I
I '
1 —Flowing pressure

"
[}
|
|
|

Figure 2.8 Schematic of wellbore skin effect[27]
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CHAPTER 3

STATEMENT OF THE PROBLEM

Determination of the reservoir parameters such as permeability, porosity, skin factor
etc. is crucial in petroleum engineering. In order to conduct a feasibility analysis, it
IS a must to determine these parameters as accurate as possible since millions of
dollars are being spent throughout discovery and development of reservoirs. Well
testing gives precious data for production evaluation and optimization. The accuracy
of these data is crucial for the decision making processes and their feasibility. In
order to make the most logical decisions, the reservoir parameters and characteristics
should be known. Despite all the efforts given for the reliability of the well test data,
some uncertainties are still present due to the multiphase flow measurement,
complex fluid flow dynamics etc. They all cause noise in the data and they should
be eliminated in order to be able to make the most logical decisions. Derivative plots
can provide us with important information about reservoirs but calculating pressure
derivatives is a sensitive process since the noise in the data can easily be amplified

while doing so.

I will try to estimate the crucial reservoir parameters as accurate as possible in order
to minimize the risk of spending unnecessary money. When a well is drilled for the
first time and a reservoir is discovered, the first thing to consider is "Should | invest
more and develop this reservoir?™. The correct answer for this question can only be
given after the determination of reservoir parameters, which is the ultimate goal of
this Master's thesis. Various methods are used to estimate these parameters and they
are used with more recent technological applications in order to further increase the

accuracy and minimize errors of predictions.
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CHAPTER 4

RESERVOIR PARAMETER ESTIMATION

4.1 Derivative Plots

Bourdet et al. introduced the derivative plots in addition to the characteristic plots in
1983[31]. As Horne stated in his book[3], derivative plot was the most useful

diagnosis tool at the time.

Calculating pressure derivatives is a sensitive process since the noise in the data can
easily be amplified while doing so. There are several different differentiation

methods that can be applied.

The first one is numerically differentiating the adjacent points by using Eq 4.1. It is

almost never used in well test analysis because it results in a very noisy derivative.

. (6_P) — l (& =t 1) APy,
ot/ | (pr — ) (G — ti2q)
(tipq +t;_4 — 2t)Ap;
(v — (& — t2y)
(tig —t)Ap;i4
(t; — ;) (g — tiy)

Eq 4.1
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72 hour long drawdown test data is taken from Horne book.[3].

Table 4.1 Drawdown Test Data for Case |

t, hours
0
0.0167
0.01933
0.02237
0.0259
0.02997
0.03469
0.04016
0.04648
0.0538
0.06227
0.07207
0.08342
0.09655
0.11176
0.12935

Pwf, psi
6009.00
5867.82
5845.93
5819.44
5792.50
5765.01
5720.90
5688.36
5642.92
5597.43
5521.66
5459.70
5389.75
5306.48
5211.11
5117.79

t, hours
0.14972
0.1733
0.20058
0.23217
0.26872
0.31103
0.36001
0.41669
0.4823
0.55824
0.64614
0.74788
0.86564
1.00194
1.1597
1.3423

Pwf, psi
5009.74
4886.13
4769.13
4635.16
4501.08
4365.35
4219.70
4089.84
3960.16
3835.59
3727.20
3630.08
3538.77
3465.23
3411.56
3361.60

22

t, hours
1.55366
1.79829
2.08144
2.40918
2.78852
3.22758
3.73579
4.32401
5.00485
5.79289
6.70502
7.76076
8.98274
10.3971
12.0342
13.9291

Pwf, psi
3318.80
3289.38
3263.02
3231.28
3216.27
3200.34
3175.40
3162.30
3139.87
3133.46
3114.87
3092.78
3081.99
3062.07
3047.29
3037.98

t, hours

Pwt, psi

16.1223 3018.23
18.6608 = 3002.85

21.60
24.25
26.37
28.67
31.17
33.90
36.86
40.07
43.57
47.38
51.51
56.01
60.90
72.00

2988.93
2939.30
2921.50
2902.30
2881.40
2858.70
2834.00
2807.20
2778.00
2746.20
2711.70
2674.20
2633.40
2540.70



in Excel by using a straightforward numerical

A derivative plot is formed
differentiation of the adjacent points, Eq 4.1, and it is quite clear that high amount of

noise is present in the derivative values, as can be seen from the figure below:

LP(psi)

0.01 0.
atfhrs)

Figure 4.1 Derivative Plot Formed by Using Eq 4.1
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41.1 Noise Elimination of Derivative Plots

It is suggested in the literature that numerical differentiation with respect to natural

logarithm of time by using Eq 4.2 would reduce the noise in the derivative
calculation compared to the previous method.

where Eq 4.2

() (5)

2
__ In(t../t)Api,
In(t;/t;-)In(t;y,/t )
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Another derivative plot is drawn in Excel, this time using Eq 4.2

APipsi)

AP vs At

Eq4.2

10
0.01 0.1 1
At(hrs)

Figure 4.2 Derivative Plot Formed by Using Eq 4.2
It can be easily seen that there is not much of a difference between the Figure 4.1

and Figure 4.2, meaning that there is still quite high noise in the derivative plot and

we need do something else to get rid of the noise.
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It is said that while differentiating with respect to natural logarithm of time, using
data points that are separated by at least 0.2 of a log cycle instead of using adjacent
points would further reduce the noise. One of the shortcomings of this method
includes running out of data during the first and last differentiation intervals. So the
third differentiation method is

dp dp

Eq 4.3
_ In(t;/t;_, )Ap;.
ln(ti+j/ti)ln(ti+j/ti—k)
_ In(t;,;tiic/t:)Ap;
In(t;,;/t)In(t;/t,_;)
_ In (ti+j/ti)Api—k
ln(ti/ti_k)ln(tHj/ti—k)

where

Int;,; —Int; 20.2

i+j

Horne[3] stated that this differentiation interval can be replaced by values in between

0.1-0.5 depending on the case.

When differentiating the late time data, length between the points becomes larger
than the last data point and the previous differentiation point. This is called the end
effect and smoothing is not possible on the right side. The shape of the derivative
curve can be distorted by this effect. Bourdet[32] suggests a solution in which we
add a pseudo pomnt to the right and fix it, such that the difference AX between the
pseudo point and the point before it, is greater than this length or at least equal to fit.
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A Python code is written that reads the pressure and time data and uses data points
that are separated by a proportion of a log cycle while calculating the derivative
values. New derivative values are calculated with 0.10 to 0.50 of a log cycle with
increments of 0.01. In total, 41 different derivative values with different separation
intervals are calculated. The results for 0.10 log cycle interval, 0.50 log cycle

interval, and the average of all 41 different derivative values can be seen from the

figures below.

4P(psi)

AP vs At
1st Derivative{0.1)

0.01 0.1 1 10 100
At(hrs)

Figure 4.3 Derivative Plot Formed by Using Eq 4.3 (0.10 Log Cycle Interval)

It is quite obvious that the derivative plot is still too noisy, so using 0.10 log cycle

mntervals didn’t make that much of a difference.
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Figure 4.4 Derivative Plot Formed by Using Eq 4.3 (0.50 log cycle interval)

When 0.5 log cycle intervals are used, much smoother derivative plot is obtained but
this time overly smoothing can be an issue. Also notice that there are very few points
compared to the 0.1 log cycle interval case. As the log cycle interval increases,
number of calculated derivative values decreases, hence 0.50 log cycle has the lowest

amount of data points among the all 41.
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Figure 4.5 Derivative Plot Formed by Using Eq 4.3 (Average 0.10-0.50)

The average first derivative plot looks a lot like the one in Figure 4.4, but with slight

differences. It contains the same amount of points as the 0.50 log cycle case since it

had the lowest number of data points.
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4.1.1.1  Selecting the Smoothest Derivative Plot for Drawdown Case |

The new aim is to find the best log cycle interval among the 41 different
intervals(between 0.10-0.50), the one that eliminates the most amount of noise
without overly smoothing the derivative plot. In order to be able to do that Python is

used again.

