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ABSTRACT

MIXED MODE FATIGUE CRACK GROWTH PATH AND LIFE PREDICTION
UNDER VARIABLE AMPLITUDE LOADING THROUGH EXTENDED FINITE

ELEMENT METHOD

Dı̇rı̇k, Haydar

M.S., Department of Aerospace Engineering

Supervisor : Assist. Prof. Dr. Tuncay Yalçınkaya

June 2017, 79 pages

The main purpose of this study is to predict the crack growth path trajectories and
fatigue crack growth (FCG) life under variable amplitude loading (VAL) by using
Extended Finite Element Method (XFEM). For this purpose a computational algo-
rithm is developed in Fortran which interacts with a commercial finite element soft-
ware (Abaqus) and automatically propagates cracks which is initially modelled as
stationary crack. Nasgro FCG equation is used for FCG life calculation which has
a great accuracy among the FCG equations available in literature. Retardation effect
due to VAL is taken into account by using appropriate retardation models according
to nature of loading to show the capability of developed algorithm in covering the
retardation phenomenon caused by overloads (OL) and underloads (UL). Developed
algorithm is validated with several crack propagation tests available in literature in
terms of crack growth path trajectories and FCG life under mode I and mixed mode
loading conditions on different materials. Simulated and experimental results are in
good harmony.

Keywords: Variable amplitude loading, Fatigue crack growth path, Fatigue life, XFEM
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ÖZ

KARMA MODLU YORULMA ÇATLAĞININ GENİŞLETİLMİŞ SONLU
ELEMANLAR METODU İLE DEĞİŞKEN GENLİKLİ YÜKLEME ALTINDA

YÖRÜNGE VE ÖMÜR TAHMİNİ

Dı̇rı̇k, Haydar

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Tuncay Yalçınkaya

Haziran 2017 , 79 sayfa

Bu çalışmanın temel amacı genişletilmiş sonlu elemanlar metodunu kullanarak değiş-
ken genlikli yükleme altında çatlak ilerleme yönünün ve ömrününün tahmin edilme-
sidir. Bu amaçla Fortran’da Abaqus ile etkileşime giren ve başlangıçta durağan çatlak
olarak modellenen çatlakları otomatik olarak ilerleten bir hesaplama algoritması ge-
liştirilmiştir. Çatlak ilerleme hesabı için literatürdeki denklemler arasında büyük bir
doğruluk oranı olan Nasgro denklemi kullanılmıştır. Geliştirilen algoritmanın üst yük-
leme ve alt yüklemeden kaynaklı çatlak ilerleme gecikmesini hesaplayabilme kapasi-
tesini göstermek için kullanılan yüklemenin doğasına uygun olan ilerleme gecikmesi
modelleri kullanılarak ilerleme gecikmesi hesaba katılmıştır. Geliştirilen algoritma
literatürde varolan catlak ilerleme testleri kullanılarak yorulma çatlağı ilerleme yönü
ve ömrü açısından, birinci mod ve kompleks yükleme modlarında farklı malzemeler
üzerinde doğrulanmıştır. Hesaplanan sonuçlar ile test sonuçları iyi bir uyum içerisin-
dedir.

Anahtar Kelimeler: Değişken genlikli yükleme, Yorulma çatlağı ilerleme yörüngesi,
Yorulma ömrü, Genişletilmiş sonlu elemanlar metodu
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CHAPTER 1

INTRODUCTION

Fatigue and damage tolerance (F&DT) analysis of structural components exposed

to fatigue loading is a crucial issue in various industrial areas for damage tolerant

designs especially in aerospace industry due to certification rules. Aerospace struc-

tures have to be replaced when the probability of failure reaches a critical level even

if, it has a sufficient remaining life. Certification requirements necessitate that the

damage tolerance capability of the structure have to be demonstrated with simula-

tions and tests. To avoid unexpected results and over-conservatism, realistic fatigue

crack growth (FCG) path and life prediction of components have primary importances

from an economical and safety point of view. Thus, a reliable computational algo-

rithm is needed for crack growth analysis that estimates crack propagation path and

life in cyclically loaded structural components in order to prevent unexpected failure

of structure in service condition. Such an algorithm reduces the high expenses of real

testing facilities and replacement costs of components by estimating realistic results.

Cracks that have formed in structural components due to cyclic loadings may move

straight or changes their directions depending on the loading mode. For the analy-

sis of planar cracks under uniaxial loading a number of commercial tools have been

developed that solve the FCG problem of a predefined crack under either constant or

variable amplitude mode I loading condition e.g., AFGROW [1] and NASGRO [2]

which use handbook solutions for stress intensity factor (SIF) and appropriate FCG

rate equations available in the literature. However, industrial structures are mostly

under the action of mixed mode loading condition which forms non planar crack

path trajectories. The commercial tools cited above are not applicable for the case
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of mixed mode loading conditions. For this reason, there is an industrial need for

the tools that simulate realistic crack path and life under mixed mode loading. In the

case of mixed mode loading better estimation of the cyclic life requires adopting a

cycle-by-cycle summation approach based on equivalent SIF that could cover the for-

mation of arbitrary crack shape as well as the effects of load interactions (retardations

or accelerations).

An effective way for curvilinear FCG simulation is to use numerical methods such

as finite element method (FEM). The conventional FEM has been used in many stud-

ies (see e.g. [3, 4, 5]) for FCG simulation with acceptable accuracy for modelling

of stationary and propagating cracks. However, FEM requires considerable effort for

capturing discontinuity created by cracks and some troublesome re-meshing burden

in each step of crack growth analysis.

Belytschko and Black [6] developed a new Finite Element formulation called Ex-

tended Finite Element Method (XFEM) which overcomes difficulties faced during

FEM simulations of crack initiation and propagation. In this method, there is no

need to re-mesh during the crack propagation, which reduces the computational time

and error associated with geometry mapping and mesh updating. XFEM has been

validated in several works (see e.g. [9, 10, 11, 12, 13]) and it has the capability of

accurately model the discontinuities such as cracks. Implementation of XFEM in

Abaqus/Standard has the capability of modelling stationary cracks accurately. It also

has the capability of modelling growing cracks. XFEM exercise in Abaqus uses the

traction-separation cohesive behavior approach by default, instead of using fracture

mechanics as stated in [14] for propagating cracks. However, the existing design

certification principles for damage tolerance assessments are based on theory of Lin-

ear Elastic Fracture Mechanics (LEFM) in most industries particularly in aerospace

industry. To meet the requirements of certification rules for damage tolerance as-

sessments, a LEFM based approach should be applied. Standard implementation of

XFEM in Abaqus can not deal with FCG simulations but it can effectively predict the

SIF of a stationary crack tip which is the basic parameters for LEFM based damage

tolerance assessments. Based on advantageous stationary crack modelling capabili-

ties of XFEM, cost effective and practical computational algorithm in the application
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of the FCG prediction under mixed mode practical service loading conditions is pos-

sible by algorithms which use externally defined analytical methods.

Industrial structures are mostly under the action of variable amplitude loading (VAL)

through their service life. Although, there are many studies (see e.g. [15, 16, 17]) in

the literature that analyse crack propagation under constant amplitude loading (CAL),

the studies that accounts for load history effects caused by VAL are very limited.

Moreover, in most of the numerical studies, cracks are propagated in manual steps,

that is time consuming and has increasing risk of errors. In this respect, the need for

practical and reliable computational tools in the application of the FCG path and life

prediction under mixed mode loading conditions by taking into account the effect of

the load history is obvious. Therefore, this area needs further investigations.

In order to eliminate the deficiencies mentioned above, the objective of this thesis

is to develop a computational tool to predict the FCG path and rate by using XFEM

along with available crack growth rate and path prediction methods. To achieve this

purpose, a tool is developed in Fortran which automatically propagates stationary

modelled cracks step by step. This algorithm interacts with Abaqus environment

and determine the FCG path and life by using embedded equations into the algo-

rithm under user defined load spectra. The Nasgro equation that is commonly used

in aerospace practices is used in the algorithm for life calculations through the simu-

lations. Stationary initial cracks propagated by using KII = 0 criterion proposed by

Cotterell and Rice [18]. The load history effect is also taken into account by embed-

ding the modified form of Wheeler [19] and Willenborg [20] retardation models to

the developed algorithm.

The preliminary results of the method for planar cracks under uni-axial loading condi-

tions have recently been presented in 21th European Conference on Fracture [21] and

National Aviation and Space Conference (6th UHUK)[22] by Dirik and Yalçınkaya.

Developed algorithm is also verified for the case of curvilinear crack propagation in

terms of crack path trajectories and FCG life in several specimens which has experi-

mental results in open literature. The results are in good harmony.
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1.1 Outline of Thesis

This thesis is presented through five chapters. An introduction is presented in chapter

1 which includes motivation objective and contribution of this study.

The theoretical background and literature review about crack growth life, crack growth

path, retardation models and XFEM are given in Chapter 2 .

Main structure of the developed computational procedure is described in Chapter 3

by presenting an algorithm chart and giving the details on each step.

Several numerical case studies presented in Chapter 4 for the validation of the de-

veloped algorithm with the experimental results available in the literature in terms of

FCG path and life under different loading conditions for different materials.

Finally, Chapter 5 is devoted to discussion, concluding remarks and possible future

works.
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CHAPTER 2

THEORETICAL BACKGROUND AND LITERATURE

REVIEW

This chapter reviews theoretical background of basic terms and methods used in de-

veloped computational algorithm such as the stress intensity factor (SIF), crack path

prediction models, life prediction models and retardation phenomena. Extended finite

element method (XFEM) was also explained in this chapter together with some crack

modelling tips in Abaqus by using XFEM. Along with this review a summary of the

previous work done in the literature are presented as well with their advantages and

limitations.

2.1 Stress Intensity Factor

As the radius of the curvature at crack tip approaches zero, the stress level goes to

infinity which is not a realistic behaviour of the structure. In such cases, the stress

concentration factor, a parameter that determines behaviour of the structure, no longer

reflects real behaviour of the structure and can not be used. As an alternative way, SIF

can be used appropriately to represent the stress field at the crack tip. For this rea-

son, SIF has an important role in fatigue and damage tolerance (F&DT) assessments.

At critical levels of SIF, cracks can be initiated, the initiated cracks may growth and

eventually catastrophic failure of the components might occur. SIF’s depend on the

mode of loading and crack configurations. There are three different modes of loading

used in fracture mechanics. These are mode I loading, mode II loading and mode III

loading.
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Figure 2.1: Loading modes a) Mode I b) Mode II c) Mode III.

