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ABSTRACT

LINEAR APPROXIMATIONS AND EXTENSIONS TO DISTANCE BASED
MULTICRITERIA SORTING METHODS

Tas, Hasan
Master of Science, Industrial Engineering
Supervisor : Prof. Dr. Esra Karasakal

August 2022, 159 pages

Multicriteria sorting is the assignment of alternatives to predefined preference
ordered classes. In this thesis, linear approximations to nearest centroid and distance-
based multicriteria sorting methods are studied. Three studies are conducted. The
first study is the linearization of a nearest centroid based method. In the second study,
the nearest centroid classifier method is investigated under monotonic centroids and
a new linear programming model is developed based on the feasibility and
redundancy conditions. In the third study, a new linear octagonal approximation for
nonlinear oval contours of distance functions is developed and analyzed. It is shown
that the new approximation is consistent with distance functions. Due to the
elimination of nonlinearities in mathematical programs, solution time significantly
decreases. It is also observed that the classification accuracy increased in the studied

models.

Keywords: Multicriteria sorting, distance functions, distance based sorting, nearest

centroid classifier, linear approximation



0z

MESAFE FONKSIYONU BAZLI SIRALI SINIFLANDIRMA
PROBLEMLERI ICIN DOGRUSAL YAKLASIMLAR VE ILAVE
YONTEMLER GELISTIiRILMESI

Tas, Hasan
Yiiksek Lisans, Endiistri Miihendisligi
Tez Yoneticisi: Prof. Dr. Esra Karasakal

Agustos 2022, 159 sayfa

Cok kriterli sirali stniflandirma problemi alternatiflerin 6nceden tanimlanmis tercihe
gore sirali siniflara atanmasidir. Bu tezde en yakin merkez ve mesafe fonksiyonu
bazli ¢ok kriterli sirali smiflandirma problemlerine dogrusal yaklasimlar
gelistirilmistir. Bu baglamda ii¢ ¢alisma yapilmistir. Birinci ¢alismada en yakin
merkez bazli siniflandirma problemine bir dogrusal yaklasim gelistirilmistir. Ikinci
caligmada ilk calismanin monoton merkezli versiyonu incelenmis ve olurluluk
kosullar1 baz alinarak yeni bir dogrusal programlama modeli gelistirilmistir. Ugiincii
caligmada dogrusal olmayan mesafe fonksiyonlar1 sekizgen bir cergeve ile
yakinsanmis ve dogrusal bir mesafe fonksiyonu yaklasimi gelistirilmistir. Bu
yaklasim detayli olarak incelenip mesafe fonksiyonlar1 ile tutarli oldugu
gosterilmistir. Matematiksel modellerde dogrusal olmayan formiillerin dogrusal
yaklagimlar1 sayesinde ¢oziim siiresinde 6nemli 6l¢iide iyilesmeler saglanmstir.

Ayrica ¢aligilan modellerde siniflandirma kesinliginin arttig1 da gézlemlenmistir.

Anahtar Kelimeler: Cok kriterli siralama, mesafe fonksiyonlari, mesafe bazli

siralama, en yakin Merkez bazli siniflandirma, dogrusal yaklagim
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CHAPTER 1

INTRODUCTION

When there is a discrete set of alternatives that are evaluated under multiple criteria,
there are three main problems in Multi-Criteria Decision Aid (MCDA) [1]. Those

problems are the choice problem, ranking problem, and sorting problem.

1.
2.

Choice problem: a single best or a group of best alternatives is chosen.
Ranking problem: alternatives are ranked from best to worst according to a
preference order.

Sorting problem: alternatives are assigned to predefined preference ordered

classes.

The solution to each of these problems may require preference information from the

decision maker. The preference information can be in the form of criterion weights,

reference profiles, reference/preference alternatives (a previously ranked or sorted

data), and/or method-specific parameters (e.g., preference, indifference, and veto

thresholds). According to the timing of obtaining the preference information, MCDA

methods can be categorized into three as follows [2].

1.

A priori methods: The first category is “before” methods called a priori.
Preference information is obtained before model construction and solution
approach.

Interactive methods: The second category is “during” methods called
interactive. Preference information is obtained in different phases of the
solution approach. According to the information obtained in every step, the
solution is updated and converged to a final state.

A posteriori methods: The third category is “after” methods. First, a method
is applied, then alternative solutions of that method are evaluated according

to the preference information obtained from the decision maker.

1



In this thesis, distance-based multicriteria sorting methods are studied where the
preference information is obtained via a reference set. The reference set is available
at the beginning of the solution process. Therefore, the proposed method is a priori
method.

Multicriteria sorting is the assignment of alternatives to the predefined ordinal
classes. The alternatives are compared to class representatives. The class
representatives can be in the form of class thresholds, limiting profiles, central
profiles, and centroids. Those class representatives are ordered as classes. An
alternative is evaluated concerning multiple criteria that are maximization or
minimization type. Evaluated alternatives are compared to class representatives.
Evaluation of alternatives and comparison can be based on utility function [3],
preference relations such as outranking degree [4] and value functions [5]. Since the
class representatives are also ordered with respect to (w.r.t) the class order and the
alternatives are compared to these class representatives, preference order of
alternatives is implicitly or explicitly applied in sorting. The class assignment can be

performed based on deterministic measures [3] or probabilistic measures [7].

The classification and sorting problems are different [5]. Classification methods are
descriptive approaches that are utilized for detecting and characterizing the
similarities within a set of data. Sorting is a prescriptive approach to aid the Decision
Maker (DM) to make wise decisions. In multicriteria sorting, the preference of the
DM is associated with example decisions or preference information while this
feature is not employed in classification. The other difference of classification and
sorting is in the definition of classes and criteria. In sorting, classes are in ordinal
scale, ordered from best to worst (or vice versa) according to the preference of the

DM, which is called preference order. In classification, classes are nominal.

In both classification and sorting, higher classification accuracy and shorter solution
(or training) time is desirable. The classification accuracy is the percentage of
alternatives that are assigned to their correct classes. The solution time is the time

that is required to elicitate or learn the preferences of DM.



The aim of this study is to improve the existing distance-based sorting methods in
terms of solution time and classification accuracy. In the problem setting, DM
provides the preference information as example class assignments of the alternatives
or historical data that the class assignments are performed in the past. The analysts
apply a sorting method to this data to elicitate the preferences of the DM with highest
classification accuracy. In general, this elicitation is performed with mathematical
programs that maximize the classification accuracy (or minimize error). In distance-
based sorting methods, the mathematical programs include distance functions in their
constraints. The distance functions are nonlinear formulations in general. Therefore,
they are nonlinear programming models that are computationally expensive to solve.
Due to variability of distance functions, it is not clear to use which distance function.
One other issue is that the class representatives can be formulated in different forms.
For instance, the centroid choice of [6] is handled by arithmetic average but it is not
a necessity to choose this formulation. In this thesis, three different methods are
developed to overcome the computational burden and distance function choice. The

distance function used in this thesis is Minkowski distance (L,, distance).

In this thesis, a study is defined as an analysis (or a series of analyses). Method is
defined as a result of a study. The first study conducted in this thesis is based on
nearest centroid type of sorting method. The nearest centroid classifier type of
sorting method is studied for linearization and parameter selection to improve the
solution time and classification accuracy. The distance function choice problem is
handled with a parameter selection method in the literature. Based on the main
characteristics of this nearest centroid classifier type method, another study is
conducted. Based on the results of the study, a new linear programming is proposed
for monotonic centroids case that is computationally less expensive than nonlinear
programming. From a much wider perspective, a third study is conducted as linear
approximations of all distance-based methods that are not restricted to multicriteria
sorting. In the second and third studies, solution time is improved by the linear
approximation. The distance function choice and classification accuracy

improvement are also tied to the improvement in solution time by linearization.