Second and third derivative values are calculated for every one of the 41 different
derivative values. Number of sign changes in the second and third derivatives are
calculated separately and divided to the total number of data points.

For example when using 0.26 log cycle intervals,

Number of sign changes is 2 for the second derivative values and 8 for the third
derivative values, meaning that there are 8 different inflection points. There are 53

data points in total and the ratio for the second derivative is:

Number of sign changes 2
_ =—=0.03774
Number of data points 53

And the ratio for the third derivative is:

8 _ 0.15094
53
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It has the lowest ratio among the all 41 second derivative values meaning that it is
the smoothest of them. The first and second derivative plots combined can be seen

from the figure below.

1200

LPIpsi)

-600 1st Derivative(0.26)

2nd Derivative{0.26)

At(hrs)

Figure 4.6 1stand 2nd Derivative Plots(0.26 Log Cycle Interval)

Please notice that this is a semi-log plot, because there are negative values in the
second derivative and log-log plots can only contain positive values. The first and
second derivatives both look smooth enough. Some noise can be seen in the second

derivative values at the early and late times.
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On the other hand, the ratio for the third derivative is quite high and can be seen from

the figure below.

AP(psi)

1st Derivative(0.26)

3rd Derivative{0.26)

at(hrs)

Figure 4.7 1stand 3rd Derivative Plots(0.26 Log Cycle Interval)
It is quite clear from the Figure 4.7 that third derivative values contain high amount

of noise, as expected from the high ratio.
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For the 0.31 log cycle interval case, numbers of sign changes are 2 for both of the
second and third derivatives. The total number of data points is 45 so the ratio for
the second and third derivatives is 0.04444, it is the interval that has the lowest ratio
combined, which might mean that it is the best interval to use for derivative plot. The

resulting first, second and third derivatives can be seen from the figures below.

AP(psi)

-600 1st Derivative(0.31)

2nd Derivative(0.31)

At(hrs)

Figure 4.8 1stand 2nd Derivative Plots(0.31 Log Cycle Interval)

First and second derivatives look quite smooth, maybe smoother than the previous
case.
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Figure 4.9 1stand 3rd Derivative Plots(0.31 Log Cycle Interval)

There are still some noise present in the third derivative but it is much smoother

compared to the previous case.
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Now that the possible best intervals are selected, the first, second and third

derivatives will be compared.

4P (psi)

AP vs At
1st Derivative{0.31)
1st Derivative{0.26)

At(hrs)
Figure 4.10 Comparison of First Derivatives of 0.26 and 0.31 Log Cycle Intervals

Although that there isn’t much difference between the two, the one with 0.31 log
cycle interval is slightly more smooth and seems to be the interval that gives the

derivative plot with least amount of noise, without overly smoothing the curve.
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AP(psi)

2nd Derfvative{0.31)

2nd Derivative(0.26)

At(hrs)

Figure 4.11 Comparison of Second Derivatives of 0.26 and 0.31 Log Cycle Intervals

Both intervals have two sign changes in their second derivatives. 0.31 interval results
in smoother derivative curve at late times. 0.26 interval has a lower ratio due to

having more number of data points.
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Figure 4.12 Comparison of Third Derivatives of 0.26 and 0.31 Log Cycle Intervals

0.31 log cycle interval has a lower ratio and results in a smoother third derivative

curve as can be seen from Figure 4.12
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Figure below shows the log cycle intervals and their sign change ratios for Case I.

.....

.....

o

= 0.2500

Sign Change Rati

.....

2nd Derivative Ratios
3rd Derivative Ratios

Raio Sum

Figure 4.13 Log Cycle Interval vs Sign Change Ratio Plot for Case |

As can be seen from the Figure 4.13, lowest sign change ratio sum occurs at 0.31

interval, meaning that it plots the smoothest derivative curve.
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4.1.1.2  Selecting the Smoothest Derivative Plot for Drawdown Case 1

A drawdown test with a flowrate of 500 stb/day that lasts 327.6 hours is to be

analyzed and flow periods are going to be estimated.

Table 4.2 Drawdown Test Data for Case Il

t,hours = Puwf, psi  t hours = Pws, psi =t hours = Pws, psi @t hours = Pus, psi
0 3000 0.164 2693 3.28 1712 38.2 1533
0.0109 2976 0.218 2611 3.82 1696 43.7 1525
0.0164 2964 0.273 2536 4.37 1684 49.1 1517
0.0218 2953 0.328 2469 491 1674 54.6 1511
0.0273 2942 0.437 2352 5.46 1665 65.5 1500
0.0328 = 2930  0.491 2302 6.55 1651 87.4 1482
0.0382 2919 0.546 2256 8.74 1630 109.2 1468
0.0437 2908 1.09 1952 10.9 1617 163.8 1440
0.0491 2897 1.64 1828 16.4 1588 218.4 1416
0.0546 2886 2.18 1768 27.3 1554 273 1393
0.109 2785 2.73 1734 32.8 1543 327.6 1370

Same Python code and methodologies are used and pressure and time data is fed into
the code. 0.32 and 0.40 log cycle intervals turn out to be the possible best intervals

that can be used.

0.40 interval has the minimum sign change ratio for second derivatives with 0.05128
while 0.32 interval has a ratio of 0.08333. For the third derivatives the ratio for 0.32
interval is 0.08333 and 0.10256 for 0.40 interval.

The comparisons of first, second and third derivatives of both intervals can be seen

from the figures below.
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Figure 4.14 Comparison of the Derivative Plots of 0.32 and 0.40 Log Cycle Intervals

Their first derivatives look quite similar so the second and third derivatives will also

be checked.
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AP [psi)

2nd Derivative(0.32)

2nd Derivative{0.40)

Atlhrs)

Figure 4.15 Comparison of the 2nd Derivatives for 0.32 and 0.40 Log Cycle Intervals

Although they look similar, 0.40 interval is slightly smoother. This was expected as
it has less sign change ratio for second derivatives compared to the 0.32 interval.
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OP(psi)

-600 3rd Derivative(0.40)

® 3rd Derivative(0.32)

At(hrs)

Figure 4.16 Comparison of the 3rd Derivatives for 0.32 and 0.40 Log Cycle Intervals

When you look at Figure 4.16, the smoother one seems to be the one calculated with
0.40 log cycle interval. This wasn’t expected because 0.32 has a lower sign change
ratio for third derivatives. There are 4 sign changes and hence 4 inflection points for
both cases. The reason for 0.32 interval to have smaller sign change ratio is that it
has more data points than 0.40 interval case. So the 0.40 interval is selected as the
the interval that gives the derivative plot with least amount of noise, without overly

smoothing the curve.
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Figure below shows the log cycle intervals and their sign change ratios for Case II.

.....

.....

.......

Sign Change Rati
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2nd Derivative Ratios
3rd Derivative Ratios

,,,,, Ratio Sum

Log CycleInterva

Figure 4.17 Log Cycle Interval vs Sign Change Ratio Plot for Case Il

Please note that the best intervals for both drawdown cases are the ones that have the

smallest sum of sign change ratios of second and third derivatives.

0.31 interval for the first drawdown case had the smallest sum of second and third
derivative sign change ratios with 0.04444 + 0.04444 = 0.08888

0.40 interval for the second drawdown case had the smallest sum of second and third
derivative sign change ratios with 0.05128 + 0.10256 = 0.15384.
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4.2  Determination of the Middle Time Region

Now that we are able to identify and select the best log cycle interval that gives us
the derivative plot with least amount of noise without overly smoothing the curve,
we need to determine middle time regions because the most accurate estimates of
permeability can be inferred from this middle time region[33]. Our ultimate goal is

to estimate the permeability(k) and skin factor(S) as accurate as possible.

Infinite acting radial flow is present for both of the drawdown cases at the middle
time regions, meaning that the derivative curve should be horizontal at middle time
regions. In other words, first derivative values should stay fairly constant and second

derivative values should be close to 0.