Mode I is the crack opening mode, mode II is an in-plane shear mode and mode III

is an out-of-plane shear mode as illustrated respectively in Figure 2.1. By using the

stress state near the crack front presented in Figure 2.2, the SIF for three different

loading mode can be calculated through equations (2.1)-(2.3) for mode I, mode II

and mode III respectively. Where σij represents the normal or shear stresses com-

ponents in the specified directions. The SIF is related to the nominal stress level

(σ) and the size of the crack (a). In general, the relation for SIF is represented by

K = f(a/w)σ
√
πa where f(a/w) is a geometric correction factor which depends on

structural member and crack length. The values of f(a/w) for standard specimen can

be found in handbooks.

Figure 2.2: Three dimensional stress state at crack front.
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Expression of SIF for different modes are given as,

KI = lim
r→0

√
2πrσyy (r, 0) . (2.1)

KII = lim
r→0

√
2πrσyx (r, 0) . (2.2)

KIII = lim
r→0

√
2πrσyz (r, 0) . (2.3)

2.2 Mixed Mode Stress Intensity Factor

In the case of mixed mode loading better estimation of the FCG life in cyclic load-

ing needs an equivalent SIF range that could cover the non planar crack formation.

Several studies on the mixed mode loading have been conducted in the literature to

determine a reasonable and applicable equivalent SIF range from ∆KI and ∆KII .

The most important ones of these studies can be mentioned as following.

Tanaka [23] proposed one of the most striking examples and made a significant con-

tribution for the determination of mixed mode equivalent SIF range (∆Keq) which is

based on the idea that cracks can propagate if the displacement behind the crack tip

reaches a critical value. Tanaka’s equivalent SIF expression is given as,

∆Keq =
[

∆K4
I + 8∆K4

II

]0.25
. (2.4)

Richard [24] presented an empirical equation for the estimation of equivalent SIF

range in which Mode I (KIc) and Mode II (KIIc) fracture toughness are used. Richard’s

equation for mixed mode SIF is expressed as,

∆Keq =
1

2
KI +

1

2

√

K2
I + 4

(

KIc

KIIc

KII

)2

. (2.5)

Tong and Yan [25] suggested another effective SIF concept which is simple extension

of the maximum tangential stress (MTS) criterion [26] to the case of mixed mode

FCG. Tong and Yan equivalent SIF description is given as,

∆Keq =
1

2
cos

(

θ0
2

)

[∆KI(1 + cos(θ0))− 3∆KIIsin(θ0)] (2.6)

7



where θ0 is the crack growth direction proposed by Erdogan and Sih [26] in MTS

criterion.

Hoshide [28] and Chen [29] also suggested relations for crack growth rate using J

integral for mixed mode situations. Among all these models, the mostly used one is

Tanaka’s model which has substantial experimental correlations, which is reliable and

easy to use. Therefore, in this study, Tanaka’s model is implemented to the developed

algorithm because of its mentioned advantages.

2.3 Crack Growth Life

FCG life is generally predicted by using an exponential function of SIF range ∆K

in LEFM. The SIF range ∆K is the basic term in determination of crack growth rate

da/dN . A log-log plot of da/dN vs. ∆K is shown in Figure 2.3. In this diagram,

Region I is the crack initiation interval in which crack growth rate approaches to zero.

Region II is the stable crack growth interval. Paris equation accounts for this stable

crack growth interval. Region III is unstable crack growth interval in which crack

growth rate is very high and FCG life is very short. In this final fracture region, max-

imum SIF reaches the critical level (Kc), which eventually results with fracture.

Figure 2.3: da/dN vs. ∆K diagram.
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There are various studies in literature to estimate the FCG rate (da/dN) for FCG

life calculations. The first pioneering work is suggested by Paris and Erdoğan [30]

that introduced a SIF based tentative relation known as Paris equation,

da

dN
= C (∆K)n (2.7)

where, N is the number of applied load cycles, a is the crack length, ∆K is the SIF

range. C and n are empirically determined material constants. Paris equation only

covers the Region II of the da/dN vs. ∆K diagram. This pioneering equation was

modified by several researcher over time.

Walker [31] modified the Paris equation to account for the stress ratio R = Kmin/Kmax.

Walker equation only incorporates the effect of mean stress to the Paris equation. It

does not account for Region I and III of the crack growth rate curve in low and high

level of SIF range and presented as,

da

dN
= C

[

∆K

(1−R)1−γ

]m

(2.8)

where C, m and γ are the material dependent empirical constants. Values of γ ranges

from 0.3 to 1 for various metals. Lower values of parameter γ means a strong depen-

dence of FCG rate to the mean stress.

Forman et al. [32] suggested a further modification on Paris law that incorporates

the parameter of critical SIF (fracture toughness) to the equation to account for Re-

gion III of the da/dN vs. ∆K diagram as follow,

da

dN
=

C (∆K)n

(1− R) (Kc −Kmax)
. (2.9)

Hartman and Schijve [33] suggested another update on Paris law by adding a param-

eter of threshold SIF range to cover the Region I of da/dN vs. ∆K curve which is

initiation interval,

da

dN
= D

[

(∆K −∆Kth)
√

1−Kmax/A

]α

(2.10)

where D, A and α are empirical material constants and ∆Kth is the threshold SIF

range.
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Throughout the years, many contributions were done for the update of the FCG rate

relations and the efforts are converged to a commonly used equation referred to as

the Nasgro equation (also called Forman- Newman-de Koning equation) which is ex-

pressed in (2.11). Nasgro equation is based on the Forman [34] relation and consider

plasticity-induced crack closure by using the crack opening function introduced by

Newman [35].

Nasgro equation is commonly used as a state of the art practice in major industries

particularly in aerospace industry in FCG assessments for CAL and VAL conditions.

It covers all regions (Region I, II and III) of the da/dN vs. ∆K diagram by taking

into account the R-ratio effect, the threshold value of the SIF range ∆Kth and the

fracture toughness of the material (Kc). The expression for Nasgro equation is given

as,

da

dN
= C

(

1− f

1−R
∆K

)n

(

1− ∆Kth

∆K

)p

(

1− ∆Kmax

∆Kc

)q (2.11)

where, N is the number of load cycles, a is the crack length, ∆K is the SIF range,

∆Kth is the threshold SIF range, Kc is the fracture toughness of the material C, n, p

and q are material constants. Here f is defined as,

f =











R,A0 + A1R + A2R
2 + A3R

3, for R ≥ 0

A0 + A1, for − 2 ≤ R ≤ 0

where, A0, A1, A2, A3 are given as,

A0 = (0.825− 0.34α + 0.05α2)

[

cos

(

π

2

Smax

σ0

)]

1

α

A1 = 0.415− 0.071

[

α
Smax

σ0

]

A2 = 1−A0 −A1 − A3

A3 = 2A0 + A1 − 1

(2.12)

α and Smax/σ0 appearing in the expressions for A0 and A1 are the Newman’s canstants.

α is a constant which ranges from 1 to 3. The ratio of the maximum stress Smax to

the flow stress σ0 is fixed to 0.3 for most of the materials. In the present work, the
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values of α and Smax

α0
were used as proposed by Nasgro material database.

The threshold SIF range in (2.11) can be calculated as,

∆Kth = ∆K0

√

a

a+ a0

[

1− f

(1−A0)(1−R)

]

−(1+CthR)

(2.13)

where, a0 is an intrinsic crack size which depends on the material grain size, ∆K0

is the threshold SIF at R = 0 and Cth is the curve control coefficient for different R

ratios. The effect of thickness is considered by using the critical SIF (Kc) as below

Kc

KIc
= 1 +Bke

−(Akt/t0)
2

(2.14)

where Ak and Bk are fitting parameters, t is the thickness and t0 is the reference

thickness related to plane strain condition that is calculated as follows,

t0 = 2.5
KIc

σy

2

(2.15)

where σy is the yield stress.

There are several examples in literature where Nasgro equation captures the fatigue

life of cracked components with a good accuracy (see e.g. [36], [37] and [38]). The

coefficients of Nasgro equation have reported for most of the engineering materials

in Nasgro software material database [2].

2.4 Crack Propagation Path

In industrial structures, the cracks usually propagate by changing its direction de-

pending on the mode of loading conditions. Many criteria have been proposed in

literature for path prediction of growing cracks. The sounding works on the crack

path evaluation can be mentioned as following.

Erdoğan and Sih [26] proposed the maximum tangential stress (MTS) criterion which

indicates that; a crack growth occurs when MTS reaches a critical level and crack

extent in radial direction corresponding to this maximum stress direction. Its mathe-
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matical formulation is represented as,

θc = 2tan−1



0.25





KI

KII
±

√

(

KI

KII

)2

+ 8







 (2.16)

where θc is the crack growth angle.

Palaniswamy and Knauss [40] recommend the maximum energy release rate crite-

rion (MERR) which says crack extension occurs in the direction which maximize the

energy release rate dU/dA where U is the potential of the system.

Maiti and Smith [42] proposed another approach which is known as maximum tan-

gential principal stress (MTPS) which indicates maximum tangential stress as a prin-

cipal stress and crack extension assumed to occurs in this principal direction. These

criteria have in common that, when second mode SIF at the crack tip is non zero, then

the crack extension follow a path which is continuously change its direction.

In this study, the criterion of local symmetry (KII = 0 criterion) suggested by Cot-

terel and Rice [18] is used in crack growth simulations which is already implemented

in Abaqus. Criterion of local symmetry have been shown to provide good accuracy in

literature (see e.g. [43]). This criterion can be explained by considering an infinites-

imally small kinged crack shown in Figure 2.4. The mode I and II SIF’s, kk
I and kk

II

at the tip of the putative crack can be represented in terms of SIF’s KI and KII of the

parent crack as presented in (2.17).

Figure 2.4: Schematic representation of kinked crack.
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kk
I = C11KI + C12KII

kk
II = C21KI + C22KII

(2.17)

The Cmn appearing above depend on polar kinking angle θ as follows [40].

C11 =
1

4

[

3 cos
θ

2
+ cos

3θ

2

]

C12 =
−3

4

[

sin
θ

2
+ sin

3θ

2

]

C21 =
1

4

[

sin
θ

2
+ sin

3θ

2

]

C22 =
1

4

[

cos
θ

2
+ 3 cos

3θ

2

]

(2.18)

KII = 0 criterion simply postulates that a crack will initially propagate in the direc-

tion that makes kk
II equal to zero

kk
II =

1

4

[

sin
θ

2
+ sin

3θ

2

]

KI +
1

4

[

cos
θ

2
+ 3 cos

3θ

2

]

KII . (2.19)

2.5 Retardation Phenomena

The crack growth rate under CAL condition alters if the structure is under the action

of VAL condition. Significant acceleration or retardation might occur in crack growth

rate due to applied OL or UL. Therefore, the loading history have to be considered in

FCG life calculations for better estimations. An OL immediately applied after CAL

cause to delay in crack growth rate at subsequent load cycles, while a subsequently

applied OL-UL reduce the positive effect of the OL on crack growth rate. The men-

tioned retardation effects are presented in Figure 2.5 [41].