Because a set of different linear programs with different distance functions can be
solved within the time that is required to solve a single nonlinear program. The
distance function resulting with the highest accuracy can be chosen from the
solutions of this set of linear programs with different distance functions. In this
thesis, the terms “linearization” and “linear approximation” are used

interchangeably.

To summarize the studies conducted and methods proposed in this thesis, a list is

presented as follows.

1. The first study: a nearest centroid type nonlinear programming sorting
method is linearized, distance function and centroid selection is studied. Five
methods are proposed in this study.

2. The second study: monotonically ordered centroids case of the first study is
analyzed. It is proven that if the centroids are in monotonic order, there is a
linear relationship between classification accuracy of a specific set of
alternatives and centroids. The linear relationship between centroids and
alternatives are used to construct a linear programming model.

3. The third study: a general linear approximation to distance functions is

studied that is not restricted to multicriteria sorting.

In all of the three studies, experiments result in solution time and accuracy
improvement. The improvements in the first study is due to linearization and
distance function and centroid selection. In the second study, the linearization
improves the solution time. In the third study, distance function linearization
improves the solution time in multicriteria sorting methods significantly. This
study finishes the discussions on the linearization of distance functions in this
thesis. The linearization in the third study is recommended for all distance based

mathematical programming settings.

Organization of this thesis is as follows. Literature review for the first and the
second studies based on the nearest centroid type sorting method is presented in

Chapter 2. In Chapter 3, proposed methods of the first study is presented. The



second study that is monotonically ordered centroids case of the nearest centroid
classifier is presented in Chapter 4. Experimental results of first and second
studies are reported and discussed in Chapter 5. In Chapter 6, a new linear
approximation to distance functions is developed. The related work, application
technique, example applications of the approximation method to multicriteria
sorting and alternative courses of actions are presented. Experimental results of
the third study are reported and discussed in Chapter 7. In Chapter 8, a general
discussion of the three studies and the experimental results are given. Results of
experiments are associated with the related literature. Finally in Chapter 9,

concluding remarks and potential future research directions are presented.






CHAPTER 2

LITERATURE REVIEW

In this chapter, literature review of the first two studies based on the nearest centroid
type sorting method are presented. In Section 2.1, the related literature of
multicriteria sorting, distance-based sorting methods and centroid-based methods are
provided. In Section 2.2, theoretical background is given.

2.1 Literature Review

Ordinal classification methods can be categorized into three groups as statistical,
non-parametric and multicriteria methods. Ordinal classification multicriteria
methods are called multicriteria sorting.

The first group of methods are statistical methods. Early studies in this group are
Linear Discriminant Analysis (LDA) [8] and Quadratic Discriminant Analysis
(QDA) [9]. Statistical methods have two main disadvantages as the statistical
assumptions and the parametric structure.

The second group of methods are non-parametric methods. Examples of non-
parametric methods are K-Nearest Neighbor (KNN) [10] and Artificial Neural
Networks (ANN) (e.g., [11]).

The third group of methods are multi-criteria methods. Multi-criteria methods can
be classified into two groups as Direct Judgement (DJ) methods and Preference
Disaggregation (PD) analysis methods. DJ methods require the preference
information from DM to perform the class assignment. Preference information can
be in the form of reference profiles or limiting profiles (class thresholds), value
functions or preference functions, preference thresholds and criterion weights. The

preference information is used to construct the model to perform the class

7



assignment. Therefore, it is obligatory to specify the preference information in DJ
methods. However, obtaining preference information from DM may require extra
effort and/or cognitive load for DM. Examples of direct judgment methods are
Evaluation based on Distance from Average Solution (EDAS) [12], ELimination
and Choice Translating REality (ELECTRE-TRI) [13] and ELECTRE-TRI nC [14].

ELECTRE-TRI [13] is an outranking relation method. In outranking relation
methods, outranking degree is determined for each alternative. The outranking
degree of each alternative is determined based on the comparison of the alternative
to a reference profile. If the outranking degree of an alternative is greater than a
specified reference profile, then the alternative outranks the reference profile. Each
ordinal class is separated by a reference profile. Sorting is performed based on the
comparison of alternatives to the reference profile of each class. The need for
outranking relation methods is due to the absence of incomparability of value
function based methods and transitivity of indifference.

EDAS [12] is another DJ method. The reference profile is not required in EDAS.
The required preference information are criterion weights and class cardinalities. A
reference artificial alternative (average solution) is computed based on the arithmetic
average of each criterion of all alternatives. Based on the comparison of each
alternative to the average solution, Positive Deviation from Average (PDA) and
Negative Deviation from Average (NDA) are computed for each criterion. PDA and
NDA are aggregated with weighted sum and normalized. An Appraisal Score (AS)
based on this criteria aggregation is computed. AS is a higher the better type of
measure. The alternatives are ranked from best to worst in descending order of AS.
Class assignment is performed based on class cardinalities. In EDAS [12], an
inventory ABC classification is studied. The class assignment is performed based on
the class cardinalities of the ABC classes. The class cardinality means the number of
alternatives in the class.

PD sorting methods elicit DM’ s preference information from a set of example
decisions of DM or historical data of past decisions. They minimize the effort that is

due to obtaining the preference information from DM in DJ methods. In multicriteria

8



sorting, the decision is to assign alternatives to predefined ordinal classes. Therefore,
PD sorting methods elicit the preference information of DM from a set of example
classifications or historical data. In this thesis, example classifications and historical
data are referred as training data. In PD sorting methods, a criteria aggregation

function can be used to elicitate the preference of the DM.

The criteria aggregation function can be a utility/value function or a distance
function. An example of sorting methods with utility function based criteria
aggregation is Utilities Additives DIScriminantes (UTADIS) [3]. In UTADIS,
additive utility function is employed to represent preference information of DM and
class thresholds are used to discriminate the classes. The additive utility function is
formulated in a way that it represents the ordinal relation between the alternatives.
The class thresholds are also ordered from best to worst. UTADIS is a Linear
Programming (LP) approach that is used to find optimal criterion weights and class
thresholds to minimize classification error. Classification error is minimized on the
training data. The validity of the criterion weights and class thresholds are tested

based on the test accuracy/error level that is calculated using the test data.

Distance-based PD methods are [5]-[7], [15]. To describe distance-based methods,
the term Ideal Criterion Vector (ICV) (or ideal point) is explained. ICV is the best
possible point in the criterion space. ICV is described as the best point in each
criterion of the non-dominated alternatives. In studies of [5], [7], [15], criteria
aggregation is formulated as the distance of alternatives to the ICV. In general,

weighted L, distance is employed as the distance function. Mathematical

Programming (MP) is employed in [5]-[7], [15].