Python is used again to identify the middle time regions and in order to be able to do

that all three of the first, second and third derivative values are checked.
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4.2.1 Determination of the Middle Time Region for Drawdown Case I

0.31 log cycle interval was selected as the best interval and will be used in the
determination of the middle time region. First things first, diagnostic plot is formed

in Excel, from the output data of the Python code.

0P (psi)

Middle Time Region
AP vs At
1st Derivative(0.31)

@ Inflection Point{0.31)

Atlhrs)

Figure 4.18 Eyeball Estimation of Middle Time Region for Case I

The middle time region is eyeball estimated by just looking at the diagnostic plot,
probably with a low accuracy but this is more or less the region that we are trying to
identify. We know that the middle time region comes after a specific inflection
point(t = 0.933 hours, first derivative =509.92), the dark blue dot that can be seen

from the Figure 4.18.
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Inflection points are the points that the third derivative values are 0. If we are able to
identify that specific inflection point using Python, then we can get one step closer

to correctly identifying the middle time region.

When using different log cycle intervals, the location of this specific inflection point
and number of total inflection points changes. A method to identify the correct one
is needed. First, second and third derivatives are plotted on the same plots for log

cycle intervals of 0.31 and 0.26 in order to be able to find that method.

&P{psi)
[
™
[

.
1st Derivative(0.31)
2nd Derivative{0.31)

# 3rd Dervative(0.31)
# Inflection Point(0.31)

Atfhrs)

Figure 4.19 1st, 2nd and 3rd Derivative Plots (0.31 Log Cycle Interval)

That specific inflection point that we are after can be seen from the Figure 4.19.1tis
the dark blue point and lies at t = 0.933 hours, first derivative = 509.92. It is the

second inflection point.
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2nd Derivative(0.26)
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# Inflection Point(0.26)

Atlhrs)
Figure 4.20 1st, 2nd and 3rd Derivative Plots (0.26 Log Cycle Interval)

That specific inflection point that we are after can be seen from the Figure 4.20. It is
the brown point and lies att = 0.943 hours, first derivative =511.38. It is the fourth

inflection point this time.

It caught my attention that both inflection points are the first inflection points that
come after the minimum second derivative values. This was tested for the other 39
different differentiation intervals and they stand correct for each and every one of

them.

So necessary additions to the Python code was made and it was able to identify these
specific inflection points, the ones that are the first inflection points after the

minimum Vvalue of second derivatives.
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Now we have to find the region that comes after these specific inflection points
previously found, where the first derivative values are fairly constant, also meaning

that the second derivative values are close to O.

This has been done easily by adding a constraint to the same Python code that selects
points that come after the inflection point, where the second derivative values are in
between -100 and +100.

The middle time region estimation result can be seen below.

Table 4.3 Middle Time Region Estimation For Drawdown Case |

Time(hours) 1st Derivative 2nd Derivative
3.780 126.21 -74.25
5.153 106.89 -44.05
7.026 104.97 -2.61
9.580 106.30 2.24
13.061 105.75 69.48

The infinite acting radial flow starts approximately att = 3.78 hours and ends at t =
13.061 hours.
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Figure 4.21 1st and 2nd Derivative Plots of Drawdown Case | with Early, Middle

and Late Time Regions

So far the flow regions of early time, middle time and late time have been identified,
as can be seen from the figure above. The semi-log plot shows clearly that the time

region estimates are accurate for the Drawdown Case I.

At the early time region, wellbore and near wellbore effects such aswellbore storage,

formation damage/stimulation etc. dominate the flow.

At the middle time region, the flow is expected to be infinite acting. If the reservoir

Is homogenous(it is in both cases), the pressure derivatives will be horizontal.
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4.2.2 Determination of the Middle Time Region for Dramdown Case Il

By feeding the pressure and time data of Drawdown Case Il into the same Python

code, time region estimations are as follows.

Table 4.4 Middle Time Region Estimation For Drawdown Case Il

Time(hours) 1st Derivative 2nd Derivative
4.902 85.18 -66.35
7.313 71.50 -27.05
10.910 68.78 -6.46
16.275 66.91 -4.97
24.280 64.99 -3.68
36.222 64.76 -3.20
54.036 61.36 -5.97
80.613 61.61 5.71

120.260 68.05 23.58
179.407 83.84 55.46
267.645 116.67 86.40

The infinite acting radial flow starts approximately att=4.902 hours and ends att =
267.645 hours. It lasts much more longer than the previous case, which could mean

that the permeability is much less.
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Figure 4.22 1st and 2nd Derivative Plots of Drawdown Case Il with Early, Middle

and Late Time Regions

The semilog plot above shows clearly that the time region estimates are also accurate

for the drawdown case Il. The Python code written can select the best derivation

interval and correctly identify the infinite acting radial flow region.
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4.3  Permeability and Skin Factor Estimation with Iterative Approach

In order to estimate permeability and skin factor, a MATLAB code is written. It reads
the pressure and time data from Excel and uses data that lies in the middle time
region(infinite acting radial flow) to estimate permeability and skin factor. Infinite

acting radial flow equation is used in calculation process.

- an 0 Akt +zs) Eq. 4.4
pr_ pi 4n_kh ny(p‘ucr‘%} ( q . )

or in oilfield units;

162.6quB,
pwf:pi_T

<logt + log —-323+ 0.875)

¢ucr?, (Eq. 4.5)

The working principle of the code is that it calculates Pws values with k values
ranging from O to 1000 md and s values ranging from -15 to +15, with an
incremention of 0.01 for each parameter, hence it is an iterative method. These
ranges and incrementation values can be adjusted, but it should be noted that it will

impact the running time of the code.

Since only the data that lie in the middle time region are needed for the estimation
of both parameters, pressure readings that lie in between early time region and late

time region are used.

The best match is obtained by selecting k and s values that give the minimum value
of X 1 (P f(measured)— Pwi(calcutated) ) >~ Thanks to this method, human error factor

is eliminated completely.
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43.1 Drawdown Case |

Table 4.5 Known Parameters of Drawdown Case |

Parameters
) 0.21
h, ft 23
Bo, bbl/sth 1.21
K cp 0.92
rw, ft 0.401
Ct, 1/psi 8.72x106

The infinite acting radial flow period has been identified successfully for the case |
and the values from Table 4.3 and Table 4.5 are used for permeability and skin factor

estimation.

The k and s values that give the best match to the recorded pressure values in the
middle time region are calculated, and in this case they are 75.58 md for permeability
and +5.85 for skin factor.
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Comparison of Pwf(calculatedwith k=75 58 mdands=+5.85) aNd Pwf(measured) Values for each data

point can be seen below.

Table 4.6 Comparison of Pwf(calculated with k=75.58 md and s=+5.85) and
Pwif(measured)

Absolute

t(hours) Pwf(measured)(PS1) Pwf(calculated) (PST) Error(%)
3.23 3200.34 3195.44 0.153
3.74 3175.40 3178.91 0.111
4.32 3162.30 3162.38 0.003
5.00 3139.87 3145.85 0.190
5.79 3133.46 3129.32 0.132
6.71 3114.87 3112.79 0.067
7.76 3092.78 3096.26 0.112
8.98 3081.99 3079.73 0.073
10.40 3062.07 3063.19 0.037
12.03 3047.29 3046.66 0.021
Total Error 0.899

Itis quite clear that pressure readings and calculated values are so close to each other.
Highest amount of difference occurs at t=5.00 hours with 5.98 psi, an error equal to
0.19%. The results are plotted in MATLAB and Excel, as can be seen from Figure
4.19 and Figure 4.20.
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Figure 4.23 Semilog Plot of Pws vs t, with Best Match Semilog Straight Line(k=75.58
md and s=+5.85)
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Figure 4.24 Comparison of APwf(measured) and APwf(calculated with k=75.58 md
and s=+5.85)
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43.2 Drawdown Case Il

Table 4.7 Known Parameters of Drawdown Case I

Parameters
) 0.2
h, ft 56
Bo, bbl/sth 1.2
K cp 0.8
Mw, ft 0.3
Ct, 1/psi 1x10-°

The infinite acting radial flow period has been identified successfully for the case Il
and the values from Table 4.4 and Table 4.7 are used for permeability and skin factor

estimation.