Many crack growth retardation models are available in literature to take into account

load history effect on the FCG life. The first category of these model is based on yield

zone size (see e.g. Wheeler [19] and Willenborg et. al [20]). The second category is

based on an effective SIF range ∆Keff . The effective SIF is the difference between
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Figure 2.5: Retardation phenomena for OL and OL-UL. [41]

the applied SIF and the SIF for crack closure. These models contain many empirical

constants, which make them difficult to use. In this work, only the first category is

considered. Yield zone models are easy to use and the number of experimental param-

eters are relatively less compared to closure models. The yield zone models assume

that, if the size of the plastic zone developed by the current load cycle extends the

previously developed plastic zone size there will be no retardation on crack growth.

Otherwise, the crack growth rate will be retarded. Figure 2.6 shows the relation be-

tween crack size and plastic zone.

Point to note is that, the specimen thickness has important influences on crack growth

rate behaviour of the specimen. Therefore, the size of the plastic zone at crack tip is

larger in thin specimen than for thick specimen. Such cases can be considered theo-

retically by assuming plane stress or plane strain condition for thin or thick specimen,

respectively. In the examined crack growth cases in this study for complex stress field

in the vicinity of the crack tip a plane stress assumption is made according to their

thickness. State of plain strain domination needs a specimen thickness that is suffi-

ciently large.
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Figure 2.6: Crack tip yield zone.

The size of instant cyclic plastic zone (rpi) and and monotonic OL plastic zone (rpol)

can be calculated by adopting following equations,

rpi =
1

π

(

∆Keq

2σy

)2

(2.20)

rpol =
1

π

(

Kol

σy

)2

(2.21)

In here, ∆Keq is the equivalent SIF range and Kol is the SIF caused by OL and σy is

the yield strength of the material. The first yield zone model used in this study is a

modified form of Wheeler model [19] and it has good agreement with experimental

studies when single OL applied periodically on a CAL spectrum. In Wheeler model,

delayed crack growth rate caused by tensile OL is covered by,
[

da

dN

]

ret,i

= C

[

da

dN

]

i

. (2.22)

The value of retardation constant C is determined as follow, where µ is an experimen-

tally adjustable retardation parameter.

C =











[

rpi
rpol + aol + ai

]µ

, for ai + rpi ≤ aol + rpol

1, for ai + rpi ≥ aol + rpol
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[

da
dN

]

ret,i
and

[

da
dN

]

i
are the retarded and corresponding non-retarded crack growth

rates respectively. aol and ai are the crack sizes at the instances; just after the ap-

plication of the OL and at the subsequent ith cycle respectively. Wheleer model has

lack of the capability to cover the crack arrest since the value of calculated
[

da
dN

]

ret,i

is always positive.

Meggiolaro et. al [44] suggested a modification on the original Wheeler model. By

this modification both crack retardation and arrest can be predicted. This approach

called the Modified Wheeler model and uses a parameter γ to multiply ∆K instead

of multiplying
[

da
dN

]

i
after the OL. In this model retardation is covered by using a

retarded SIF range,

∆Kret(ai) = C∆K(ai). (2.23)

The value of retardation constant C is determined as follows,

C =











[

rpi
rpol + aol + ai

]γ

, for ai + rpi ≤ aol + rpol

1, forai + rpi ≥ aol + rpol

where γ is an experimentally adjustable retardation parameter and generally different

from the original Wheeler model retardation exponent µ. ∆Kret(ai) and ∆K(ai) are

the values of the SIF ranges that would be used at ai with and without retardation

due to OL respectively. This simple modification can be used with any of the crack

propagation equations that takes into account the effect threshold SIF range ∆Kth in

determination of both retardation and arrest of fatigue cracks after an OL. The arrest

occurs if ∆Kret(ai) > ∆Kth.

The second yield zone model used in this study is a modified form of Willenborg

model [20] which consider the effects crack growth retardation by using an effective

SIF concept supplied as Keff
i = Ki −KR in which Ki is the typical SIF for the ith

cycle and KR is the residual SIF,

KR = KW
R = Kol

max

√

1− ai − aol
rp,ol

−Kmax,i (2.24)

where ai instant crack size, aol crack size at the application of OL, rp,ol the yield zone

produced by the OL, Kol
max maximum SIF of the OL and Kmax,i maximum SIF for
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the current cycle. Willenborg et al. [20] model can not deal with effect of UL either.

Gallagher and Hughes [46] generalized the Willenborg model by modifying the resid-

ual SIF used in this model with an experimental material dependent constant. This

generalized model can only cope with OL effect. They proposed that KR = ΦKW
R

where Φ is given as,

Φ =

1− Kmax,th

Kmax,i

Sol − 1
. (2.25)

In which Kmax,th is the threshold SIF level related to the zero FCG rates and Sol

is shut-off ratio required to cause crack arrest for the given material. In this model

retardation effect is sensed by the change in the effective stress ratio.

Reff =
Keff

min,i

Keff
max,i

=
Kmin,i −KR

Kmax,i −KR
(2.26)

Thus, for the ith load cycle, the crack growth increment ∆ai is given by,

∆ai =
da

dN
= f(∆K,Reff). (2.27)

Brussat et. al [47]) suggest a further modification on Generalized Willenborg model

to consider for the effect of UL also. In this modification a factor Φ is used which is

given as follows,

C =











Φ = 2.523Φ0/(1 + 3.5(0.25−RU ))
0.6, for RU < 0.25

Φ = 1, for RU ≥ 0.25

where RU is the ratio of current UL stress (σul) to OL stress (σol) and Φ0 is a material

and spectrum dependent parameter which typically ranges from 0.2 to 0.8.

2.6 Extended Finite Element Method (XFEM)

A new finite element technique called XFEM has been developed by Belytschko and

Black [6] to overcome the difficulties encountered in traditional FEM modeling of

discontinuities such as craks. The mathematical background behind XFEM is the

partition of unity concept presented by Melenk and Babuska [7]. Partition of unity
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specified by a set of n functions fi that fulfilling the requirement
n
∑

i=1

fi(x) = 0. Using

the concept of local partition of unity makes it possible to enrich the FE approxi-

mation space. This enrichment in XFEM allows the discontinuities and singularities

around the crack to be represented independent from FE mesh. The objective in rep-

resenting discontinuities is simply to represent mesh 1 shown in Figure 2.7 by using

mesh 2 plus some enrichment terms.

Figure 2.7: Mesh configurations.

XFEM displacement solution is given by

u(x, y) =

10
∑

i=1

Ni(x, y)(ui) (2.28)

In here, Ni(x, y) is the shape function for node i and ui is the displacement vector

for the same node. By taking the average value of u9 and u10 as m and the distance

between the two nodes as n, it is appropriate to write

m = (u9 + u10)/2 (2.29)

n = (u9 − u10)/2 (2.30)

From these equalities, u9 and u10 can be written written as m+ n and m− n respec-

tively. Then, the expression for displacement solution can be written as,

u(x, y) =
8

∑

i=1

Ni(x, y)(ui) +m(N9 +N10) + n(N9 +N10)H(x, y) (2.31)
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where H(x,y) is the jump function represented as

H(x, y) =











1, for y > 0

−1, for y < 0

In (2.31) N11 can be substituted for N9+N10 and u11 can be substituted for m. Then,

the displacement expression can be rearranged as,

u(x, y) =
8

∑

i=1

(Ni(x, y)(ui) +N11u11) + (nN11)H(x, y)). (2.32)

The first term of the equation corresponds to the conventional approach by the FEM,

and the second term represents the jump enrichment for new node with displacement

u11 and hence new degrees of freedom. The equation (2.32) tells us that the geom-

etry of a crack can be represented by a mesh which does not contain any discontinuity.

To illustrate picking up the existing singularities, let all nodes be represented by the

set D, the nodes around crack the tips and faces are represented by the sub set Dt and

Dc respectively. Then, the approach for displacement calculation for crack modelling

in XFEM has such a form given by,

uxfem =
∑

i∈D

Ni(x)(ui) +
∑

i∈Dc

Ni(x)H(x)(ai) +
∑

i∈Dt

[

Ni(x)
4

∑

α=1

Fα(x)b
α
i

]

(2.33)

where, uxfem is the displacement vector, Ni is the nodal shape function, ui is the nodal

displacement vector for non-enriched nodes, H(x) is the Heaviside function which is

+1 on one side of the discontinuity and −1 on other side of the discontinuity, a(i) is

the nodal enriched degree of freedom vector associated with Heaviside function, bci

is the nodal enriched degree of freedom vector associated with crack tip enrichment.

Fα(x) are the asymptotic crack tip functions for linear elastic isotropic materials,

{Fα (x)}4i=1 =
(√

rsin(α/2),
√
rcos(α/2), sin(α/2)sin(α), cos(α/2)sin(α)

)

.

(2.34)

The main advantage of XFEM compared with the traditional FEM is that, it is not

needed for FE mesh to conform the boundaries of the geometric discontinuities such

as cracks. So the user gets rid of the troublesome burden of re-meshing in each step
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of crack growth analysis. In this way, XFEM gives a great flexibility to the user in

modelling discontinuities. The main goal in using XFEM is not determination the

stresses, strains or displacements. The interest here is to the determine the SIF for

available cracks. Similar to the traditional situation, the evaluation of SIF in XFEM

is based on evaluation of interaction integral over the crack tip area. Crack propa-

gation directions is determined by using the calculated SIF in appropriate crack path

prediction models available in literature. There are three criteria for crack path deter-

mination implemented already into Abaqus for homogeneous, isotropic linear elastic

materials, these are the maximum tangential stress (MTS) criterion, the maximum

energy release rate (MERR) criterion and the KII = 0 criterion.

XFEM has taken the attention of users in modelling stationary and propagating cracks

since it was introduced in 1999. Many authors have applied XFEM to model station-

ary and growing cracks. Some of these attempts can be mentioned as follows.

Shi et al. [8] developed and implemented a 3D XFEM coupled with a narrow band

fast marching method in the Abaqus FE package for curvilinear FCG path and life

evaluation in metallic structures. Giner et al. [11] suggested an implementation of

XFEM for 2D LEFM applications with multiple cracks. Sukumar and Prevost [9],

presented a fortran implementation of the XFEM to a general purpose FE package

for modelling 2D cracks in isotropic and bimaterial media. The 3D X-FEM together

with the level set method was used to simulate curvilinear crack growth in [48] and

[49].