Chen et al. [5] and Chen et al. [15] develop squared a Euclidean distance-based
criteria aggregation model. Centroid (arithmetic average) of the best class is assumed
as the ICV. Each criterion of the alternatives and ICV is compared with the squared
deviation. Then, criteria aggregation is performed with the weighted sum of the
squared deviations. The criteria aggregation is compared with the class thresholds
and the class assignment is performed. The total squared classification error is

minimized in the objective function. The classification error, class thresholds and the
9



criterion weights are the decision variables. When using squared Euclidean distance,
the square of the criterion weighs is not taken. Therefore, the distance formulation is
not a regular distance norm when weighted Euclidean distance is evaluated in this
way [16]. Although the distance function formulation is linear, both methods are
nonlinear quadratic models due to the minimization of total squared classification

error. When the regular L,, distance is used, the distance-based sorting method is also

a NonLinear Programming (NLP) model and the computational burden increase.

The distance-based sorting is extended to other L,, distances by Celik et al. [7], [16].
Celik et al. [7], [16] study Probabilistic Distance-based Sorting method (PDIS). They
evaluate the alternatives with distance-based criteria aggregation with regular L,
distance and use MP approach. This makes it an NLP model. Their criteria
aggregation function is also based on distance to ICV. Alternatives are evaluated
with distance-based criteria aggregation function. As in [5], [15], the evaluation is
compared with the class thresholds. In the experimental results, it can be observed
that the accuracy performance measure highly deviates for different L, distances.
Robustness of the proposed method w.r.t different L,, distances can be questioned.
Although it is not clear which specific L, distance results in better classification
accuracy, it is shown that low p values (1 < p < 3) result in better classification

accuracy.

There are four main differences between [5], [15] and [7], [16]. The first difference
is that [7], [16] use regular weighted L,, distance and their formulation allows the
usage of other L,, distances in addition to Euclidean distance. The second difference
is that the proposed method is probabilistic in [7], [16]. The class assignments are
determined based on a probabilistic approach. The resulting class assignment is a
conditional probability, and the probabilistic approach is fundamentally based on the
Bayesian approach. For class assignment, uniform and triangular probability
distributions are used. Since it is a multicriteria method, the probability distribution
is a joint formulation. Criteria are assumed to be independent therefore the joint

probability formulation is employed accordingly. The third difference is that the risk
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attitude of the DM is also considered in PDIS. Different class assignments for a risk-
averse and a risk-seeking DM is shown in the study [16]. Also, optimistic and
pessimistic class assignment procedures are developed in [7], [16]. The fourth
difference is that the class assignment for the test data is performed by a MP. After
thresholds and criterion weights are optimized, a new model is solved to perform the
class assignments of the test data. In [7], [16], different accuracy measures are
developed based on the class assignment probabilities of alternatives. Besides the
criteria aggregation, in [5], [7], [15], [16], class thresholds are also ordered from best
to worst as in UTADIS [3]. The main difference between UTADIS and [5], [7], [15],
[16] is that the additive utility function is used in UTADIS, and the distance function
is used in [5], [7], [15], [16].

Another distance-based multicriteria sorting method is Dlstance-based Sorting
WithOut class THresholds (DISWOTH) that is developed by Karasakal and Civelek
[6], [17]. In DISWOTH, a class centroid (a class representative) is estimated for each
ordinal class. Alternatives are evaluated based on their proximity (similarity) to each
class centroid. The L,, distance function is employed for formulating the proximity
or similarity of an alternative and a class centroid. They [17] also show how the L,
distance can be employed for DISWOTH with an LP model. Class assignment of an
alternative is performed based on the evaluation of similarity between class centroids
and the alternatives. An alternative is assigned to the class of the most similar
(nearest) centroid. Therefore, DISWOTH is a Nearest Centroid classifier (NC) type
of sorting method, which is similar to K-Means clustering method [18] in terms of
cluster assignment. Class centroids are estimated with the arithmetic average of the
alternatives of each class. As in PDIS [7], [16], the formulation allows the utilization
of different L, distances. NC type classification methods have roots in nominal
classification, it is also called nearest centroid neighborhood [19] and Rocchio
classification [20]. Therefore, the NC type formulation of DISWOTH also enables
the method to handle the nominal classification.

Unlike PDIS [7], [16] and the study of Chen et al. [5], [15], ordering of classes and
alternatives are ignored to improve the classification accuracy in DISWOTH. This

11



enables DISOWTH to evaluate data with non-monotonic criteria that can be viewed
as the flexibility of the method. Ignoring ordering (or monotonicity) to improve
classification accuracy is discussed in the literature [21]. Findings of Ben-David et
al. [21] show that there is no statistically significant difference of classification
accuracy between the methods that consider ordering and the ones that ignore the
ordering. Furthermore, it is discussed that adding monotonicity to the learning

methods impair accuracy.

There are also statistical ordinal classification methods that are based on class
centroids [22]-[26]. Liu et al. [23] and Sun et al. [24] develop ordinal classification
methods based on LDA. The centroids are employed to find a projection that best
discriminates the ordinal classes. Pelckmans et al. [26] develop Least-Square
Support Vector Ordinal Regression (LS-SVOR) method that is based on Support
Vector Machines (SVM) and LDA. The utilization of centroids in [26] is the same
as in [23], [24]. A different nearest centroid-based statistical method is Ordinal
Nearest Centroid Projection (OrNCP) that is developed by Tian and Chen [22]. They
employ the total absolute deviation from class centroids that is basically an NC
formulation with L, distance. From that perspective, DISWOTH is an extension of
OrNCP that allows the usage of other L, distances. In OrNCP, different from
DISWOTH, ordering of classes is considered. In these statistical methods [22]-[26],

centroids are also estimated with arithmetic average.

Recently a study is conducted by Tian et al. [25] that focus on centroid choice. Tian
et al. develop a centroid estimation method based on L, distances. In their study,
they show that arithmetic average results in a centroid that minimizes total within
class distance when the distance function is the Euclidean norm (that is L, distance).
They argue that there must be different centroids for different L, distances. Tian et
al. [25] propose the L,-Centroid method that gives different centroids for different
L, distances. The L,-Centroids that is given by the method minimize within class
distance when L,, distance is chosen. Therefore, the output of the method is a

different centroid for an L,, distance, which we can call a centroid-distance pair.
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To conclude the literature review, there are distance-based multicriteria methods that
are NLP models [5]-[7], [15]-[17]. There are also centroid-based multicriteria
sorting methods [6], [12], [17]. EDAS [12] is a DJ method and DISWOTH [6], [17]
is a PD method and it is based on the NC formulation. There are also centroid-based
statistical machine learning methods [22]-[26]. Except for [25], they use the
arithmetic average as the centroid estimation method. Figure 2.1 summarizes the
literature review of the multicriteria sorting methods. Figure 2.2 summarizes the

centroid-based methods.

Multicriteria

Methods
Direct PD (based on criteria
Judgement aggregation functions)
EDAS* [12]
ELECTRE-TRI [13]
Utility/value Similarity (distance
function functions, absolute
deviation)
e.g., UTADIS [3] Distance based:
1- PDIS [7]

2-Chen et al.* [5]
3-Chen etal.* [15]
4- DISWOTH* [6]

(PD) denotes Preference Disaggregation, (*) denotes centroid based methods

Figure 2.1 Categorization of multicriteria methods
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Centroid Based QOrdinal Classification Methods

Statistical & Non-Parametric Multicriteria

KDLOR (S) [24]
«  MOR (S) [23]

* LS-SVOR (S-NP)
[26]

OrNCP (S-NP)
(22]

«  EDAS (DJ) [12]

* Chen et al. (PD) [5]
* Chen etal. (PD) [15]

DISWOTH (NP-PD) [6]

(S) denotes Statistical, (NP) denotes Non-Parametric, (DJ) denotes Direct Judgement,
(PD) denotes Preference Disaggregation

Figure 2.2 Categorization of centroid-based methods

In the literature review, it is observed that the centroid-based methods employ

arithmetic average as the centroid estimation method and L,,-Centroid method is not

adapted to NC formulations. Furthermore, NC based sorting method (DISWOTH) is

an LP model when p € {1, oo} and it is NLP model that is computationally expensive
to solve when p & {1, }. For NC and MP based methods (DISWOTH), our critics

are as follows.