The k and s values that give the best match to the recorded pressure values in the
middle time region are calculated, and in this case they are 9.16 md for permeability
and +4.00 for skin factor.

56



Table 4.8 Comparison of Pwf(calculated with k=9.16 md and s=+4.00) and
Pwf(measured)

t(hours) Pwf(measured) (PSI) Pwf(calculated)(PST)  Absolute Error(%)
491 1674.00 1669.96 0.241
5.46 1665.00 1662.94 0.124
6.55 1651.00 1650.92 0.005
8.74 1630.00 1631.86 0.114
10.90 1617.00 1617.26 0.016
16.40 1588.00 1590.27 0.143
27.30 1554.00 1556.59 0.167
32.80 1543.00 1544.47 0.095
38.20 1533.00 1534.39 0.091
43.70 1525.00 1525.51 0.033
49.10 1517.00 1517.81 0.053
54.60 1511.00 1510.79 0.014
65.50 1500.00 1498.76 0.082
87.40 1482.00 1479.70 0.155
109.20 1468.00 1464.99 0.205
163.80 1440.00 1438.20 0.125
218.40 1416.00 1419.19 0.225
Total Error 1.889

Itis quite clear that pressure readings and calculated values are so close to each other.
Highest amount of difference occurs at t=4.91 hours with 4.04 psi, an error less than
0.25%. The results are plotted in MATLAB and Excel, as can be seen from Figure
4.21 and Figure 4.22.
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Figure 4.25 Semilog Plot of Pwf vs t, with Best Match Semilog Straight Line(k=9.16
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4.4  Permeability and Skin Factor Estimation with Graphical Analysis

Graphical analysis method is much simpler and faster compared to the iterative
method that has been used previously. Python is used again to estimate permeability

and skin factor with graphical analysis method.

Semilog plot of P vs t is drawn using Python. A best line passing through the middle
time region points is drawn. By calculating the slope of this line, which is called m,

the permeability can be estimated from the equation below.

QXBXp Eq 4.1

k=-162.6
X h

In order to estimate the skin factor, S, following equation is used.

Eq 4.2

P,—P
s=1151|+—* _Jog

+ 3.2274]
|m|

2
HC Ty

For the P1inr value, the point on the semi-log straight line should be used rather than

the measured P value at 1 hour.
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441 Drawdown Case |

The values from Table 4.3 and Table 4.5 are used for the estimation process.
The equation of the best line is:

y = —256.932 x + 3324.82

The permeability is calculated as 76.58 md using Eq 4.1 while the skin factor is
calculated as +6.01 using Eq 4.2.

Comparison of Pwf(calculatedwith k=76 58 mdands=+6.01) aNd Pwf(measured) Values for each data
point can be seen below.

Table 4.9 Comparison of Pwf(calculated with k=76.58 md and s=+6.01) and
Pwif(measured)

t(hours) Pw(measured) (PSi) Pwf(calculated) (PSi) Absolte

Error(%)
3.23 3200.34 3194.42 0.185
3.74 3175.40 3178.10 0.085
4.32 3162.30 3161.79 0.016
5.00 3139.87 3145.47 0.178
5.79 3133.46 3129.15 0.137
6.71 3114.87 3112.84 0.065
7.76 3092.78 3096.52 0.121
8.98 3081.99 3080.20 0.058
10.40 3062.07 3063.89 0.059
12.03 3047.29 3047.57 0.009
Total Error 0.915
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Despite having a little bit more error than the iterative method, it is quite clear that
pressure readings and calculated values are still close to each other. Highest amount

of difference occurs at t=5.79 hours with 4.31 psi, an error less than 0.18%.

The results are plotted in Excel and Python, as can be seen from Figure 4.23 and

Figure 4.24.
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Figure 4.27 Comparison of APwf(measured) and APwf(calculated with k=76.58 md
and s=+6.01)
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Figure 4.28 Semilog Plot of Pwf vs t, with Best Match Semilog Straight
Line(k=76.58 md and s=+6.01)
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442 Drawdown Case Il

The values from Table 4.4 and Table 4.7 are used for the estimation process.
The equation of the best line is:
y = —152.529x + 1775.70

The permeability is calculated as 9.14 md using Eq 4.1 while the skin factor is
calculated as +3.97 using Eq 4.2.

Table 4.10 Comparison of Pwf(calculated with k=9.14 mdand s=+3.97) @Nd Pwf(measured)

t(hours) Pwf(measured)(PSi) Pwf(calculated)(pSI)  Absolute Error(%)
491 1674.00 1670.43 0.213
5.46 1665.00 1663.39 0.096
6.55 1651.00 1651.34 0.020
8.74 1630.00 1632.23 0.137
10.90 1617.00 1617.60 0.037
16.40 1588.00 1590.54 0.160
27.30 1554.00 1556.78 0.179
32.80 1543.00 1544.62 0.105
38.20 1533.00 1534.53 0.100
43.70 1525.00 1525.62 0.040
49.10 1517.00 1517.90 0.059
54.60 1511.00 1510.87 0.009
65.50 1500.00 1498.81 0.079
87.40 1482.00 1479.70 0.155
109.20 1468.00 1464.95 0.208
163.80 1440.00 1438.09 0.133
218.40 1416.00 1419.03 0.214
Total Error 1.946
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Despite having a little bit more error than the iterative method, it is quite clear that
pressure readings and calculated values are still close to each other. Highest amount
of difference occurs at t=4.91 hours with 3.57 psi, an error less than 0.22%.

The results are plotted in Excel and Python, as can be seen from Figure 4.25 and

Figure 4.29.
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Figure 4.29 Comparison of APwf(measured) and APwf(calculated with k=9.14 md
and s=+3.97)
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Figure 4.30 Semilog Plot of Pwf vs t, with Best Match Semilog Straight Line
(k=9.14 md and s=+3.97)
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45  Permeability and Skin Factor Estimation Using KAPPA Saphir Module

KAPPA’s Saphir Module is an industry standard pressure transient analysis module,
used by nearly all major international oil companies, national oil companies,

independents and service companies.

It should be noted that Saphir doesn’t find and use the best log cycle interval while
calculating pressure derivatives. The default derivation interval is 0.1 of a log cycle

and it is up to the user to find the appropriate interval with eyeball estimate.

Both cases are analyzed using this module to see the results and compare them with

the previous results.

45.1 Drawdown Case |

Known reservoir parameters, flow rate, pressure and time data for drawdown case |
was entered into KAPPA’s Saphir Module as can be seen from the figure below.
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Figure 4.31 History Plot of P vs t and Q vs t for Drawdown Case |
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Following derivative plot is drawn automatically by Saphir, with a default log cycle

interval of 0.1.
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Figure 4.32 Derivative Plot Drawn by Saphir for Drawdown Case | (0.1 Log Cycle)

It is quite clear that the derivative plot is very noisy.

Following estimates of k and S had been made by Saphir.

At extract = 0.00000 hr
Pi = 6009.00 psia
kh = 1760.23 md.ft
k=76,5316 md
C =0.0148477 bbl/psi
Skin = 6.02415
Re =812.567 ft
Area = 47.6190 ace
PV = 1784492 MMB

Figure 4.33 k and S Estimation Made by Saphir for Drawdown Case 1(0.1 Log Cycle)

It estimated permeability as 76.5316 md and skin factor as +6.02415.
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When the differentiation interval of 0.31 log cycle is used, following results are

obtained.
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Figure 4.34 Derivative Plot Drawn by Saphir for Drawdown Case | (0.31 Log Cycle)

The derivative plot drawn with 0.31 log cycle interval is much more smooth

compared to the Figure 4.29.

Following estimates of k and S had been made.
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At extract = 0,00000 br
Pi = 6002.00 psia
kh = 1760.23 md.ft
k=76.5316 md
C = 0.0148477 bbl/psi
Skin = 6.01963
Re =812.567 ft
Area = 47.6190 acre
PV = 1. 784492 MMB

Figure 4.35 k and S Estimation Made by Saphir for Drawdown Case 1(0.31 Log
Cycle)

Even though the derivative plot is enhanced greatly by using 0.31 log cycle interval
instead of 0.1, the estimated permeability stayed the same while the skin factor only
changed from +6.02415 to +6.01963.