Due to many captivating features of X-FEM, several other attempts have been made

to implement XFEM to commercial FEM packages for SIF evaluation and crack path

determination (see e.g.[10, 11]). XFEM has also been validated in several works (see

e.g. [12, 13]) and it has the capability of accurately model the discontinuities such as

cracks. Therefore, It is possible to develop efficient tools in terms of practicality and

reliability in industrial applications based on the valuable contributions made in this

field.
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2.7 XFEM in ABAQUS

As discussed previously, stationary and propagating cracks can be modelled through

XFEM crack modelling capability of Abaqus. The SIF calculation in Abaqus through

XFEM is performed along the crack front for a finite number of nodes. These nodes

are called as contour integral evaluation points. The number of contours to be in-

cluded in the contour domain must be specified to calculate the SIF. These contours

are automatically determined by Abaqus at points where the crack tip intersects the

element boundaries. A schematic description of the element rings in Abaqus can be

seen in Figure 2.8. The first partial contour domain consists of the elements surround-

ing the crack tip. The next partial contour domain contains the first domain and the

next element ring directly connected to the first contour field. The contour integral

calculation is theoretically independent from the size of the contour but due to the

approximation with a FE solution, the SIF for the different element contour differs

slightly from each other. The demonstration of effect of requested number of con-

tours on SIF value is given in next section on a simple case study for the justification

of SIF extraction method through the whole study.

Figure 2.8: Contour domain in Abaqus.

The main difference between stationary and propagating crack modelling in XFEM

is the enrichment procedure. Different enrichment functions and number of enriched

nodes are considered in XFEM for stationary and propagating cracks as illustrated in

21



Figure 2.9. For stationary cracks, the nodes located on crack tip and crack face el-

ements are enriched with Heaviside function and the asymptotic near-tip singularity

functions. While the nodes located on the crack face elements are enriched only with

the Heaviside function.

Figure 2.9: Enrichment procedure in Abaqus.

The enrichment radius shown in Figure 2.9 can be determined by the user. Higher

the enriched number of nodes means higher accuracy [8] with additional computa-

tional cost. The enrichment radius is used as recommended by the analysis default in

Abaqus/Standard as three times the element characteristic length through all study.

Current implementation of XFEM available in Abaqus/Standard has some constraints.

The most important ones can be listed as below.

• XFEM currently not available in Abaqus/Explicit. It supports only static and

implicit dynamic analysis in Abaqus/Standard.

• Stationary crack analysis can only be modelled with linear elastic materials.

• Only 1st order 3D solid continuum elements are supported for stationary cracks.

• Only 1st order 2D and 3D solid continuum elements, and 2nd order tetrahedron

elements are supported for propagating cracks analysis.

• XFEM has some convergence issues in propagating crack analysis.

• XFEM has not the capability to capture crack branching.

• As declared in [14], standard implementation of XFEM has not the capability

to model fatigue crack growth.
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2.7.1 SIF Extraction from XFEM Solution

The SIF’s are obtained by performing a J integral calculation in Abaqus as stated in

[14]. The calculation of SIF from a known J integral is not straightforward for mixed-

mode problems. Abaqus uses an interaction integral method to compute the SIF’s

directly for a crack under mixed-mode loading.

The J integral is a contour integral for 2D geometries (see figure 2.10) and can be

extended to 3D geometries.

Figure 2.10: a) 2D contour integral, b) 2D closed contour integral.

For the 2D case, the J-Integral can be written as [50]

J = lim
Γ→0

=

∫

Γ

n ·H · q dΓ (2.35)

where Γ is the contour which connected to the crack faces and enclose the crack tip,

n is the exterior normal of the contour, and q is the unitary vector within the virtual

extension direction of the crack. The function H is defined by,

H = W · I − σ · ∂u
∂x

(2.36)

where W is the elastic strain energy, I is the identity tensor, σ is the stress tensor and

u is the displacement vector.

The 2D contour integral can be rewritten as a 2D closed contour integral as [50]

J =

∮

C+C++Γ+C
−

m ·H · q̄ dΓ−
∫

C++C−

t · ∂u
∂x

· q̄ dΓ (2.37)
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where the contours, Γ, C, C+ and C− are shown in Figure 2.10. The normal m has

introduced as the unitary exterior normal to the contour C, respecting m = −n. Here

also the weighting function q̄ has been introduced as an unit vector applied in the

direction of the virtual extension of the crack tip, which respects q̄ = q in Γ and

vanishes on C. In equation (2.37), t is the traction on the crack surfaces. Traction on

the crack surfaces is not considered in this study and therefore the second term in the

J integral is disappeared. The J integral can be transformed to a domain integral with

the divergence theorem [50]

J =

∫

A

(

∂

∂x

)

· (H · q̄) dA (2.38)

where A is the area domain enclosed by the closed contour, and dA the infinitesimal

area segment. By using the equilibrium equation,

(

∂

∂x

)

· σ + f = 0 (2.39)

and the gradient of the strain energy for a homogeneous material with constant mate-

rial parameters,
∂W (ǫm)

∂x
=

∂W

∂ǫm
:
∂ǫm

∂x
= σ :

∂ǫ

∂x
(2.40)

the 2D J-integral can be rewritten as [50]

J = −
∫

A

[

H :
∂q̄

∂x
+

(

f · ∂u
∂x

)

· q̄
]

dV (2.41)

where ǫm is the mechanical strain and f is the body force per unit volume.

The 3D calculations are performed in a similar manner as the two 2D case, but the en-

ergy release rate is initially calculated with respect to finite extension of crack front,

denoted by J̄ . This is then used to calculate the point-wise energy release rate J (s)

for each nodes along the crack tip. This procedure is done by defining a parametric

variable s along the crack front with a local coordinate system. The local Cartesian

coordinate system is set up at the crack front with respect to s as seen in Figure 2.10.

The axis, x3, runs tangentially to the crack, x2 is defined perpendicular to the crack

plane, and x1 normal to the crack front. x1 together with x2 creates a plane perpen-

dicular to the crack front. Hence, J (s) is described in the x1x2 plane.
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Figure 2.11: a) Local coordinate system for s. b) Contours for 3D crack front.[14]

In 3D, the energy release for a unit segment of crack extension over a finite segment

of the crack front, J̄ , is defined as [50]

J̄ = −
∫

V

[

H :
∂q̄

∂x
+

(

f · ∂u
∂x

)

· q
]

dV (2.42)

where H, f and u are defined as before but in 3D. The weighting function q̄ is defined

for the various surfaces. The point-wise J integral, J (s) , for a general 3D crack front

is calculated by dividing with the increase of the crack area due to the crack extension

for the finite segment. The 3D case is a volume integral for the domain V shown in

Figure 2.11 which is a tubular domain for a closed contour along a finite segment of

the crack front. The 3D surface integral consists of At, Ao, Acracks, Aends. represented

in Figure 2.11.

The SIF’s KI , KII , KIII are used in LEFM to represent the local stress field at crack

tip. As stated in [14], SIF’s are related to the J-integral through

J =
1

8π
KT · B−1 ·K (2.43)

where K = [KI , KII , KIII ]
T and B is pre-logarithmic energy factor matrix which is

diagonal for isotropic homogeneous material. Therefore, the expression for J integral

given above simplifies to

J =
1

Ē

(

K2
I +K2

II

)

+
1

2G
K2

III . (2.44)
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In here Ē = E for plane stress and Ē = E
1−ν2

for plain strain, axisymmetry and three

dimensions.

As stated in [14], the J-integral for a given problem can be written as

J =
1

8π
KIB

−1
11 KI + 2KIB

−1
12 KII + 2KIB

−1
13 KIII + (terms without KI) (2.45)

The J-integral for an auxiliary field, Mode I crack tip field with kI as stress intensity

factor, is chosen as

Jaux =
1

8π

(

kI · B−1
11 · kI

)

. (2.46)

Superposition of the auxiliary field and the real field gives

JI
tot =

1

8π

[

(KI + kI)B
−1
11 ((KI + kI) + 2 (KI + kI)B

−1
12 KII + 2 (KI + kI)B

−1
13 KIII

]

.

(2.47)

The interaction integral can be expressed as

JI
int = JI

tot − JI
aux − J =

kI
4π

(

B−1
11 KI +B−1

12 KII +B−1
13 KIII

)

. (2.48)

The same procedure is done for Mode II and Mode III. The equations for the three

modes can be written as

Jα
int =

kα
4π

B−1
αβKβ. (2.49)

Choosing unit values for kα, the stress intensity factors are expressed in terms of the

interaction integral as

K =
1

4π
B · Jint (2.50)

where Jint =
[

JI
int, J

II
int, J

III
int

]T
. The interaction integral can be evaluated in a similar

manner as the J-integral in for the three modes α = I, II, III including auxiliary

stress and strain fields

Jα
int = lim

Γ→0

∫

Γ

n ·Mα · q dΓ (2.51)

where Mα is given as

Mα = σ : ǫαauxI − σ ·
(

∂u

∂x

)α

aux

− σα
aux ·

∂u

∂x
. (2.52)

In here, aux denotes the auxiliary pure Mode I, Mode II and Mode III crack tip field

for the corresponding Mode α.
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2.7.2 Sensitivity of XFEM Solution to Element Size

XFEM in Abaqus supports only first order 3D solid continuum elements for stationary

crack analysis as stated in previous section. The general purpose C3D8 linear brick

element presented in Figure 2.12 is used throughout this study.

Figure 2.12: C3D8 brick element.

An initial study for mesh convergence for five different crack length is presented be-

low. A Single Edge Notched Tension (SENT) specimen which has a width of 80 mm,

length of 200 mm and thickness of 5 mm is considered for this study. The crack

length (a) changes from 10 mm to 30 mm by an increment of 5 mm.

FE Model of the SENT specimen is illustrated in Figure 2.13. A uni-axial far field

tension stress of 100 MPa is applied from the both ends of the specimen. The surface

of the specimen is constrained in out of plane direction to create a plane strain condi-

tion.

KI expression for plain strain condition is given as [41]

KI = f
( a

w

)

σ
√
πa (2.53)

f
( a

w

)

= 1.12− 0.23
( a

w

)

+ 10.56
( a

w

)2

− 21.74
( a

w

)3

+ 30.42
( a

w

)4

. (2.54)
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Figure 2.13: FE model for SENT specimen.
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Figure 2.14: Von misses stress contour for SENT specimen.
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Table 2.1: Effect of requested number of contours in XFEM

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average
2953 1943 1775 1719 1627 1664 1563 1608 1492 1583 1628.88
2870 1824 1734 1639 1657 1577 1533 1560 - - 1616.67
2690 1771 1687 1637 1572 1543 - - - - 1609.75
2514 1687 1613 1550 - - - - - - 1581.50

Effect of requested number of contours is investigated by considering 4 to 10 contours

by an increment of 2 on crack length a=30 mm by using a mesh size of 0.75 mm. The

results are presented in Table 2.1. Cx in table stands for contour number. As stated

in [14], Abaqus defines the contour domains in terms of element rings which sur-

rounds the crack tip. By this explanation it is expected that the result of the first 4

contours will be the same when comparing the SIF values from different number of

requested contours. But this case has not been observed. Moreover, the SIF results of

the first two contours which are written in bold have a tendency to be higher than the

remaining contours average as seen from presented results. The first two contours are

discarded and the remaining contour values are averaged to make a fair calculation.