1. Only arithmetic average is employed as the centroid estimation method and

L,-Centroid method can be adapted.

2. ltis not clear to use which L,, distance since it is not known in advance that

which distance function results with better accuracy.

3. L, distance is a nonlinear formulation. When used in MP, it is an NLP model.

NLP models are computationally expensive to solve.

In addition to those three points, DISWOTH can be criticized due to ignoring the

ordering of classes and the centroid choice for different L, distances.
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Based on these three points, in this chapter, four new NC based multicriteria sorting
methods are developed. Developed methods are MP approaches as DISWOTH.
Therefore, they can be viewed as extensions to DISWOTH. In the first method, NLP
formulation of DISWOTH is linearized by employing binary variables. In the second
method, L,-Centroid method is adapted to DISWOTH to examine the effect of
centroid and distance function choice to the accuracy. In the third method, first two
methods are combined, and two extensions are developed to represent ordering of
classes. Choosing a proper centroid and distance pair is handled with L,-Centroid
method in the second and third models. Ordering of classes is considered with
compromise ranking and additive difference of utilities [27] as extensions to third
model.

As mentioned, Ben-David et al. [21] discuss that adding monotonicity to learning
models may impair the classification accuracy. Not to impair accuracy with
monotonicity, the two extensions are considered with soft constraints that seek

alternative optimal solutions to the best accuracy outcome.

2.2  Theoretical Background

In this section, criteria aggregation based on utility functions is exemplified with
UTADIS method. Theoretical background for the distance functions and criteria
aggregation based on distance functions are explained. Then, MP formulation of

DISWOTH is presented. Lastly, L,-Centroid method is explained.

Relevant notation for the multicriteria sorting methods is as follows. Index i €
{1,2,---,n} represents alternatives, j € {1,2,---,m} represents criteria, and q, r €
{1,2,---, @} represents ordinal classes. The ordering of the classes is presented such
that class 1 is the worst class and class Q is the best class. € is an infinitesimal positive

scalar. A represents the set of alternatives and A; represents i* alternative. A?j

represents the jt* criterion evaluation of alternative i belonging to class g, A? =

{A%,Al, ..., Al }. C%is the set of alternatives belonging to class g that is A7 € C1.
An example setting of the reference set (training data) is illustrated in Table 2.1.
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The alternatives and classes are defined as follows.

1. ¢INnC" =¢forq#r
2. cCtuc?uciu..uc?l=4
3. C1+@andC? € A

The preference and indifference settings for alternatives and ordinal classes are as
follows. ~ denotes indifference relationship (equally preferred entities) and >
denotes preference relationship. A~B means DM is indifferent between

alternatives/actions A and B. A >»> B means DM prefers A to B.

1. If Ai and Ail € Cq, then Ai~Ail'
2. If Ai e C?and AL'NAL'I! then Ail € CH.
3. A;€C%and A;, € C9%1 then 4;, » A; for g < Q.

Table 2.1 Example setting for training data

) o o Criterion Class
Alternatives | Criterion 1 | Criterion 2
m Label
Alternative 1 Al AL, Al 1
Alternative 2 A3, A3, A3, r
Alternative i Al AL, Al q

In this thesis, it is assumed that each criterion is monotonic. The monotonic criterion
is explained as follows. A criterion can be “higher the better” type (maximization
type or benefit type) or it can be “lower the better” type (minimization type or cost
type). Without loss of generality, terms maximization type and minimization type
are used in this thesis. If a criterion is maximization type, then higher values of that
criterion are preferred to lower values. If a criterion is minimization type, then lower
values of that criterion are preferred to higher values. A criterion can also be non-
monotonic, meaning that an intermediate value can be the most preferred value. This
case is not considered in this thesis. It is assumed that the criteria are independent.
16



Based on assumptions, preference order of alternatives is determined based on the
evaluation of monotonic criteria. The values of each alternative on each criterion can
be categorical and numerical. Numerical criterion can be discrete or continuous. The

trade-off between criteria is defined by criterion weights.

In PD methods, criteria aggregation is performed using criteria aggregation function
and criterion weights. A composite indicator or a score is computed. Then, the score
is compared with class thresholds to perform the class assignment. After monotonic
criteria and ordinal class concepts are introduced, a class assignment example of

multicriteria sorting is illustrated in Figure 2.3.

T% 1 <ClassQ Best Class

T2 <Class Q-1 < T 1

Criteria Aggregation
of A}

T <Class2 < T?

Class1 < T! Worst Class

Figure 2.3 A class assignment example with criteria aggregation
2.2.1 UTADIS

In this section, utility function based criteria aggregation PD sorting method, namely
UTADIS [3] is introduced. Additional notation for UTADIS method is as follows.

Decision variable w; is the weight of the j* criterion. Decision variable T4 is the

threshold separating classes g and g + 1. U(.) denotes the additive utility function

and w; () is the marginal utility function. g;. and g; are the worst, and the best values
for criterion j. Moreover, criterion j is divided into A; — 1 intervals, the intervals are
denoted by ¢ ([g5, g5*'].t = 1,2, ..., 4; — 1). The value of 4; is determined by DM.

A; is used to approximate the utility function by determining the number of marginal
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utility points u;. Therefore, the larger A;, the approximation becomes more precise.

g]t- is calculated as in equation (1). Equation (1) is a linear interpolation.
t—1 «
9j = gj-+ 219 = 95) 1)

The aim of introducing the intervals is to calculate the marginal utility of alternatives

in the interval [g}, g5*]. For A]; € [g], g5""], u;(47)) is calculated as in equation

).
uj(A?,-)=uj(9,)+ o uj(g]“)—uf(gf-)],fl?je[gf-,gf-“] &)

UTADIS respects the preference order of breakpoints of the intervals based on
monotonicity. The preference order of marginal utilities is satisfied with constraint
(3). By respecting the preference order of breakpoints of intervals, according to
equation (2), it also orders alternatives in each criterion. When equations (2)-(3) are
considered together, an alternative falling in a higher interval dominates the

alternative falling in the lower interval.
wie = (i) —w(gf) = 0,vj,ve <4, -1 ®3)

wje s the utility value of interval [g¢, g5**]. Therefore, u;(g}) can be reformulated
as equation (4) and equation (2) can be reformulated as equation (5). Additive utility
function for an alternative is formulated as equation (6). U(A‘l?) maps an m
dimensional real numbered vector A? € R™ to a single dimension R, U(.):R™ —

R*. The marginal utility for each criterion is normalized as in equations (7)-(8).

u](g ) Zt 1 w]trv]; 1’2""’Aj -1 (4)
t'=1 4l-9; .y
UJ(A ) Yi=1 Wjt mwjth]»t =12,..,4 -1 (5)
J J
U(A?) = 2w (A7) 6)
Zﬁlu](g}k) =1 (7)
ZTzluj(gj*) =0 (8)
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Classification of an alternative with UTADIS is performed as follows.