Comparison of Pw(calculated with k=76.5316 md and s=+6.01963) aNd Pwf(measured) Values for each

data point can be seen from Table 4.11 on the next page.
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Table 4.11 Comparison of Pwf(calculated with k=76.5316 md and s=+6.01963) and
Pwif(measured)

t(hours) Pw(measured) (PSH) Pwf(calculated) (PST) Absolte

Error(%)
3.23 3200.34 3191.15 0.287
3.74 3175.40 3174.83 0.018
4.32 3162.30 3158.50 0.120
5.00 3139.87 3142.18 0.073
5.79 3133.46 3125.85 0.243
6.71 3114.87 3109.52 0.172
7.76 3092.78 3093.20 0.014
8.98 3081.99 3076.87 0.166
10.40 3062.07 3060.55 0.050
12.03 3047.29 3044.22 0.101
Total Error 1.243

Total error for the drawdown case | was 0.899% for the iterative method and 0.915%
for the graphical analysis method. Saphir has a total error of 1.243%, which is larger
than both methods, meaning that it is less accurate.
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45.2 Drawdown Case Il

Known reservoir parameters, flow rate, pressure and time data for drawdown case

IT was entered into KAPPA’s Saphir Module as can be seen from the figure below.
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Figure 4.36 History Plot of P vs t and Q vs t for Drawdown Case Il

Following derivative plot is drawn automatically by Saphir, with a default log cycle

interval of 0.1.
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Figure 4.37 Derivative Plot Drawn by Saphir for Drawdown Case Il (0.1 Log

Cycle)
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Following estimates of k and S had been made by Saphir.

At extract = 0.00000 hr
Pi = 3000.00 psia
kh = 540.792 md.ft
k =9.65699 md
C = 0.0117629 bblfpsi
Skin = 4.58184
Re =978.376 ft
Area = 69.0357 acre
PV = 5.99877 MMB

Some default values were used

Figure 4.38 k and S Estimation Made by Saphir for Drawdown Case 11(0.1 Log

Cycle)

It estimated permeability as 9.65699 md and skin factor as +4.58184.

When the differentiation interval of 0.40 log cycle is used, following results are

obtained.
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Figure 4.39 Derivative Plot Drawn by Saphir for Drawdown Case I (0.31 Log Cycle)

The derivative plot drawn with 0.40 log cycle interval is smoother compared to the

one drawn with 0.10 log cycle interval.
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Following estimates of k and S had been made.

At extract = 0,00000 hr
Pi = 3000.00 psia
kh = 540.792 md.ft
k =9.65699 md
C = 0.0117629 bbl/psi
Skin = 4,59090
Re =973.376 ft
Area = 69,0357 acre
PV = 5.99877 MMB

Some default values were used

Figure 4.40 k and S Estimation Made by Saphir for Drawdown Case 1(0.31 Log
Cycle)

Even though the derivative plot is enhanced again by using 0.40 log cycle interval
instead of 0.1, the estimated permeability stayed the same while the skin factor only
changed from +4.58184 to +4.59090.

Comparison of Pw(calculated with k=9.65699 md and s=+4.59090) and Pwf(measured) Values for each

data point can be seen from Table 4.12 on the next page.
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Table 4.12 Comparison of Pwf(calculated with k=9.65699 md and s=+4.59090) and
Pwif(measured)

t(hours) Pwf(measured) (PSH) Pwf(calculated)(PSI)  Absolute Error(%)
491 1674.00 1661.02 0.775
5.46 1665.00 1654.37 0.639
6.55 1651.00 1642.96 0.487
8.74 1630.00 1624.88 0.314
10.90 1617.00 1611.04 0.369
16.40 1588.00 1585.43 0.162
27.30 1554.00 1553.49 0.033
32.80 1543.00 1541.99 0.066
38.20 1533.00 1532.44 0.037
43.70 1525.00 1524.00 0.065
49.10 1517.00 1516.70 0.020
54.60 1511.00 1510.05 0.063
65.50 1500.00 1498.64 0.091
87.40 1482.00 1480.56 0.097
109.20 1468.00 1466.60 0.095
163.80 1440.00 1441.19 0.082
218.40 1416.00 1423.16 0.505
Total Error 3.900

Total error for the Drawdown Case Il was 1.889% for the iterative method and
1.946% for the graphical analysis method. Saphir has a total error of 3.90%, more
than double the error of both methods, meaning that it is much less accurate.
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4.6 Drawdown Case Il

A drawdown test data without any noise have been simulated.

Table 4.13 Drawdown Test Data for Case Il

t, hours
0.000
0.010
0.015
0.020
0.025
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100

Pwf, psi
5000.00
4900.00
4850.00
4800.00
4750.00
4700.00
4600.00
4500.00
4400.00
4300.00
4200.00
4100.00
4000.00

t, hours
0.110
0.120
0.150
0.180
0.220
0.250
0.300
0.350
0.400
0.500
0.600
0.700
0.800

Pwf, psi
3905.00
3810.00
3580.00
3360.00
3170.00
3050.00
2940.00
2850.00
2800.00
2740.00
2692.00
2665.00
2643.00

t, hours
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1.000
1.200
1.400
1.600
1.800
2.000
2.500
3.000
3.500
4.000
5.000
6.000
7.000

Pus, psi
2608.00
2580.67
2559.21
2540.62
2524.22
2509.56
2478.49
2453.11
2431.65
2413.06
2381.99
2356.61
2335.15

t, hours
8.000

9.000

10.000
12.000
14.000
16.000
18.000
20.000
22.000
24.000
26.000

Pwf, psi
2316.56
2300.17
2285.50
2255.00
2224.50
2194.00
2163.50
2133.00
2102.50
2072.00
2041.50



Table 4.14 Known Parameters of Drawdown Case ||
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Parameters
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d 0.2
h, ft 21
Bo, bbl/sth 1.2
K cp 0.92
Iw, ft 0.401
Ct, l/psi 9x10-6
k, md 4.00
S +2.90
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Figure 4.41 Diagnostic Plot of Drawdown Case IlI
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It is known that the infinite acting radial flow starts at 1 hours and ends at 10 hours.
Unlike the previous cases, using Eq 4.2 results in a perfectly smooth derivative curve

as can be seen from Figure 4.41.

Pressure and time data is fed into same Python code and following results are

obtained.

Sign Change Ratio
[

2nd Derivative Ratios
3rd Derivative Ratios
Ratio Sum

Log Cycle Interva

Figure 4.42 Log Cycle Interval vs Sign Change Ratio Plot for Case IlI

0.26 interval turns out to be the best interval, having smallest sum of second and
third derivative sign change ratios with 0.04082 + 0.04082 = 0.08164
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Figure 4.43 First and Second Derivative Curves (0.26 Log Cycle Interval)

Infinite acting radial flow is estimated to start at 0.90 hours and end at 10 hours.
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Figure 4.44 Comparison of Derivative Plots
Permeability is estimated as 39.915 md while skin factor is estimated as 2.88.
Table 4.15 Comparison of Actual and Estimated Values
Parameters Actual Value Estimated Value Error(%o)
k(md) 40.000 39.915 0.213
S +2.90 +2.88 0.681
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46.1 Gaussian Noise Addition

To test the methods tolerance to noise, random artificial Gaussian noise of +0.5%,
+1%, £1.5%, +2%, +2.5%, £3% is added to the Drawdown Case Il pressure data.
The Python code had been run 20 times for each case. It is seen that the Python code
can handle noises up to £2.5%. Confidence interval of 95% is used for the

calculations.

Figure 4.45 and Table below shows examples of Pwf vs t for £0.5%, +1%, +1.5%,
+2%, +2.5%, +3%.