Requesting eight contours gives the nearest value when compared to the analytical

SIF (1612.3 MPa
√

mm).
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Figure 2.15: SIF results at 10 mm crack length for different element sizes.
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Figure 2.16: SIF results at 15 mm crack length for different element sizes.
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Figure 2.17: SIF results at 20 mm crack length for different element sizes.
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Figure 2.18: SIF results at 25 mm crack length for different element sizes.
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Figure 2.19: SIF results at 30 mm crack length for different element sizes.
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Based on this study, eight contours requested in XFEM solutions for SIF calculations.

In XFEM solutions four different mesh sizes are considered (0.375 mm, 0.75 mm, 1.5

mm, 3 mm ) for each crack length. The SIF results from each contours for each crack

length and mesh sizes are presented in Figures 2.15 through 2.19.

Averaged SIF values from last six contours are presented in Table 2.2 along with

analytical SIF results and percentage error. As seen from the presented results in

Table 2.2 for mesh sensitivity, the smaller the element size, the lower the error per-

centage.

Table 2.2: Mesh sensitivity of XFEM solutions for different crack length.

Mesh Size [mm] Crack Length [mm] Analytical KI KI_XFEM % Error
0.375 30 1612.3 1611.2 -0.07
0.75 30 1612.3 1616.7 0.27
1.5 30 1612.3 1649.8 2.32
3 30 1612.3 1759.0 9.10

Mesh Size [mm] Crack Length [mm] Analytical KI KI_XFEM % Error
0.375 25 1330.8 1349.5 1.41
0.75 25 1330.8 1344.8 1.05
1.5 25 1330.8 1379.5 3.66
3 25 1330.8 1437.3 8.01

Mesh Size [mm] Crack Length [mm] Analytical KI KI_XFEM % Error
0.375 20 1086.9 1095.2 0.77
0.75 20 1086.9 1094.0 0.66
1.5 20 1086.9 1117.3 2.80
3 20 1086.9 1208.8 11.22

Mesh Size [mm] Crack Length [mm] Analytical KI KI_XFEM % Error
0.375 15 868.5 867.7 -0.09
0.75 15 868.5 867.5 -0.11
1.5 15 868.5 886.8 2.10
3 15 868.5 937.8 7.98

Mesh Size [mm] Crack Length [mm] Analytical KI KI_XFEM % Error
0.375 10 663.6 676.4 1.94
0.75 10 663.6 675.2 1.76
1.5 10 663.6 693.1 4.45
3 10 663.6 720.0 8.50
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Some recommendations are given based on this study.

• Perform a mesh sensitivity study and determine the mesh size which does not

change the results by further refinement. Choose a reasonable mesh size by

this way. As seen from Table 2.2, there is no such a big change by mesh re-

finement in XFEM solutions after a reasonable mesh size. In coarse mesh sizes

relative error is much higher. Further refinements might be unnecessary after a

reasonable mesh size since it increases the computational time.

• Discard the first two contours which are far away from actual value. Honestly,

take the average value of the remaining contours. It is advisable to discard only

the first contour if a small number of contours are requested. Requesting eight

contours by excluding the first two is recommended.

• It is also recommended that if there is any value which is far away from the

average value omit these values as well.
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CHAPTER 3

COMPUTATIONAL ALGORITHM

In this study, an automatic fatigue crack propagation and life determination algo-

rithm is developed which can propagate both edge and internal cracks under mode

I and mixed mode loading conditions. This algorithm uses the capability of mod-

elling stationary cracks of Abaqus software in order to model propagating cracks.

In this algorithm, a Fortran script which calls Abaqus for each incremental crack

growth analysis step is used for determination of SIF’s and crack growth direction

from Abaqus solutions. Analytical FCG life calculations under user defined loading

spectra are performed by considering the load history effects by using appropriate

retardation models presented in section 2.5. Before the script automatically propa-

gates the crack, one has to provide an input file of modelled initial stationary crack

in Abaqus environment in a file with .py extension which is used by Abaqus to con-

struct the analysis model in each step of crack tip update. At the end of each analysis

step Fortran script reads the SIF values from Abaqus result file. The script automati-

cally calculates the crack growth rate (da/dN) through Nasgro equation presented in

(2.11) for each loading cycle available in user defined load spectrum. Crack growth at

each cycle is summed up until the total crack growth amount reached a predetermined

value. This predetermined value can be set by user to lessen the number of analysis.

But, it should be small enough for the correct crack path and life prediction. Direction

of crack growth is determined by KII = 0 criterion which is already implemented in

Abaqus. The script updates the crack tip by calculating the new crack tip coordinates

after the predetermined crack growth increment is reached. Crack growth analysis is

carried out by this algorithm until calculated SIF values exceed the critical SIF. The

main structure of the developed FCG algorithm is presented in Figure 3.1.

35



Figure 3.1: FCG algorithm flowchart.

A simple schematic representation of crack updating is illustrated in Figure 3.2, where

θ is the crack growth direction and (xi, yi) is the crack tip coordinates at ith cycle.

xi+1 = xi +∆acos(θ) (3.1)

yi+1 = yi +∆asin(θ) (3.2)
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Figure 3.2: Crack tip update procedure.

The procedure for each successive step can be described in detail as follows.

Step1. The FCG algorithm starts with initial inputs; FCG rate equation constants,

retardation model parameters, initial crack length and initial crack tip coordinates. For

the first analysis step the code needs an initial input file which contains the definition

of initial stationary crack modelled by XFEM in Abaqus environment. This main

input file must also contain the finite element mesh, model boundary conditions and

dummy load on the model. The initial model is submitted to the FE solver and the

code stand idle until the analysis end. At the end of analysis, script reads the SIF

values on the node located at mid point of the specimen thickness from the previous

analysis outputs. Fortran script calculates the correction factor f(a/w) by using this

SIF value obtained under the loading on the model through general SIF expression,

K = f(a/w)σ
√
πa. The load on the model can be set by the user since the further

SIF calculations performed by using the linear relation between load and SIF.

Step2. The script automatically calculates the crack growth rate
(

da
dN

)

for each cycle

defined in external spectrum file. If an OL or UL is detected in the spectrum, retarda-

tion effect are taken into account in crack growth rate by using a retarded crack growth

rate formulation
(

da
dN

)

ret,i
. The calculated crack growth at each cycle is summed until

the total crack growth reached a predetermined value.

Step3. When the predetermined crack growth increment is reached, the script cal-

culates the new crack tip coordinates by using crack growth direction extracted from

result file. After performing the calculation of new crack tip coordinates, the script
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writes the new crack tip coordinates to the its location in crackupdate.py file. Crack-

update.py file is exported to the main script to update the XFEM crack in Abaqus.

By this way, in next step of analysis the model recognize the updated crack as new

XFEM crack and solve the updated model. The same procedure is followed by this

way. This analysis procedure is carried out until the calculated SIF values exceed the

critical SIF or a desired level by the user.
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CHAPTER 4

MODEL VERIFICATION WITH EXPERIMENTAL RESULTS

In this study, validation of developed computational FCG algorithm is demonstrated

by a series of experimental results reported in [51, 52, 53, 54]. Details of simulated

specimens, comparisons of predicted FCG path and life with experimental results are

presented from section 4.1 to 4.4. FCG simulations for all case studies are presented

through 3D hexahedral elements (C3D8). Mesh convergence studies are carried out

before each analysis to ensure that appropriate element size and predetermined crack

growth increment values are used. XFEM results are almost insensitive to the mesh

refinements after a reasonable mesh size as demonstrated in Chapter II and in litera-

ture studies (see e.g. [53, 55]). In XFEM simulations, the mid-side node through the

thickness direction of the specimen is considered for SIF calculations. Model with

initial crack is created in Abaqus environment and analysis input file is submitted to

automatic crack growth script. The rest of the analysis completed by automated crack

growth script.

4.1 FCG Life and Path Under Mode I Loading

The experimental study, on internal through cracked specimen conducted by Porter

[51] on 7075 − T6 aluminium alloy specimen is used for the purpose of proving the

capability of the developed algorithm in estimation of crack growth life and path un-

der variable amplitude loading conditions in uni-axial mode I loading. The material

properties are as follows: elastic modulus, E = 69.6 GPa, Poisson’s ratio ν = 0.33

and yield stress σy = 520 MPa. The specimen has a width of 305 mm, length of 915

39



mm, thickness of 4.1 mm and an initial crack size of (2a) 12.7 mm. The geometry of

the specimen is shown in Figure 4.1. The FE model is also presented in Figure 4.2.

Figure 4.1: Geometry of internal cracked specimen [51].

A mesh size of 0.4 mm is used in simulations. Predefined crack growth increment is

considered as 2 mm. Modified Generalized Willengborg retardation model presented

in (2.25)-(2.27) are used in this series of simulations to accounts for the retardation

effect caused by OL and OL-UL.

X

Y

Z

Figure 4.2: FE model of internal cracked specimen.
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The analytical SIF solution for center cracked specimen under mode I loading is ex-

pressed as

KI =
P

wt

√
πaf

( a

w

)

(4.1)

where, t and w are the thickness and width of the specimen, P is the applied axial

load and f
( a

w

)

is the geometry correction factor which depends on crack length to

specimen width ratio and given in [41] as

f
( a

w

)

=

√

sec
πa

w
. (4.2)

Nasgro material parameters C and n are calibrated according to CAL test result. Other

parameters are used as proposed by Nasgro material database and presented in Table

4.1.

Table 4.1: Nasgro equation constants for Al 7075-T6 internal cracked plate[2].

∆Kth ∆Kic C n p q Smax/σ0 α

80MPa
√
mm 730MPa

√
mm 9.8610−12 2.9 0.5 1 0.3 2.0

Schematic representations of the loading spectra used in FCG analysis are given in

Figures 4.3 and 4.4.

Figure 4.3: Block of OL spectrum for internal cracked specimen.

Figure 4.4: Block of OL-UL spectrum for internal cracked specimen.

41



Table 4.2: Load spectra for Al 7075-T6 internal cracked specimen [51].