A, €CTif T > U(AD) Vi 9)
A eclifTe < U(AY) vi (10)
A;€ECTIfTI>UMN) =TI Vi, 1<q<Q (11)

In UTADIS, a class assignment is accurate if the three conditions hold as follows.

1. T*>U(4)).

2. T < U(4?).

3. T1>U(A!)=T%vivq¢ {10}
If conditions 1-3 do not hold, then it is an inaccurate (erroneous) class assignment.
Two error variables are used to define erroneous class assignments, e;"and e;". e; is
the class assignment error of A7 to a worse class and e;* is the class assignment error
of A7 to a better class. e;"and e;” are formulated as equations (12)-(13).
e; = max {0,U(A])—T91} (12)
e =max {0,T9 — U(A?)} (13)
UTADIS minimizes class assignment errors. UTADIS model is as follows.
(UTADIS)

Minimize Y; e} + e; (14)
Subject to:
UA])+ef —e=T"+¢Vi,Vr<Q (15)
UA})—ef +e<T 1 +evivr>1 (16)
j=1 el =1 17
TT—T™1>¢vr>1 (18)
wj = 0,V),Vt (19)
e/, ej =0,Vi (20)

Obijective function (14) minimizes the total class assignment error. Constraints (15)-
(16) perform class assignments by comparing the criteria aggregation and class
thresholds. Constraint (17) is used to normalize the criterion weights w.r.t monotonic

utility values of the predetermined criterion intervals. Constraint (18) orders class
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thresholds in strictly increasing order from worst to best as utility is a higher the
better type of measure. Constraints (19)-(20) are sign constraints.

A global preference mechanism is modeled with criteria aggregation using additive
utility functions in UTADIS. Then, criteria aggregation is compared with class
thresholds that are class representatives. Class assignment with UTADIS is

illustrated in Figure 2.4 for a three-class example.

Class 3 > T'? ,
T
U(A? . T?>Class2>T!
Tl
Class 1 < T1

Figure 2.4 Class assignment illustration of UTADIS on a three-class example
2.2.2 Distance Functions and Distance-based Criteria Aggregation

Criteria aggregation can be formulated based on distance functions as well. Distance-
based ordinal classification methods that use criteria aggregation are [5]-[7], [15],
[22].

To describe distance-based methods, the term Ideal Criterion Vector (ICV) (or ideal
point) is explained. ICV is the best possible point in the criterion space that is the
best point in each criterion of the alternatives. In studies of [5], [7], [15] criteria
aggregation is performed based on the distance of alternatives to the ICV. Weighted
L, distance is employed as the distance function that is formulated as equation (21).
L, distance is called Rectilinear (Manhattan or city block) distance when p = 1 and
Euclidean when p = 2. A specific version of L, distance is p = oo, which is called
Tchebycheff distance.

[5], [15] use squared Euclidean (L3) distance as the distance function. ICV is

determined as the centroid of the best class. Celik et al. [7] extend the formulation of
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[5], [15] to all L, distances and develop a probabilistic class assignment method,
namely PDIS. As in UTADIS, criteria aggregation and class thresholds are used to
discriminate the classes. In this thesis, d)/ (A, B) represents weighted L, distance

between two points A and B. d) (4, B) is formulated as in equations (21)-(23).

p
d¥(A,B) = \/zj wl'|4; — B;|’ (21)
2wy =1 (22)
w; =0,V (23)

A distance function is called metric (norm) if it satisfies the following three
properties. L,, distance is a metric when p > 1 and it is not a metric for p < 1.
d, (A, B) denotes L, distance and 4, B,C € R™.

1. Positivity: d,(A,B) > 0and d,(4,B) = 0iff A= B.

2. Symmetry: d,(A,B) = d,(B,A)

3. Triangular inequality: d,(4,B) < d,(4,C) + d,(B,C)
The criteria aggregation function employed in [7], [16] is as in equation (24). ICV is
denoted by I and j** criterion value of ICV is denoted by ;. Since ICV is the best

possible point, distance (or dissimilarity) to ICV is a lower the better type of measure.
Class assignment with distance-based criteria aggregation function is illustrated in

Figure 2.5 on a three-class example.

p 14
d¥(A%,1) = \/ijjp 4%, — 1] (24)
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Class 1 > T*
/ T]_
dy (Al D > T' > Class 2 > T?

o

T2 > Class 3

ICV

Figure 2.5 Class assignment illustration of distance-based sorting on a three-class
example

The illustration in Figure 2.5 can be formulated as follows.
d;,v(Al,I) < TQ_1 - Ai S CQ

TI* < dy(A;, 1) <TT - A, €CIVq<Q
d;/)V(A“I) = T?! _>Ai et

Class thresholds are ordered in decreasing order from best to worst as opposed to
UTADIS (compare Figures 2.4 and 2.5). This is because the utility function
(equation (6)) is a higher the better and distance-based value function (equation (24))
is a lower the better type of measure.

To represent classification error, similar to UTADIS, equations (25)-(26) are used.
A more detailed model is given in Section 6.3.1.

e; =max {0,T9* —dy(Al,D} (25)
eif = max {0,d¥(A},1)—T% (26)
Figure 2.5 is an illustration of the class assignment logic of distance-based sorting.
In criterion space, a class threshold forms the contour of L, distance chosen. An
example illustration for two criteria and two class problem is given in Figure 10.2 in

Appendix F.
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2.2.3 DISWOTH and Nearest Centroid Classifier

DISWOTH is a NC type sorting method. In this setting, each class has a class
centroid which can be defined as a typical artificial (or real) alternative of that class.
DISWOTH and NC assign the alternatives to the class of the nearest centroid.

Additional notation for DISWOTH and NC are as follows. H? is the jt" criterion

value of the centroid of class q. Instead of e/ and e;” of UTADIS, a single error
variable is used as e;.

For DISWOTH and NC, class centroids are calculated as in equation (27) as the
arithmetic average of the alternatives of each class. However, it is not necessary to
use arithmetic average as the class centroid. Class assignment is performed as in
equation (28). Class assignment error is calculated as in equation (29) for NC and
equation (30) for DISWOTH.

u o= ] Zlmlecq Al vq, V) (27)
A; € C1if g = argmin, {dy (A;, u")} (28)
For NC,
{0 U AL = min (G ALy, 29)
1 otherwise
For DISWOTH,
e; = max{0,dy (A],u?) — ay (Al,u" )} (30)
Formulation of DISWOTH is as follows.
(DISWOTH)
Minimize Y a,e ca ICqu (31)
Subject to:
Constraints (22)-(23)
e;—e=dy (A, put)—ay(Al,u") viq = r (32)
e; =0 (33)

Obijective function (31) minimizes class-weighted classification error. In objective
function (31), |C9] is the cardinality of class q. Class cardinality weighted total

classification error is minimized. Constraint (32) performs class assignments and
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computes the classification errors based on equation (30). The class assignment logic
of DISWOTH is illustrated in Figure 2.6 for a three-class example. As it can be
noticed from DISWOTH model, different from [3], [5], [15], [7], ordering of classes
(or monotonicity) is ignored. This is done to improve the classification accuracy.

o
dy (A u?)

Small circles are alternatives from black, grey and white classes. Large circles are centroids of
each class. Star is an alternative to be classified into one of three classes. Classification is to be
performed based on equation (28)

Figure 2.6 Class assignment illustration of DISWOTH on a three-class example.