-
i
‘
e
2
e
¢
e ®
R -]

0.010 0.100 1.000 10.000 100.000
t(hours)

Figure 4.45 Pwf vs t Plots with Randomly Added Noises
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Table 4.16 Permeability and Skin Factor Estimations with Randomly Added Noises

Parameter +0.5% +1% +1.5% +2% +2.5% +3%
k(md) 39.365 39.893 39.825 41.424 40.746 37.050
S 2.758 2.973 2.833 3.133 3.086 2.170

Permeability and skin factor estimates and their confidence interval results can be

seen from the tables at Results and Discussion Part.
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CHAPTER 5

RESULTS AND DISCUSSION

Despite all the efforts given for the reliability of the well test data, some uncertainties
are still present and they cause noise in the data and they should be eliminated in
order to be able to make the most logical decisions. These noises are amplified while
calculating pressure derivatives and make analysis and interpretation processes more

complex.

I have shown that these noises can be dealt with by finding the best log cycle interval
and using that interval while calculating the pressure derivatives. As stated earlier,
pressure derivatives are arguably the most useful diagnosis tool when it comes to
well test analysis. Accuracies of time region identifications and as a result

permeability and skin factor estimations are enhanced.

Two different methods are used for the estimation process and both had negligible
error. Iterative method was slightly more accurate compared to the graphical analysis
method but it required more time to run. Graphical analysis method did calculations
in matter of seconds while iterative one took around one to five minutes. The
difference between the two methods can be checked from the tables on the next

pages.

It is shown that the Python code written can estimate permeability and skin factor
more accurately than KAPPA’s Saphr Module, an industry standard Pressure
Transient Analysis tool, as can be seen from Table 5.1.

Table 5.2-5.7 show the permeability and skin factor estimates and their 95%

confidence intervals.
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Table 5.1 Absolute Error Percentages of Different Methods

Case Iterative
Method

Drawdown | 0.899%
Drawdown 11 1.889%

Table 5.2 Results for +£0.5% Error

Parameter Estimate

Permeability(md) 40.010
Skin Factor 2.894

Table 5.3 Results for +1% Error

Parameter Estimate

Permeability(md) 39.334
Skin Factor 2.772

Table 5.4 Results for +1.5% Error

Parameter Estimate

Permeability(md) 39.727
Skin Factor 2.859

Graphical Analysis

Method
0.915%
1.946%

Confidence
Interval(Absolute)
+0.943

+0.203

Confidence
Interval(Absolute)
+2.756

+0.634

Confidence
Interval(Absolute)
+2.993

+0.722

KAPPA Saphir

Module
1.243%
3.900%

Confidence
Interval(%0)
+2.358
+7.008

Confidence
Interval(%0)
+7.007
+22.856

Confidence
Interval(%o)
+7.536
+25.262



Table 5.5 Results for +2% Error

Parameter

Permeability(md)
Skin Factor

Table 5.6 Results for +2.5% Error

Parameter

Permeability(md)
Skin Factor

Table 5.7 Results for +3% Error

Parameter

Permeability(md)
Skin Factor

Confidence
Interval(Absolute)
+4.671

+0.941

Confidence
Interval(Absolute)
+6.044

+1.239

Confidence
Interval(Absolute)
+19.242

+4.001

Confidence
Interval(%0)
+11.547
+31.175

Confidence
Interval(%0)
+15.219
+43.714

Confidence
Interval(%0)
+51.711
+168.370
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CHAPTER 6

CONCLUSIONS

Well testing gives precious data for production evaluation and optimization. It is an
important part of reservoir management. The accuracy of these data is crucial for

understanding the reservoir itself and making most logical decisions accordingly.

Flow period identification is the first step of well test analysis and arguably the most
important step. Derivative plots and hence diagnostic plots are crucial for flow
period identification, reliability of these plots directly affect the accuracy of

permeability and skin factor estimates.

Despite the improvements in pressure and flow rate measurement technology, some
noise is still present in most well test data and should be dealt with before making

reservoir characterization and parameter estimation processes.

It is shown that the Python code can handle noises up to £2.5% and make accurate

estimations of permeability and skin factor.
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APPENDICES

A. Python Code

import math

import sys

import numpy as np
import Jjson

def LN (x):
return math.log(x)

def FDRV(1,T,DP): # calculate Derivative at point "i" for T and DP
values
t1=LN(T[1]/T[i-11)*DP[i+1]/LN(T[i+1]/T[1])/LN(T[i4+1]/T[i-11])
print ("tl=",t1l)
t2=LN(T[i+1]*T[i-1]/T[i]1**2)*DP[i]/LN(T[i+1]/T[41])/LN(T[1i]/T[i-
1)
print ("t2=" t2)
t3=LN(T[i+1]/T[i])*DP[ J/LN(T[1]/T[1-1]1)/LN(T[1+1]/T[ 1)
print ("t3=" t3)
return tl+t2-t3

def Ftik(T,i,k):
return math.log(T[i])-math.log(T[i-k])

def FtLij(T,1,7):
return math.log(T[i+7])-math.log(T[1i])

def ReadWellFile (fname): # reads T and P columns from TEXT file
dtl= open (fname) .read () .split ("\n")
dtal=1[]
for x in dtl:
dtal.append( x.split ("\t"))
wd2float (dtal)
return dtal

def GetWellData (weda) :
TT= [0]* (len (weda)-1)
PP= [0]* (len (weda)-1)
for i in range(l,len(weda)) :
T[i-1]= wedal[i] [0]
P[i-1]1= wedal[i] [1]
return (TT,PP)

def Fdrv2 (TL,PL,DT,DP,DRV) :
for i in range(l,len(T)):
DT[i]= T[i]-T[O]

DP[i]= P[O0]-P[i]
for i in range(Z len (T ) 2):
DRV[i]= LN(TL 1/TL[
1])*DP[1+1] /LN (T 1+1 /TL ) /LN(TL[i+1]/TL[i-11])
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DRV[i] += LN(TL[i+1]*TL[i—
1]/TL[i]**2)* i]/LN( TL[i+1]/TL[i])/LN(TL[i]/TL[i—l})
DRV[i] -= LN(TL [i+1]/TL[i]) *DP[i-1]/LN(TL[1]/TL[i-

1])/LN(TL[i+1]/TL[i-1])

def findInterval (T, wval):
for i in range(len(T)-1):
if T[i]<=val and T[i+1l]>val:
return i
return len(T)-1

def calcDRV(T,DP,1i,73,k):

DRV = LN(T[i]/T[i-k])*DP[i+3]/LN(T[i+3J]/T[1i])/LN(T[i+3]/T[
k1)

DRV += LN(T[i+]]* [i
k]/T[i]**2)*DP[1]/LN(T j]/T[i])/LN(T[i]/T[i—k])

DRV —-= LN(T[i+7] /T *DP[1i-k]/LN(T[1]/T[i-k])/LN(T [i+7] 1/T(
k])

return DRV

def Fdrv2LC(TL,PL,DT,DP,DRV) :
for i in range(l,len(TL)):
DT[i]= TL[i]-TLI[O]
DP[i]= PL[O]-PL[i]
for i in range(l,len(TL)-1):
DRV[i]= calcDRV(TL,DP,i,1,1)
DRV[-1]= DRV[-2]+(DRV[-2]-DRV[-31])

def Fdrv2JK(T,P,DT,DP,DRV, 7, k) :
for i in range(l,len(T)):
DT[i]= T[i]-T[O]
DP[i]= P[O0]-P[i]
for i in range (k+1l,len(T)-1-7
P[

) :
DRV[i]= LN(T[i]/T[i-k])* i+3]1/LN(T[1+3]1/T[1]) /LN(T[i+3]/T[1i~-

k])
DRV[i] += LN(T[i+j]*T[i-
k]/T[i]**2)*DP[i]/LN(T 1+] /T ) /LN (T[i]/T[i-k])
DRV[i] -= LN( l+] 1/T] *DP[i—k]/LN(T[i]/T[i—

k])/LN(T[i+31/T[ 1)

def FLC(T,i,7):
return math.log(T[i]) - math.log(T[j])

def interpolate(x0,y0,x1,y1l,X):
return y0+ (X-x0)* (yl-y0)/ (x1-x0)

def findzero(x0,y0,x1,y1l): # find the X-axis value intersected by
LINE: (x0,y0)-(x1,vy1l)