Spectrum No σmin[MPa] σmax[MPa] σol[MPa] σul[MPa] m n

Spectrum 1 3.45 68.95 —- —- CAL CAL
Spectrum 2 3.45 68.95 76.54 —- 29 1
Spectrum 3 3.45 68.95 103.43 —- 29 1
Spectrum 4 3.45 68.95 103.43 —- 50 1
Spectrum 5 3.45 68.95 103.43 —- 300 1
Spectrum 6 51.72 103.43 155.14 31.03 50 1
Spectrum 7 51.72 103.43 155.14 5.17 50 1

A total of seven different loading spectra which are presented in Table 4.2 are used in

XFEM FCG simulations. The same simulations were also conducted by using Nas-

gro software to compare the resulting FCG life under defined loading spectra. In this

preliminary study only KI is considered since KII always zero through crack length.

The results obtained from XFEM based automatized algorithm, Nasgro software and

experiments presented by Porter [51] were compared with each other and presented

in Figures 4.5 through 4.11.
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Figure 4.5: Comparison of FCG life for constant amplitude loading.
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Figure 4.6: Comparison of FCG life for spectrum 2.
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Figure 4.7: Comparison of FCG life for spectrum 3.
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Figure 4.8: Comparison of FCG life for spectrum 4.
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Figure 4.9: Comparison of FCG life for spectrum 5.
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Figure 4.10: Comparison of FCG life for spectrum 6.
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Figure 4.11: Comparison of FCG life for spectrum 7.
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Figure 4.12: Retardation on-off for spectrum 3.

In order to show the importance of the retardation effect in the calculations, an anal-

ysis is performed for spectrum 3 without taking into account the retardation effect.

As seen from Figure 4.12, spectrum 3 resulted with a shorter FCG life than CAL

spectrum (spectrum 1) due to effect of periodic OL. Incorporating the retardation ef-

fect to the calculations has been seen to be lengthened the FCG life by a great amount.

As seen from presented Figures 4.5 through 4.11, FCG life results agree with Nas-

gro and test data with some minor discrepancies related to material and test data. By

these series of simulations, the capability of the developed computational algorithm

proven to be reliable in mode I loading in terms of crack path evaluation and FCG life

predictions by accounting the load history effect. It is obvious that neglecting load

history effect of in FCG life calculations under VAL can lead to completely invalid

life predictions.

The effect of OL spacing and amplitude can also be seen in presented figures. The

retardation effect is better observed in the case of OL applied at large intervals since

in the case of small intervals a new OL is applied before the retardation effect is over.
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Another remark is that, in the case of higher OL levels the retardation effect is also

higher, due to the fact that, the larger the OL means higher yield zone region and

consequently higher the delay effect on crack growth rate in subsequent load cycles.

However, this is valid up to a certain level of OL. Very high OL can lead to sudden

acceleration and failure of the components.
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Figure 4.13: Crack growth path for internal cracked specimen.

The resulting crack growth path from Abaqus simulation along with Von misses stress

distribution is presented in Figure 4.13. Since the simulated specimen is under the

action of uni-axial mode I loading, the crack propagates straightly in the direction

perpendicular to the loading as expected.

The case studies under mixed mode conditions which is the main purpose of the

undertaken study are presented in the following sections.
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4.2 Crack Path Under Mixed Mode Monotonic Load

In this case study, crack path evaluation capability of proposed algorithm under mixed

mode condition has been validated for different initial crack lengths and crack lo-

cations in polymethyl methacrylate (PMMA) beam given in Figures 4.14 and 4.15

without and with holes configurations respectively. Available experimental results

presented in [52] are used for the verification of simulated crack paths.

The loading acts on top mid-span location of the specimen and is a monotonic load

of 100 kN . The simulated beam has a length of 2L = 508 mm, a width of w = 203.2

mm and thickness of t = 12.7 mm. The overall dimensions, hole locations and hole

sizes for all specimens are the same. Crack location and crack length differ for each

specimens. For the first configuration, the initial crack has a length of a0 = 25.4 mm

and located at distance of d = 152.4 mm from the mid-span of the beam. The second

configuration differs from the first one in terms of initial crack length of a0 = 63.5

mm. The third configuration differs from the first one in terms of initial crack length

of a0 = 38.1 and also initial crack location, which is located at a distance d = 127

mm from mid-span of the beam. The material properties are assumed as elastic mod-

ulus of E = 205 GPa and Poisson’s ratio of ν = 0.3.

This case study is conducted for the purpose of testing the crack path prediction ca-

pability of the algorithm in mixed mode loading condition. By using the developed

algorithm, angles of the crack extension and positions of the crack tip have been de-

termined for each crack increments. Each of three specimens was simulated with and

without hole configurations as presented in Table 4.3.

Comparison of experimental and simulated crack tip coordinates for all specimen

configurations are presented in Figures 4.22 through 4.27. The last step of crack prop-

agation paths from Abaqus simulations for each specimens along with Von misses

stress contours are also presented in Figures 4.28 through 4.33.
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Figure 4.14: Geometry of PMMA beam without hole configuration [52].

Figure 4.15: Geometry of PMMA beam with holes configuration [52].

Table 4.3: Simulated PMMA beam configurations.

Specimen No Crack length a[mm] Crack location d[mm] Hole Configuration

1 25.4 152.4 Without holes
2 25.4 152.4 With holes
3 63.5 152.4 Without holes
4 63.5 152.4 With holes
5 38.1 127 Without holes
6 38.1 127 With holes
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Initial FE models for specimens are presented in Figures 4.16 and 4.17. Specimens

are constrained from left pin locations in all degrees of freedom as in the case of

experiments and only first translational degree of freedom ux is unconstrained in right

pin location. The plate is under the action of a concentrated load ( 100 kN ) which

acts on the top mid-span location.

X

Y

Z

Figure 4.16: FE model for PMMA beam without hole configuration.

X

Y

Z

Figure 4.17: FE model for PMMA beam with holes configuration.
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The effect of mesh density on crack path is investigated on specimen 2. Two different

mesh configurations (Mesh 1= 2 mm, Mesh 2=1 mm) are used in simulations with a

crack growth increment of 12.7 mm. Simulated crack paths with two different mesh

configurations along with experimental crack path is presented in Figure 4.18 in a

close view. There is no big difference between crack path but finer mesh has better

agreement with experimental result as seen from Figure 4.18.
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Figure 4.18: Effect of mesh sizes on crack path for specimen 2.

The effect of the amount of crack growth increment is investigated on specimen 6,

which has the most curved crack path in experiment. As seen from Figure 4.19, there

is no significant difference in simulated crack paths with crack growth increments

of 6.35 mm and 12.7 mm. The crack path deviates from the experimental trajectory

when a crack growth increment of 25.7 mm is used. Based on the simulations for

different crack growth increment and different mesh size, the amount of crack growth

increment is taken as 12.7 mm and mesh size used as 1 mm in performing all other

simulations.
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Figure 4.19: Effect of crack growth increment on crack path for specimen 6.
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Figure 4.20: Last step of crack path simulation with da=6.35 mm for specimen 6.
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Figure 4.21: Last step of crack path simulation with da=25.7 mm for specimen 6.
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Figure 4.22: Experimental and simulated crack tip coordinates for specimen 1.
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Figure 4.23: Experimental and simulated crack tip coordinates for specimen 2.
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Figure 4.24: Experimental and simulated crack tip coordinates for specimen 3.
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Figure 4.25: Experimental and simulated crack tip coordinates for specimen 4.
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Figure 4.26: Experimental and simulated crack tip coordinates for specimen 5.
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Figure 4.27: Experimental and simulated crack tip coordinates for specimen 6.
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Figure 4.28: Last step of crack growth simulation for specimen 1.
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Figure 4.29: Last step of crack growth simulation for specimen 2.
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Figure 4.30: Last step of crack growth simulation for specimen 3.
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Figure 4.31: Last step of crack growth simulation for specimen 4.
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Figure 4.32: Last step of crack growth simulation for specimen 5.
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Figure 4.33: Last step of crack growth simulation for specimen 6.
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In these series of simulations, holes behave as crack stopper and attract the crack path

to propagate towards it as observed in the experimental investigation of the specimens

by Ingraffea [52]. In specimen 2, middle hole attracts the crack path and crack stops

on this hole. In simulation for specimen 4, since the initial crack length is higher than

the specimen 2 the crack path by passes the middle hole and stops in upper hole. In

the specimen 6, the first hole attracts the crack path initially due to location of initial

crack but the crack by passes it and stop in middle hole again. These results support

that the algorithm can be used to locate crack-stopping holes used in designs against

damage tolerance. The evaluated results for crack paths have excellent agreements

with experimental crack path trajectories as seen from presented results. By these

series of simulations crack path trajectory tracking ability of the developed algorithm

has been proven to be reliable in mixed mode loading.

4.3 FCG Life and Path Under Mixed Mode Loading I

In this case study, the experimental work conducted by Liu et al. [53] on a Al 7075-T6

hole modified CT specimen is used for demonstrating the ability to predict FCG life

in mixed mode loading as well as under CAL and VAL conditions. The hole on the

sample was opened to manipulate the crack path towards the hole. The geometrical

dimensions of modified CT specimen with and initial crack length of a = 10.5 mm

are shown in Figure 4.34. The material properties are as follows: elastic modulus

E = 71.7 GPa, Poisson’s ratio ν = 0.33 and yield stress σy = 516 MPa.

Initial FE model of the specimen along with its boundary condition is presented in

Figure 4.35. The specimen is constrained in all translational degrees of freedom on

its bottom pin location center and the center points are connected to the half bottom

region of pin holes by means of coupling connection. It is also constrained in upper

pin location in x and z directions, only translation degree of freedom in y direction

is left free. A mesh size of 0.4 mm is used in simulation. The constructed FE model

of the hole modified CT specimen with the specified initial crack and predetermined

crack growth increment of 1 mm is studied through developed simulation algorithm.

The automatic propagation process continues until the required final crack size is

reached.

58



Figure 4.34: Geometrical dimensions for Al 7075-T6 modified CT specimen [53].
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Figure 4.35: FE model for Al 7075-T6 modified CT specimen.
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Two types of spectra are used in this case study. The cyclic CAL spectrum has a

lower limit of 200 N and a upper limit of 2000 N. For the case of periodic OL (VAL)

spectrum, an OL of 3000 N was applied at every 50 cycles of CAL as represented

schematically in Figure 4.36.

Figure 4.36: Load spectrum for Al 7075-T6 modified CT specimen [53].

Nasgro equation (see 2.11) material parameter C and n calibrated according to CAL

test result. Other parameters are used as proposed by Nasgro material database and

study conducted by Liu et al. [53]. Nasgro equation parameters used in simulations

are presented in Table 4.4.

Table 4.4: Nasgro equation constants for Al 7075-T6 CT specimen [2] [53].