224 L,,-Centroid Method

Previous centroid-based studies employ arithmetic average as the centroid estimation
method. A different centroid estimation method for centroid-based classifiers is
developed by Tian et al. [25], namely L,,-Centroid method. Tian et al. [25] criticize
the usage of arithmetic average (equation (27)) as the centroid estimation. They show
that equation (27) can be obtained by minimizing the total squared Euclidean
distance of all alternatives to a point as in equation (34). ||u9 — A7 ||5 represents the
squared Euclidean distance. Authors argue that, for each L,, distance, a different

centroid should be estimated.

1 .
_Zi|A A?j = argmm”? {Zi|AiE callu? — A? ||%} (34)

[ca| iecq
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L,-Centroid method is formulated as equation (35) and estimates different centroid
for each L, distance. ||u? — Al |I§ denotes the pt" power of L, distance. (35) is
solved with L,-Centroid Algorithm [25]. pr is the L,,-Centroid of class q. Besides

providing a different centroid for each L, distance, the regularization effect of L,-
Centroid method is also discussed.

(L,-Centroid)

il = argmings (S aeca llu® — A7 |13}, (35)

225 Nearest Centroids and Nearest Central Profiles

In multicriteria sorting, the central profiles are also used as class representatives. The
terms “central profiles” and “centroids” are often used interchangeably in the
literature (e.g., [28], [29]). In this thesis, the term “central profile” is not used because
the nearest centroid and nearest central profile approaches differ in comparison of

the class representatives with alternatives.

When central profiles are employed in multicriteria sorting, a criteria aggregation is
performed on alternatives and central profiles as the first step. That is both
alternatives and central profiles are mapped into a single dimensional value space.
Then, as the second step, the central profiles and alternatives are compared in the
single dimension. Class assignments are performed accordingly. To clarify, a class

assignment structure is used as follows. Let U(.) be a criteria aggregation function.
U(4) <U@W') - A; € C?

Uu?) < V(@A) <U@I*) and U(uT*h) —U(4) > U(4) —Uw) - 4
ECivVg<Q

U <UMA) <U@E™) and UI™) —U(A) < U4) — U@ - 4
€ECI*lvg<Q

U(A) >Uu?) - 4; € C?
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This structure is not used in the nearest centroid type of classifier. Instead, the class

assignment structure in DISWOTH is employed with equation (28).

To apply the class assignment structure in equation (28), alternative and the class
representative is compared as the first step. Then, as the second step, the criteria
aggregation is performed with a similarity measure. In DISWOTH, the L,, distance
is used as the similarity measure. To sum up, the difference between the nearest
central profile based methods and nearest centroid-based methods is that the first and

the second steps are switched.
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CHAPTER 3

EXTENSIONS TO DISWOTH METHOD

This chapter presents the first study conducted in this thesis. The base method,
DISWOTH [6], that is a nearest centroid type of sorting method is extended to
improve the classification accuracy and solution time. Five methods are proposed in

this chapter.

The first method is a linear approximation of DISWOTH by employing a Mixed
Integer Programming (MIP) approach. In the second method, L,-Centroid method is
employed. An algorithm is developed to choose a good L,, distance and L,-Centroid
pair as a heuristic approach. The third method is the combination of the first two. L,,-
Centroid is adapted as in the second method and the formulation is linearized as MIP
as in the first method. Two extensions to the third method are developed to reflect
the ordering of classes in the model. These extensions are formulated in a way that
they seek alternative solutions to the best accuracy solution. In the third method,
objective function is changed so that the alternative solution seeking procedure is
enabled. All of the three methods and the two extensions are based on DISWOTH.
For the methods proposed in this chapter, it is assumed that the data and centroids
are scaled to [0,1] range (explained in Chapter 5 equation (100)). Therefore, Big M

values used in this section equal to 1.

After introducing the proposed methods, application procedure and their

categorization in the literature is presented.

3.1 Linearization of DISWOTH with MIP, Bin-Dis Method

The first method is the Binary variable DISWOTH method, namely Bin-Dis. NLP
DISWOTH method is converted into a Mixed Integer NonLinear Programming
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(MINLP) model by formulating the classification error with a binary variable. Then,
the MINLP model is linearized.

The main motivation behind the usage of binary variables can be explained by the
means and ends objective approach [30]. The main aim and the fundamental
objective are to maximize classification accuracy (minimize classification error).
Note that maximizing classification accuracy (minimizing classification error) is
directly formulated with maximizing (minimizing) the total “number” of accurate
(inaccurate) class assignments. Minimizing the total classification error with a
continuous variable does not necessarily minimize the total number of inaccurate
class assignments. Therefore, it can be seen as a means objective that serves the aim.
The ends objective in here is to minimize the total number of inaccurate class
assignments. Summation of the binary error variables is exactly the ends objective
here. With the introduction of binary variable classification error, the classification
error of Bin-Dis is formulated as equation (29). To apply this adjustment, constraint
(32) is changed as constraint (36) and constraint (33) is changed as constraint (37).

Me; — e > d¥ (Al,u?) —ay (AL, u") Viq = r (36)

e; € {0,1} (37)

Big M in constraint (36) is a sufficiently large number. Constraint (36) can be

p
for

c o ar —1iff © p|4a qlP P | a
linearized as follows. e; = 1Iiff, \/Zjo |Aij —,uj| > ijj |Aij — U
some g # r. Relaxing the roots does not change the value of e;. Therefore, the
. . . 14 p .
inequality can be rewritten as 32w |47, — ul|” > X;wP |4, — u]|". After relaxing
the roots, power p of ij can also be relaxed based on the decision boundary of
classification. Relaxation of power p of ij is as follows.

Let E denote the set of equidistant points to u? and u” for classes g # r. E satisfies

equation (38) below. Equation (38) can be rearranged as equation (39). Assume a

positive constant Q as in equation (40).
p q|P _ p p
Zjwf |E = uf|” = Xyw |E; — uj] (38)
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Siwl (B —ull” = |E —uf]) =0 (39)
ax;wl (g —ul|” =& —uf|H =0 (40)

Decision boundary equations (39) and (40) result with the same decision boundary.
Because positive constant Q can be cancelled due to zero in the RHS of (40).

Therefore, if there exist v; which equals ijp (v; = ij”) then it can be used instead

of ij to linearize constraint (36). Such v; satisfies equation (41).
P == (41)

Based on equation (41), v; can be represented as equation (42) for some index k €

{1,2,...,m}/j.

who
vj = W—%kaJ (42)

To analyze whether equation (42) violates constraint (22) (weight normalization

constraint), replace w; in constraint (22) with v; formulation in equation (42). (43)

is the resulting equation. For simplicity, let k = m in equation (42).

p P p wP p

wy 2 Win m J Wm
S VUnt+ U+t B =15, Y =1y, =1 43
Wrz;l m Wrz;l m ng m sz—lwﬁl m ||W||Z ( )

(43) shows that a linear substitute of wjp is obtained by the distributive normalization

p

of w;. Insert W—’”p in constraint (22) to see that constraint (22) is not violated. This
p

|lw
result is shown in equation (44).

p
m W;) _“W”p_

=il wlly

(44)

The linearization of criterion weights in weighted L,, distance is exemplified with a

numerical example (see Appendix G).
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As a result, there exist a linear variable as a substitute for optimal criterion weights

w;". By employing binary variable, it is shown that wjp in constraint (36) can be

linearized and reformulated as MIP with constraint (45).