My= (yl-y0)/(x1-x0)

return x0-y0/My

def LCTP(T,P,L
tx= max (T[0]
Tval=[tx]
Pval=[P[0]]

C)
,0.00001)
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while tx<T[-1]:
tx= math.exp (math.log(tx)+LC)
Tval.append (tx)
fint= findInterval (T, tx)
if fint<(len(T)-1):
Pvalint= interpolate(T[fint],P[fint],T[fint+1],P[fint+1], tx)
else:
Pvalint= interpolate(T[fint-1],P[fint-1],T[fint],P[fint], tx)
Pval.append (Pvalint)
return Tval, Pval

def FindLCI (T, LC): # 1i+3
maxtmp=-1
for i in range(l, len(T)):
for j in range(l, len(T)-1i):
if FLC(T,i+73,1i)>=LC:
maxtmp=max (maxtmp, Jj)
break
return maxtmp

def FindLCk (T, LC): # i-k
maxtmp=-1
for i in range(l,len(T)) :
for k in range(l, 1i):
if FLC(T,i,i-k)>=LC:
maxtmp=max (maxtmp, k)
break
return maxtmp

def mainl () :
Fdrv2JK (T, P,DT,DP,DRV,5,5)
for i in range (len (DRV)) :
print (T[i], DRVI[i])

def isfloat (x):
for a in x:
if a.isdigit(): continue
if a==".": continue
return False
return True

def wd2float (dta) :
for i in range(len(dta)):
for j in range(len(dtali])):

if isfloat( dtalil[j] ):#
print("(",i,",",j,",",dta[i] [j],") ",end="")
dtali][j]= float(dtalil([]])

def ffExp(t,a,b,c):
return a*np.exp(b*t)+c

def getExp(T,P, deg=l):
import scipy.optimize as opt
x= np.asarray (T)
y= np.asarray (P)

95



pfit,perr=opt.curve fit (lambda t,a,b,c:
a*np.exp (b*t) +c, x, v, maxfev=5000)
return ffExp(x, *pfit)

def getlLinear (T,P,deqg): # fit a polynomial with DEGREE=deg to given

T,P values
print ("getlinear degree:",deq)
import numpy as np
import copy
x= np.asarray(T)
y= np.asarray (P)
print (T[:10])
from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures (degree=deg, include bias=False)

poly features = poly.fit transform(x.reshape(-1, 1))
poly.transform(x.reshape(-1,1))

#

from sklearn.linear model import LinearRegression
poly reg model = LinearRegression()

poly reg model.fit (poly features,y)
y_predicted = poly reg model.predict (poly features)
return y predicted

def drawPlot(X,Y, regtype="linear", deg=2,plog=""):
print ("regtype:",regtype," deg:",deg," plog:", plog)
import numpy as np
npX= np.asarray (X)
npY= np.asarray(Y)
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6))
if plog=="loglog":
plt.xscale("log")
plt.yscale("log")
if plog=="semilog":
plt.xscale("log")
plt.scatter (X,Y)
if regtype=="linear":
ypredicted= getLinear (X,Y,deq)
plt.plot (X, ypredicted, c="red")
if regtype=="linear2":
import copy
mid=len (X)//2
X1l=copy.copy (X[:mid+1])
Yl=copy.copy(Y[:mid+1])
X2=copy.copy (X[mid-1:17)
Y2=copy.copy (Y [mid-1:1])
ypredl= getlinear (X1,Y1l,deqg)
plt.plot (X1,ypredl,c="red")
ypred2= getlinear (X2,Y2,deq)
plt.plot (X2, ypred2, c="blue")
if regtype=="exp":
ypredicted= getExp (X,Y)
plt.plot (X, ypredicted, "b", label="fit")
if regtype=="exp2":
import copy
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mid=len(X)//2

X1l=copy.copy (X[:mid])
Yl=copy.copy (Y[ :mid])
X2=copy.copy (X[mid+1:])
Y2=copy.copy (Y[mid+1l:])

ypredl= getExp (X1,Y1)

plt.plot (X1, ypredl,c="red")

ypred2= getExp (X2,Y2)

plt.plot (X2,ypred2, c="blue")
plt.show( )

def drawFigure (Xpoints, Ypoints, T, P):
tt=0
tt0=-1
for i in range(len(T)):
if ttO0==-1 and T[1]>=3:
tt0=1
if T[i]>=Xpoints[0]:

tt=1

break
LLEN= len (Xpoints)
lineM, lineB= findMB(T[tt:tt+LLEN], P[tt:tt+LLEN])
newX= [T[tt0], T[tt+LLEN-1]]
newY¥= [lineM*newX[0] + lineB,lineM*newX[1l] + lineB]
#
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6))
#
plt.xscale("log")
plt.scatter(T[1:], P[1l:])
plt.plot ([T[tt0],Xpoints[-1]], [P[tt0],Ypoints[-1]], c="red")
#plt.plot (newX, newY,c="red")
plt.show ()

def findInflection (D) :
I=[]
for i in range(len(D)-1):
if (D[1]>0 and D[1i+1]1<0) or (D[1]1<0 and D[i+1]>0):
I.append (i)
return I

def DPTcalc (TLC,DERV, 1) :
if i==0 or i==len(TLC)-1: return O
Ti=TLC[1]
Timl= TLCI[1i
Tipl= TLCIi
DPi= DERV[1
DPiml= DERV 1]
DPipl= DERVI[i+1]
dpti=Ti*( (Ti-Timl) *DPipl/ (Tipl-Ti)/(Tipl-Timl) + (Tipl+Timl-
2*Ti)*DPi/ (Tipl-Ti)/(Ti-Timl) - (Tipl-Ti)*DPiml/ (Ti-Timl)/ (Tipl-
Timl))
return dpti

1]
]

1-
1
1

+
]
[1

def CalcLCs (TLCv,ALL) :
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AvgDRVs=[0] *len (TLCv)

Flag=True
for j in range (len(TLCv)) :
x= TLCv[7]

for y in ALL.values():
xx= list (map (lambda aa: aal0], v))
yy= list (map (lambda aa: aalll, vy))
i= findInterval (xx, Xx)
#print (i,x, " xx:",xx)
#print ("yy:",vyy)
if i<len (xx)-1:
AvgDRVs[j] += interpolate(xx[i], vyyl[i], xx[i+1], yy[i+1],
x)
else:
AvgDRVs[j] += interpolate(xx[-2], yy[-2], xx[-1]1, yyI[-1],
x)
return list (map(lambda x: x/len (ALL.keys()), AvgDRVs))

def findl00(Point, D): # find +100/-100 range in 2nd Derivative

i= Point

while i<len (D) and (D[1]>100 or D[1]<-100) :
i=i+1

basladi=i

while i<len (D) and (D[1]<100 and D[1]>-100) :
i=i+1

bitti=1i

if bitti>= len (D) :
bitti= bitti-1

return (basladi,bitti)

def LCval2digits(LCval): # truncate to 2 decimal points
return int (LCval*100) /100

def findVB(pX,pY): # find SLOPE and B points of straight line fit
to (pX,pY)

n= len (pX)

sumX= sum (pX)

sumY= sum(pY)

sumX2= sum (map (lambda a: a*a, pX))

sumXY= sum(map (lambda a: a[0]*a[l], zip(pX,pY)))

calcM= (n*sumXY-sumX*sumY)/ (n*sumX2 - sumX*sumX)

calcB= (sumY-calcM*sumX) /n

return calcM,calcB

def findK(jx,m):
return -162.6*3x["Q"]*Jx["B"]*jx["mu"]/ (m*jx["h"])

def SkinFactor (Pi,Plhr,M,K,jx): #phi,mu, ct, rw) :
return 1.151* ((Pi-Plhr) /abs (M) -
math.logl0 (K/ (3 ["phi" ] *jx ["mu" ] *jx["ct" ] *jx["rw" ] *Jx["rw"]))+3.227
4)
if name == " main_ ": # <datafile.txt> LCval LCend LCinc
args= sys.argv #
print (args[0], "datafile:",args[1l]," LCbegin:",args[2], "
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LCend:",args[3])
dtal= ReadWellFile(args[1l]+".txt")
jx= json.loads (open(args[1l]+".json") .read())
print("jx:",jx)
T,P= GetWellData
if T[0]==0: TI[O]