∆Kth ∆Kic C n p q Smax/σ0 α

80 MPa
√

mm 730 MPa
√

mm 1.2x10−11 3.0 0.5 1 0.3 2.0

The comparison of simulated and the experimental crack path is presented in Figure

4.37. The hole on CT specimen was specially located to manipulate the crack path

towards itself. The last step of crack growth simulations for both constant amplitude

and periodic OL case is presented in Figure 4.38. The crack growth paths under

constant amplitude and periodic OL are almost identical to each other, which is also

demonstrated by our simulations. Since the OL has no effect on crack path a single

figure is presented.
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Figure 4.37: Crack tip coordinates for Al 7075-T6 modified CT specimen.
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Figure 4.38: Crack growth path for Al 7075-T6 modified CT specimen.
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The basic parameter for life evaluation is the SIF. Analytical SIF calculation for stan-

dard CT specimen can be found in various handbooks. The analytical SIF solution

for standard CT specimen is expressed as follows in [41].

KI =
Pf

( a

w

)

B
√
w

(4.3)

where f
(

a
w

)

is the correction factor which depends on crack length to specimen width

ratio and represented as follow

f
( a

w

)

=
2 + a

w
(

1− a
w

)
3

2

[

0.886 + 4.64
( a

w

)

− 13.32
( a

w

)2

+ 14.72
( a

w

)3

− 5.6
( a

w

)4
]

.

(4.4)

This handbook solution for correction factor is proposed for mode I loading. In this

modified specimen a curved crack path formed due to existence of the hole. The

solution for correction factor which is given by equation 4.4 is not valid any more

due to curved crack path. The main advantages of mixed mode crack propagation by

numerical methods can be seen at this point. The realistic values for f
( a

w

)

which

differ from analytically obtained handbook solutions for standard CT specimen can

be obtained by XFEM.

Mode I SIF’s at each simulation step is extracted from XFEM solutions and sub-

stituted to the equation 4.3 to get the geometry correction factor f
( a

w

)

. A fourth

degree polynomial is fitted to the determined correction factors as given in the equa-

tion 4.5.

f
( a

w

)

= −2450.1
( a

w

)4

+ 4200
( a

w

)3

− 2567.2
( a

w

)2

+ 690.21
( a

w

)

− 63.509

(4.5)

The analytically determined correction factor f
( a

w

)

for standard CT specimen is

compared with the correction factor values determined by XFEM for hole modified

CT specimen in Figure 4.39. As the curved crack path formed, the f
( a

w

)

trend

diverges from each other.
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Figure 4.40: FCG life for Al 7075-T6 modified CT specimen for CAL and VAL.
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The FCG life is computed through the mixed mode equivalent SIF sugessted by

Tanaka [23] (see 2.4) along with Nasgro FCG equation (see 2.11) and Generalized

Willenborg retardation model (see 2.24-2.27). Mode I and mode II SIF’s are used

as follows: KI(a) along crack length is calculated by using the polynomial fit of the

f
( a

w

)

determined by XFEM solutions, KII(a) expression is also determined from

KII values at each propagation step along crack path by fitting a polynomial function

in terms of crack length.

Comparison between simulated and experimentally obtained crack length vs. number

of loading cycles up to failure for CAL and periodic OL (VAL) spectra are presented

in Figure 4.40. As it can be seen from FCG life curve presented for CAL and periodic

OL (VAL) spectra, the simulated FCG life by using Generalized Willenborg retarda-

tion model have in good agreements with experimental results presented in [53]. The

OL delays the FCG life in our simulations by a significant amount around 25.000

cycle as in the case of experimental observation. By this simulation the capability of

the developed algorithm in FCG life evaluation under mixed mode loading conditions

is proved to be reliable.

4.4 FCG Life and Path Under Mixed Mode Loading II

In the last case study, the developed algorithm is verified again for mixed mode crack

propagation in a SAE 1020 hole modified CT specimen with different materials and

more complex nature of VAL condition from the previous one to show the versatil-

ity of the algorithm in mixed mode VAL conditions. The FCG experimental results

which have been performed by Miranda et al. [54] on a SAE 1020 hole modified CT

specimen is used for the purpose of validation. The material is cold-rolled SAE 1020

steel plate with yield strength σy = 285 MPa, Young modulus E = 205 GPa and

Poisson’s ratio of ν = 0.3. The geometrical dimensions for modified CT specimen

with a initial crack length of a = 8.3 mm are shown in Figure 4.41.

Initial FE model of the specimen along with its boundary condition is presented in

Figure 4.42. The specimen is constrained in all translational degrees of freedom on

its bottom pin location center and the center points are connected to the bottom half
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Figure 4.41: Geometrical dimensions of SAE 1020 modified CT specimen [54].
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Figure 4.42: FE model for SAE 1020 modified CT specimen.
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region of pin holes by means of coupling connection. It is also constrained in upper

pin location in x and z directions and only translation degree of freedom in y direc-

tion is left free. The constructed FE model of the hole modified CT specimen with the

specified initial crack and predefined crack growth increment of 1 mm is simulated. A

mesh size of 0.4× 0.4 mm is used in simulation. The automatic propagation process

continued until the required final crack size was reached. The loading history used in

simulation is presented in Figure 4.43.
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Figure 4.43: Load spectrum for SAE 1020 modified CT specimen [54].

Nasgro equation parameters C and n are calibrated according to experimental results.

Other parameters are used as proposed by Nasgro material database [2] and study

conducted by Miranda et al. [54]. The parameters of Nasgro equation used in simu-

lation are presented in Table 4.5.

Table 4.5: Nasgro equation constants for SAE 1020 CT specimen [2] [54].

∆Kth ∆Kc C n p q Smax/σ0 α

11.5 MPa
√

m 285 MPa
√

m 1.515x10−15 3.7 0.5 0.5 0.5 2.5

In experiment conducted by Miranda et al. [54], the hole on CT specimen was spe-

cially located to manipulate the crack path. In our simulation, the crack path was
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initially attracted by the hole but it by passes the hole and continues to propagate in a

straight direction as in the case of experiment. Comparison of simulated and experi-

mental crack path is presented in Figure 4.44. The last step of crack path from XFEM

simulation is also given in Figure 4.45.
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Figure 4.44: Crack tip coordinates for SAE 1020 modified CT specimen.
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Figure 4.45: Crack growth path for SAE 1020 modified CT specimen.
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Mode I SIF’s at each simulation step is extracted from XFEM solutions and substi-

tuted to the equation 4.3 to get the geometry correction factor f
( a

w

)

. A fourth degree

polynomial is fitted to the determined correction factors as given in the equation 4.6.

f
( a

w

)

= 1070.8
( a

w

)4

− 1931.8
( a

w

)3

+ 1318.9
( a

w

)2

− 376.22
( a

w

)

+ 43.263

(4.6)

The analytically determined correction factor f
(

a
w

)

from equation 4.4 for standard

CT specimen is compared with the values determined by XFEM for hole modified

CT specimen in Figure 4.46.

The FCG life is computed through the mixed mode equivalent SIF sugessted by

Tanaka [23] (see 2.4) along with Nasgro FCG equation (see 2.11) and Modified

Wheeler retardation model (see 2.23). Mode I and mode II SIF’s are used as follows:

KI(a) along crack length is calculated by using the polynomial fit of the f
( a

w

)

,

KII(a) expression is also determined from KII(a) values at each propagation step by

fitting a polynomial function in terms of crack length.
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Figure 4.46: f(a/w) for SAE 1020 modified and standard CT specimen.
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Figure 4.47: FCG life for SAE 1020 modified CT specimen.

Modified Wheeler Retardation parameter for straight crack propagation on the stan-

dard CT specimen under the same loading nature was determined by Miranda et al.

[54] as 0.51. The resulting finding of Miranda et al. showed that, load interaction

models calibrated using straight cracks can be used safely to predict retardation be-

haviour of non planar cracks under the similar nature of VAL conditions. Reasonable

results are obtained for crack path and fatigue life under the defined complex loading

spectrum by using the Modified Wheeler retardation parameter based on Miranda’s

work. Comparison between simulated and experimental crack length vs. number of

loading cycles up to failure is presented in Figure 4.47. The FCG is predicted as

the same trend in test with some minor discrepancy related with material and test

parameters.

69



70



CHAPTER 5

CONCLUSION

In this thesis, an automated XFEM-based FCG tool which allows mesh independent

crack insertion and growth is presented for the estimation of crack propagation path

and FCG life. XFEM was used to calculate the SIF’s and crack path at each propa-

gation step without re-meshing burden. Although the main purpose of the study is to

determine the crack path, it can effectively predict the FCG life with the realistic ma-

terial parameters under either CAL or VAL conditions by accounting the load history

effects.

Stationary crack modelling technique was used and crack was propagated by a For-

tran script. By this way, full enrichment capability of Abaqus on stationary cracks

is used which is not applied to propagating cracks in Abaqus. Moreover, the con-

vergence problems encountered in the solution of propagating cracks with XFEM in

Abaqus are eliminated. Stepwise crack propagation process gives more control and

the analysis possibility to the user since it is not needed to propagate crack at ev-

ery load cycle. There is an improvement in the computational efficiency compared

to Abaqus self-crack propagation simulation which has heavy cost in computational

means.

As an important contribution, unlike standard implementation of XFEM in Abaqus

for propagating cracks, developed algorithm uses LEFM based approach and it can

be used in damage tolerance assessments where there is a necessity for LEFM based

approaches.
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In this algorithm, the crack propagation path and fatigue life was calculated by using

a cycle-by-cycle integration method considering overload retardation effects. Afore-

mentioned retardation effect has significant improvements on the FCG life and would

result in conservative consequences if not included in the calculations as demon-

strated by presented case studies. This conservatism has been prevented by using

appropriate retardation models according to nature of the loads.

Developed numerical algorithm is validated successfully by conducting general curvi-

linear FCG simulations under both CAL and VAL spectra. Four different specimens

are examined under different load spectra having different configurations in terms of

crack growth path and fatigue life.

In the first case study, an internal cracked tension specimen is analysed through a

total of seven different loading spectra with a CAL spectrum. In this case study the

crack path is planar due to applied uni-axial loading as expected and doesn’t change

its direction during simulations. The main interest in this study was to demonstrate

FCG life evaluation capability. The obtained FCG life by using modified generalized

Willenborg model is compared with Nasgro software and available test results. There

is a quite a good agreement in this comparative study in terms of FCG lives.

In the second case study, a three point bending PMMA specimen is considered. The

main goal in this study is to verify the code in terms of crack path under mixed mode

loading. A total of six configurations of specimen are simulated with and without

hole configurations. The obtained crack path has excellent agreement with available

test results. By this series of simulations crack path evaluation capability has been

demonstrated.