Mel- —€2= Z]W]|Aq —,u;-llp

P
5 —ZjolA?j—ﬂ]r-l Vi,q# T (45)

Bin-Dis model is proposed as linearized version of DISWOTH. Bin-Dis model is as
follows.
(Bin-Dis)

Obijective function (31)

Subject to:

Constraints (22)-(23), (37) and (45)

3.2 L, Centroid Induced DISWOTH, LpDis Method

The second method is the L,-centroid induced DISWOTH method, namely L, Dis.
L,-Centroid method [25] is adapted to DISWOTH to improve the classification

accuracy.

To properly adapt L,-Centroid method to DISWOTH, an algorithm is developed.

Distance Choice (DC) algorithm solves the problem of distance function and
centroid choice. It finds a distance-centroid pair to improve the classification

accuracy.
DC algorithm:
Step 1: Initialize p* = 0, p,,, = [0]lgxm and z* = n..

Step 2: Increment p by a “small value” and solve L,,-Centroid Model for L,, distance

with L,,-Centroid Algorithm and find the resulting centroids u;,,= [y}p,y%p, ...,yfp].
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Step 3: With M, and p, by L, distance, calculate total classification accuracy, z, =

Y.ie;. Compute e; € {0,1} using equation (29) with equal criterion weights.
Step 4: 1f z, < z" then, z* = z,, p* = p and Hi,, = Hi,-

Step 5: If p < p’ then, return to Step 2. Else terminate.

Outputs: Ly. and ] _for each g

The small value in step 2 of the DC algorithm is chosen as 0.1 and the stopping
condition p’ is chosen as 10. Outputs of the DC algorithm are the p* value to use as

L,, distance and the ufp* to use in DISWOTH as centroid estimation. DISWOTH
method with L, distance and ] is named L,Dis Method. Although the star sign
p*

(*) is used, note that that p* and the p, , do not mean an optimal distance and

centroid pair. They are improved distance and centroid pair in terms of nearest
centroid classification accuracy according to the DC algorithm. Therefore, the DC

algorithm is a heuristic approach to determine improved p* and the Hi,.- L,Dis is an

NLP model and formulated as follows.
(L,Dis)
Obijective function (31)
Subject to:

Constraints (22)-(23), (33)

e;—e>dy. (Al ul )—dy. (alul ) vig# (46)

3.3 MIP L,,-Centroid Induced DISWOTH, Bin-LpDis Method

The third method is Binary variable L,-centroid induced DISWOTH, namely Bin-

L,Dis method. Linearization made in Section 3.1 for Bin-Dis is also used in this
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method. As L,Dis in Section 3.2, M‘L’p* and L,, are used. Constraint (46) is

reformulated linearly as in constraint (47).

a_.a |77 a_ r |77\
Me; — e = Yjw; |Aij—uLp*j — Xjw; |Aij_iuLp*j Vi,q# r 47)
(Bin-L,Dis)
Minimize Y7, e; (48)
Subject to:

Constraints (22)-(23), (37) and (47)

3.4  Ordering of Classes

In multicriteria sorting problem, classes are ordered w.r.t a preference order. In
DISWOTH, the ordering is ignored to improve classification accuracy. In this
section, ordering of classes is applied to Bin-L,Dis method. It is applied to the
proposed methods with soft constraints that seek alternative solutions of best
accuracy outcome. Referring to the findings of Ben-David et al. [21], with this
approach, the ordering of classes is considered without decreasing the classification
accuracy. In both extensions, criterion-wise min-max feature scaling is applied to

data. The data sets are scaled to [0,1] range (explained in Chapter 5 equation (100)).

34.1 Compromise Ranking Extension

In this extension, it is assumed that the class centroids are ordered according to a
preference order as the classes. The ordering relation is formulated with distance to
ICV. Itis assumed that the centroid of a more preferred class should be closer to ICV
than a less preferred class. This formulation is similar to the criteria aggregation
function of Celik et. al [7]. Additional notation is as follows. J* represents the set of
maximization criteria and J~ represents the set of minimization criteria. The ICV, I

is found as in equation (49).
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m}ax{A?j} =1vjeJ*

I = 49

' |min{al}=0vje)" )
J

The formulation for extension is given in constraint (50).

I ow? |t =] > s wP wit = 1| vivg > 1 50

zpwf [uf =] > JZywf [ = 4] vive > 0)

Inequality (50) can be linearized and simplified to constraint (51). Because the
greater than operator is not affected by the pt" degree root. After relaxation of the

root, same linearization approach in Bin-Dis can be applied and formulated linearly.
— 14 p ,

Constraint (51) may not be feasible always. A new free variable A is introduced to

make (51) a soft constraint as in (53). Objective function is updated as (52).
(Bin-L,Dis Com)
Minimize Y} e; — 1 (52)
Subject to:

Constraints (22)-(23), (37) and (47)

— p .
zjwj(|A§’j—1j|p—|A?jl—1j| ) > AVivg > 1 (53)
A<e (54)
Aisu.r.s (55)

Lastly, due to the scaling of the data and centroids, weighted L,, distance formulation
returns values in range [0,1]. Therefore, the difference of two such distance functions
is in the range (-1,1) for L, distances p > 1. In constraint (53), centroids are ordered
with compromise ranking formulation. Due to constraints (54)-(55), constraint (53)
is a soft constraint. A is maximized in the objective to satisfy constraint (51). As e;

is a binary variable and 4 is in the range of (-1,e], employing objective function (52)
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provide an alternative solution of optimal of Bin-L,, Dis model that satisfy constraint
(51) as much as possible. Therefore, the solution of Bin-L,Dis Com model is the
best accuracy obtained by Bin-L,Dis with ordered class centroids. The proof for

finding alternative solutions with objective function (52) and constraints (53)-(55) is

explained in Appendix A.

3.4.2 Additive Difference Model Extension

Additive Difference Model (ADM) [27] extension is applied to Bin-L, Dis method
to reflect the ordering of classes. ADM is applied as a soft constraint as in Bin-L,, Dis-
Com. This extension is named Bin-L,,Dis ADM. Additional notation for Bin-L,,Dis
ADM is as follows. g;(.) is evaluation function of criterion j. g;(.) is formulated
such that g;(u) = u?,vj € J* and g;(u}) = —u],,vj € J~. Assume linear utility
function U(x) = Xje;+w;jg;(xj) + Xje;-w;jgj(x;). For two centroids of two
adjacent ordered classes, utility function U(.) can be represented as constraint (56).
U — p9™) = Bjerwigy(uf —ul ™) + Zje-wigyuf — ™) =

Tjer i) =) + i — ) > 0vg > 1 (56)

Constraint (56) can be rewritten as (57) as a soft constraint. Definition of A is as the

same in Com extension.
Sjep W] — 1) + i wiul T =) 2 avg > 1 (57)
(Bin-L,Dis ADM)

Objective Function (52)

Subject to:

Constraints (22)-(23), (37), (54)-(55) and (57)
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3.4.3 Application Procedure and Categorization of the Proposed Methods

The categorization of the proposed methods in the literature is presented in Figure
3.1. For Bin-Dis, L, Dis and Bin-L,,Dis methods, ordering of classes is ignored as in
DISWOTH. Therefore, they can be categorized into the same group. However, for
Com and ADM extensions, ordering of classes is a necessary information and the
knowledge of the objective type of criteria is required (as maximization or

minimization). Therefore, they are categorized as multicriteria methods.