(d
LCval=float (args|
[
[

)

al
.0001
)

)

)

LCend=float (args
LCinc=float (args
#
minDRV2LC=-1
minDRV2Val=0
minDRV3LC=-1
minDRV3Val=0
ALLO={}
ALLl1={}
ALL2={}
ALL3={}
DF100={}
MinRatio={}
while LCval<LCend+LCinc:
TLC,PLC = LCTP(T,P,LCval)
ALLO[LCval2digits(LCval)]= list(zip(TLC,PLC))
print ("TLC (", LCval,™):", len(TLC))
DT=[0]*1len (TLC)
DP=[0]*1len (TLC)
DRV=[0]*1len (TLC)
Fdrv2LC (TLC, PLC, DT, DP, DRV)
#
ALL1[LCval2digits(LCval)]=1ist (zip (TLC,DRV))
#
for i in range (len(TLC)) :
print ("{:.6f}".format (TLC[1]),",",end="")
print ()
print ("First Derivative (", LCval,"):", len(DRV))
DRV[0]=DRV[1]
for i in range(len(DRV)) :
print ("{:.2f}".format (DRV[i]),",",end="")
print ()
DPT1=[0]*1len (TLC)
DPT2=[0]*1len (TLC)
#
for i in range(l,len(TLC)) :
DPT1[i]= DPTcalc (TLC,DRV, 1)
DPT1[0]=DPT1([1]
DPT1[len(TLC)-1]=DPT1[len(TLC)-2]

t
0
]
]
]

2
3
4

PMlist= list (map(lambda x: [-1,1][x>0], DPT1))

Chgcnt= sum (map (lambda i: PMlist[i]*PMlist[i+1l]==-1,
range (len (PMlist)-1)))

print ("Second Derivative (", LCval,"):", len(TLC)," Changes:",
Chgcnt, " Ratio:"™,Chgcnt/len (TLC))

MinRatio[LCval2digits (LCval)]= Chgcnt/len (TLC)

ALL2[LCval2digits(LCval)]=list (zip (TLC,DPT1))
if minDRV2LC==-1 or minDRV2Val>Chgcnt/len (TLC) :
minDRV2Val= Chgcnt/len (TLC)

99



minDRV2LC= LCval
for i in range (len(TLC)) :
print("{:.2f}".format (DPT1[1i]),end=",")
print ()
#
for i in range(l,len(TLC)) :
DPT2[i]= DPTcalc (TLC,DPT1,1i)
DPT2[0]=DPT2[1]
DPT2[len (TLC)-1]=DPT2[len (TLC) -2]

PMlist= list (map(lambda x: [-1,1][x>0], DPT2))
Chgcnt= sum(map (lambda i: PMlist[i]*PMlist[i+l]==-1,
range (len (PMlist)-1)))
print ("Third Derivative (", LCval,"):", len(TLC),"™ Changes:",

Chgcnt, "™ Ratio:",Chgcnt/len (TLC))
# add to list of Ratio's, to calculate the minimum after all
ratios are calculated
MinRatio[LCval2digits (LCval)] += Chgcnt/len (TLC)
ALL3[LCval2digits(LCval)]l=1list (zip (TLC,DPT2))
if minDRV3LC==-1 or minDRV3Val>Chgcnt/len (TLC) :
minDRV3Val= Chgcnt/len (TLC)
minDRV3LC= LCval
for i in range(len(TLC)):
print ("{:.2f}".format (DPT2[1]),end=",")
print ()
# inflection points
MinPos2ndDerivative= DPTl.index (min (DPT1))
IP= findInflection (DPT2)
print ("Inflection points:", IP, "Minimum 2nd Derivative
position:", MinPosZndDerivative, " Minimum
value:","{:.2f}".format (min (DPT1)))
if MinPos2ndDerivative> max (IP) :
LCval= LCval + LCinc
continue
FirstIPafterMin= min(list (filter (lambda x:
x>=MinPos2ndDerivative, IP)))
print ("FirstIPafterMin2ndDerivative:", FirstIPafterMin)

#
IPl=FirstIPafterMin
print (" (TLC,Derivative)=

(", TLC[IP1],DPT2[IP1],™)"," (", TLC[IP1+1],DPT2[IP1+1],")"™)
print ("ZeroPoint LC:",
findZero(TLC[IP1],DPT2[IP1],TLC[IP1+1],DPT2[IP1+1]))
F100= findl100(IP1, DPT1)
print ("F100 IP:",F100)
print ("Second Derivative (+100/-
100) :","{:.0f}".format (TLC[F100[0]]),"to

{:.6f}" . format (TLC[F100[1]-1]), "™ DRV:", ''.join (map (lambda x:
"{:.2f} ".format(x), DPTI[F100[0]:F100[111)))
DF100[LCval2digits (LCval)]= (F100[0],F100[1]-1)
#

LCval = LCval + LCinc
#
TLCv= list (map(lambda x: x[0], ALL1[LCend]))
AvgDRV1= CalcLCs (TLCv,ALL1)
print ("AvgDRV1:", len (AvgDRV1))
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for x in AvgDRV1:

print (x,end=",")
print ()
#
AvgDRV2= CalcLCs (TLCv,ALL2)
print ("AvgDRV2:", len (AvgDRV2))
for x in AvgDRV2:

print (x,end=",")
print ()
#
AvgDRV3= CalcLCs (TLCv,ALL3)
print ("AvgDRV3:", len (AvgDRV3))
for x in AvgDRV3:

print (x,end=",")
print ()
#
print ("TLC values:", len(TLCv))
for x in TLCv:

print (x,end=",")

print ()

print ("Minimum Change Ratio for Second Derivative: ", minDRV2Val,
" LC:", minDRV2LC)

print ("Minimum Change Ratio for Third Derivative: ", minDRV3Val,
" LC:", minDRV3LC)

#

MinRatioLC= float(''.join (map(lambda x:
['"'",str(x)] [MinRatio[x]==min (MinRatio.values())],

MinRatio.keys())))

print ("Minimum Change Ratio Second+Third:",
min (MinRatio.values()),"™ LC:", MinRatioLC,'
TLC:',DF100[MinRatioLC])

TLCbegin=DF100 [MinRatioLC]

TLCvalbeg= ALLO[MinRatioLC

TLCend=DF100 [MinRatioLC] [1

TLCvalend= ALLO[MinRatioLC] [TLCend] [0]

XY2points= ALLO[MinRatioLC] [TLCbegin:TLCend+1]

X2points= list (map(lambda x: x[0], XY2points))

Y2points= list (map(lambda x: x[1], XY2points))

#

XYpoints = list (filter (lambda x: x[0]>TLCvalbeg and
x[0]<TLCvalend, list(zip(T,P))))

Xpoints = list (map(lambda x: x[0], XYpoints))

Ypoints = list (map(lambda x: x[1], XYpoints))

print ("X2points:", X2points)

print ("Xpoints:", Xpoints)

print ("Y2points:", Y2points)

print ("Ypoints:", Ypoints)

LXpoints= list (map(lambda a: math.loglO(a), Xpoints))

foundM, foundB= findMB (LXpoints, Ypoints)

# k= f£indK(Q,h,B,u,m)

foundK= findK (jx, foundM)

print ("M:", foundM, " k:", foundK)

pfit= np.polyfit(list (map(lambda a: math.loglO(a), Xpoints)),
Ypoints, 1)

print ("Pfit:", pfit)

[0]
] [TLCbegin] [0]
]
1
1
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Plhr= np.polyval (pfit, math.logl0 (1))
for xx in Xpoints:
print ("{:.2f}".format (np.polyval (pfit, xx)),end=" ")
print ()
print ("Plhrs({:.2f})={:.2f}".format (P[0],Plhr))
print ("Skin factor:", SkinFactor (P[0],Plhr, foundM, foundK, jx))

#
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