In the third case study, a hole modified CT specimen is analysed under CAL and

VAL mixed mode conditions. The generalized modified Willenborg model is incor-

porated into the algorithm for this case study. The FCG life results with calibrated

material parameters based on Nasgro material database has good agreements with ex-

perimental results.
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As the last case study, a hole modified CT specimen with different dimensions, ma-

terials and more complex loading nature from the previous one is considered. In this

case , modified Wheeler model is adopted to the code to cover the retardation effect.

The FCG life with calibrated material parameters based on Nasgro material database

has good agreements with experimental result.

Validation with experimental results shows that the presented numerical methodol-

ogy could effectively simulate the crack propagation paths and fatigue lives under

either mode I or mixed mode loading condition. The developed code may have ap-

plication areas as follows. Users can identify fatigue critical regions where the cracks

are likely to occur and crack propagation trajectory can be found through this numer-

ical algorithm. Crack stopping measures can be taken on the predicted crack path

trajectories such as crack stopper holes or any other design solutions. The user can

also use this algorithm in life estimations of standard and modified test samples and

industrial components.

The results of this study show that based on the advantageous fracture modelling

capabilities of XFEM, cost effective and practical computational algorithm in the ap-

plication of the FCG path and life prediction under mixed mode practical service

loading conditions is possible by algorithms which use externally defined analytical

methods. The obtained accuracy of XFEM in predicting FCG under VAL in an auto-

mated scheme gives the users the confidence to apply the methodology to industrial

components under complex service loading conditions. The outlook for future works

can be summarized as follows,

• Different crack path prediction models can be employed for crack path evalua-

tions.

• Different crack growth rate equations and retardation models can be imple-

mented and used for comparison purpose in analytical fatigue life estimations.

• Experiments on other materials and geometries can be conducted and compared

by the results obtained from the developed XFEM based algorithm.

• Conventional FEM based analysis or other type of methods can be developed
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and compared with the XFEM based methodology in terms of computational

performance practicability and reliability.

• Through the developed FCG algorithm real industrial components under real-

istic fatigue spectrum loadings could be analysed.
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propagation process under mixed-mode loading. Engineering Fracture Me-

chanics, 78(8):1565 – 1576, 2011. Multiaxial FractureMultiaxial Fracture.

[17] Miaolin Feng, Fei Ding, and Yanyao Jiang. A study of loading path influence on
fatigue crack growth under combined loading. International Journal of Fatigue,
28(1):19 – 27, 2006.

[18] B. Cotterell and J.R. Rice. Slightly curved or kinked cracks. International

Journal of Fracture, 16(2):155–169, 1980.

[19] O. E. Wheeler. Spectrum loading and crack growth. J. Basic Eng., 94:181–186,
1972.

[20] R. M. Willenborg, J. P. Engle and H. A. Wood. A crack growth retardation
model using an effective stress concept. AFFDL-TM-71-1-FBR, 1971.

[21] Haydar Dirik and Tuncay Yalçinkaya. Fatigue crack growth under variable am-
plitude loading through {XFEM}. Procedia Structural Integrity, 2:3073 – 3080,
2016. 21st European Conference on Fracture, ECF21, 20-24 June 2016, Cata-
nia, Italy.

[22] Haydar Dirik and Tuncay Yalçinkaya. Crack growth analysis under variable
amplitude loading by {XFEM}. VI.National Aviation and Space Conference ,
28-30 September 2016, Kocaeli, Turkey.

[23] Keisuke Tanaka. Fatigue crack propagation from a crack inclined to the cyclic
tensile axis. Engineering Fracture Mechanics, 6(3):493–507, oct 1974.

[24] H.A. Richard. Fracture predictions for cracks exposed to superimposed normal
and shear stresses. 1985.

76



[25] Yan Xiangqiao, Du Shanyi, and Zhang Zehua. Mixed-mode fatigue crack
growth prediction in biaxially stretched sheets. Engineering Fracture Mechan-

ics, 43(3):471 – 475, 1992.

[26] Erdogan, F.; Sih, and G. C. On the crack extension in plates under plane loading
and transverse shear. Transactions of the ASME. Series D, Journal of Basic

Engineering, 85(4), 1963.

[27] D.F. Socie, C.T. Hua, and D.W. Worthem. Mixed mode small crack growth. Fa-

tigue and Fracture of Engineering Materials and Structures, 10(1):1–16, 1987.

[28] T. Hoshide and D.F. Socie. Mechanics of mixed mode small fatigue crack
growth. Engineering Fracture Mechanics, 26(6):841–850, 1987.

[29] L.M. Keer W.R. Chen. Fatigue crack growth in mixed mode loading. J Engng

Mater Technol ASME Trans, 85(113):223–227, 1991.

[30] P Paris and F Erdogan. A Critical Analysis of Crack Propagation Laws. Journal

of Basic Engineering, 85(4):528–533, dec 1963.

[31] K Walker. Effects of environment and complex load history on fatigue life, astm
stp 462. In American Society for Testing and Materials, pages 1–14, 1970.

[32] R G Forman, V E Kearney, and R M Engle. Numerical Analysis of Crack Prop-
agation in Cyclic-Loaded Structures. Journal of Basic Engineering, 89(3):459–
463, sep 1967.

[33] A. Hartman and J. Schijve. The effects of environment and load frequency on
the crack propagation law for macro fatigue crack growth in aluminium alloys.
Eng. Fract. Mech., 1(4):615 – 631, 1970.

[34] S. R. Forman, R. G. Mettu. Behavior of surface and corner cracks subjected to
tensile and bending loads in ti-6al-4v alloy. ASTM STP 1131, pages 519–546,
1992.

[35] J. C. Newman. A crack closure model for predicting fatigue crack growth under
aircraft spectrum loading. ASTM-STP, 748:53–84, 1981.

[36] B. Moreno, A. Martin, P. Lopez-Crespo, J. Zapatero, and J. Dominguez. Es-
timations of fatigue life and variability under random loading in aluminum al-
2024t351 using strip yield models from {NASGRO}. International Journal of

Fatigue, 91, Part 2:414 – 422, 2016.

[37] M. Sander and H.A. Richard. Investigations on fatigue crack growth under vari-
able amplitude loading in wheelset axles. Engineering Fracture Mechanics,
78(5):754 – 763, 2011.

77



[38] Rui Bao and Xiang Zhang. Fatigue crack growth behaviour and life prediction
for 2324-t39 and 7050-t7451 aluminium alloys under truncated load spectra.
Int. J. Fatigue, 32(7):1180 – 1189, 2010.

[39] G. C. Sih. Strain-energy-density factor applied to mixed mode crack problems.
International Journal of Fracture, 10(3):305–321, 1974.

[40] K. Palaniswamy and W.G. Knauss. {II} - on the problem of crack extension in
brittle solids under general loading. In S. NEMAT-NASSER, editor, Mechanics

Today, pages 87 – 148. Pergamon, 1978.

[41] J. Schijve, Fatigue of Structures and Materials 2nd edition. Kluwer Akademic
Publisher, (2001).

[42] S K Maiti and R A Smith. Comparison of the criteria for mixed mode brit-
tle fracture based on the preinstability stress-strain field Part I: Slit and ellip-
tical cracks under uniaxial tensile loading. International Journal of Fracture,
23(4):281–295, 1983.

[43] J. Qian and A. Fatemi. Mixed mode fatigue crack growth: A literature survey.
Engineering Fracture Mechanics, 55(6):969 – 990, 1996.

[44] Marco Antonio Meggiolaro and Jaime Tupiassú Pinho de Castro. An evaluation
of elber-type crack retardation models. In SAE Technical Paper. SAE Interna-
tional, 03 2001.

[45] M.A. Meggiolaro, A.C.O. Miranda, J.T.P. Castro, and L.F. Martha. Stress in-
tensity factor equations for branched crack growth. Engineering Fracture Me-

chanics, 72(17):2647 – 2671, 2005.

[46] J.P. Gallagher and T.F. Hughes. Influence of yield strength on overload affected
fatigue crack growth behaviour in 4340 steel. AFFDL-TR-74-28, 1974.

[47] T. R. Brussat. Private communication. 1997.

[48] N. Moës, A. Gravouil, and T. Belytschko. Non-planar 3d crack growth by the
extended finite element and level sets—part i: Mechanical model. International

Journal for Numerical Methods in Engineering, 53(11):2549–2568, 2002.

[49] A. Gravouil, N. Moës, and T. Belytschko. Non-planar 3d crack growth by the
extended finite element and level sets—part ii: Level set update. International

Journal for Numerical Methods in Engineering, 53(11):2569–2586, 2002.

[50] C. Shih, B. Moran, T. Nakamura. Energy release rate along a three-dimensional
crack front in a thermally stressed body International Journal of Fracture,
30(2):79–102, 1986.

[51] Theodore R. Porter. Method of analysis and prediction for variable amplitude
fatigue crack growth. Eng. Fract. Mech., 4(4):717 – 736, 1972.

78



[52] Anthony. R. Ingraffea. Probabilistic fracture mechanics:a validation of predic-
tive capability. Department of Structural Engineering. Technical report, Cornell
University, 1990.

[53] Zizi Lu, Jifeng Xu, Lei Wang, Jianren Zhang, and Yongming Liu. Curvilinear
fatigue crack growth simulation and validation under constant amplitude and
overload loadings. Journal of Aerospace Engineering, 28(1), 1 2015.

[54] Antonio Carlos de Oliveira Miranda, Marco Antonio Meggiolaro, Jaime Tupi-
assú Pinho de Castro, and Luiz Fernando Martha. Fatigue life prediction of
complex 2d components under mixed-mode variable amplitude loading. Inter-

national Journal of Fatigue, 25(9–11):1157 – 1167, 2003. International Con-
ference on Fatigue Damage of Structural Materials {IV}.

[55] M. Naderi and N. Iyyer. Fatigue life prediction of cracked attachment lugs using
{XFEM}. International Journal of Fatigue, 77:186 – 193, 2015.

79


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	INTRODUCTION
	Outline of Thesis

	Theoretical Background and Literature Review
	Stress Intensity Factor 
	Mixed Mode Stress Intensity Factor 
	Crack Growth Life 
	Crack Propagation Path
	Retardation Phenomena
	Extended Finite Element Method (XFEM)
	XFEM in ABAQUS
	 SIF Extraction from XFEM Solution
	 Sensitivity of XFEM Solution to Element Size


	Computational Algorithm
	Model verification with experimental results
	FCG Life and Path Under Mode I Loading
	Crack Path Under Mixed Mode Monotonic Load 
	FCG Life and Path Under Mixed Mode Loading I
	FCG Life and Path Under Mixed Mode Loading II 

	CONCLUSION
	REFERENCES