Centroid Based Ordinal Classification Methods

Statistical & Non-Parametric Multicriteria

KDLOR (S) [24]
«  MOR (S) [23]

+  LS-SVOR (S-NP)
[26]

OrNCP (S-NP)
[22]

* DISWOTH (NP-PD)
(6]
* Bin-Dis
* L,Dis

Bin-L,,Dis

EDAS (DJ) [12]

* Chenetal. (PD) [5]
* Chen et al. (PD) [15]
. Bin-Lp Dis Com

* Bin-L,Dis ADM

(S) denotes Statistical, (NP) denotes Non-Parametric, (DJ) denotes Direct Judgement,
(PD) denotes Preference Disaggregation

Figure 3.1 The categorization of proposed methods in the literature

The application procedure of the proposed methods is as follows.
Step 1: Solve the proposed model with the following inputs and the training data set:

1- A predetermined L,, distance
2- An estimated centroid

3- The training data
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Obtain the outputs:

1- Training accuracy

2- Optimal criterion weights

Step 2. With optimal criterion weights, predetermined L, distance, estimated

centroid and test data, compute the test accuracy.
Obtain output:
1- Test accuracy

To compute the test accuracy, solve the proposed method with test data and optimal
criterion weights obtained from step 1. Since the decision variable criterion weights
are known, solving the model is not an optimization. Since all of the decision

variables are known, it is a simple computation for error variables.

Formulations of training and test accuracy are explained in Chapter 5. In the next

chapter, a specific case of DISWOTH is studied. Findings are reported.
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CHAPTER 4

MONOTONICALLY ORDERED CENTROIDS CASE OF NEAREST CENTROID
CLASSIFIER

This chapter presents the second study in this thesis. In this chapter, a specific case
of DISWOTH is studied. It is proven that when the centroid estimations are
monotonically ordered, there are redundant alternatives such that DISWOTH cannot

change the class assignment of those alternatives.

In section 4.1, decision boundary characteristics of DISWOTH with monotonically
ordered centroids is explained. Based on decision boundary characteristics,
redundant alternatives are detected. It is shown that the conditions that satisfy the
redundancy are linear expressions. In Section 4.2, redundancy conditions are

formulated, and an LP model is developed for all L,, distances.

4.1  Theoretical Background of Redundancy Conditions

To analyze the decision boundary characteristics of DISWOTH, recall the
equidistant point E presented in Section 3.1. The decision boundary of DISWOTH
is given as equation (39) in Section 3.1. Let DBC denote Decision Boundary of

Classification. DISWOTH with monotonic centroids is denoted as Monotonic NC.
14 q|P r|P
Zjwl (| —uf|” =B —uj[H=0 (39)

DBC with Euclidean distance function is exemplified in equations (58)-(59) and

Figure 4.1. b denotes a positive scalar and a is a real numbered vector, a € R™.
YW = W)? = 2B —uf) =0 (58)

aTE+b=0 (59)
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aj = —2(uj — y}’) and b = [|u]|* — ||lu"||I%. Alternatively, a; = (u} — H?) and b =

P =lipm 2 . . q r
— Equations (58)-(59) form a line between u9 and u".

o™ aTE+b=0

»
>

Figure 4.1 Decision boundary example of DISWOTH for Euclidean distance

The weighted distance with nonnegative weights rotates the DBC. The rotation is
defined as a circular movement around a fixed point. The fixed point of rotation for
the example DBC in Figure 4.1 can be found via formulations (60)-(65).
|2

S - Bl = | - Bl = 5wlu! - E|* —wilu) - E (60)

In equation (60), distance without weights and with weights are equated to find the

midpoint of the rotation. It is simplified to equation (61).

YA =w) s —puDW +uj —2E)=0 (61)
Yiw =1 (62)
w; = 0Vj (63)
wi™ = plvj (64)

Constraint (64) is assumed for Monotonic NC. Equation (60) is simplified to

equation (61). Regardless of values of w; and (u] — y?), the only condition that

“always” satisfies the equation (61) is as follows.
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94,7
E. = —”j+”1

y =L (65)

Equation (65) is the fixed point of rotation and called midpoint in Euclidean
geometry. Figure 4.2a and Figure 4.2b demonstrate four example rotations of DBC

for four different weights.

criterion 2 criterion 2
A \ A

DBC 3w, =0

DBC 4,w; = 1

criterion 1 criterion 1

Figure 4.2 Example rotations of DBC

In Figure 4.2b where the extreme conditions on criterion weights are applied, there

are regions that the DBC cannot reach. Those regions are shown in Figure 4.3.
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us+ u2 e T < S B ROt
2 L L L e N e Wl - 0

______ Wy, wy > 0

criterion 1
>

The regions (dashed areas) that the DBC cannot reach with non-
negative criterion weights

Figure 4.3 Illustration of regions that decision boundary of Monotonic NC cannot
reach

Alternatives in those regions are out of class assignment initiative of Monotonic NC.
Therefore, once the class centroids are determined, alternatives in dashed regions of
Figure 4.3 are redundant for DISWOTH model if the centroids are in monotonic
order. Until now, the equations and figures are used for exemplifying the rotations,
redundancy regions and decision boundary characteristics. Theorems 1-3 provide

formulations of redundancy regions.

pdpdt 94,91
Theorem 1: An alternative A with criteria evaluations % <4 <=V

is always assigned to class g and cannot be assigned to class r # g by a Monotonic

NC with non-negative weights and L,, distance.
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Assume there are two artificial centroids u?** and u° such that u9*1 = oo and u° =

_oo_
Proof: For A; € C4 to be always true, (66) must hold.

p p
Ejwilu! — Ay|" —wiluf - Ay" <0vr#gq (66)

Rewrite (66) as (67)-(68):

jwiluf = Ayl" = wiluy = 4," <0vg <u (67)
q,,q9-1 q,. q+1

Hj"'lf‘j

(67) and (68) always hold in the case of -l — < 4,; <
J 2

2

. This is proven

with (69)-(73). Superscripts u and [ are not used for power operation. They are used

for indexing. u and [ are integers such that u,l € {0,1,2,...,Q,Q + 1}. Due to

q q+1 q u q q-1
. Witu; - P HH] Wi+
constraint (64), A;; < ~—Z—also satisfies A;; < ===, Vu > g and 4;; > L——
2 2 2
q l q L
satisfies A;; > Y yi < g ub < ud < u is clear. Rewrite A;; > % and A,; <
Lj 2 q. .uj .uj .uj : ij 2 Lj

a,,u
u Zm as equations (69) and (70), respectively. B}*, B}, x}* and x| are positive values.

4 =M H g gus g (69)
ij 2 2 jrPj :

A _“? #5' L pls 70
=5 T3 BB >0 (70)

q+1 q

Due to (64), M’T > %’ Rewrite (64) as:

u q
T
—2’——2’=x}‘,\7’u>q,x}‘>0 (71)

#—?—M—}=x-lVl<q xt>0 (72)
2 2 jr ) j

Inequality (73) is used for proving Theorem 1.
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(67) always holds due to (69) and (71) with the following formulation.

q 14

3 ﬂ_‘u_}‘_l_u _ﬁ_“_;{_i_ up =Y |u+ u|p_|_u+
Wiz =56 >~ HE ) = 2wl 4B %

B*|") < 0 always holds because

|—x} + ﬁ}*|p — |-} - ﬁ}‘|p < 0 for x/*, Bj* > 0 Vj always holds due to (73).

(68) always holds due to (70) and (72) with the following formulation.

p p

] ] ] J —
w5 =7 =8| —|F-5 8| ) =Zwilx =B = |-x - Bj|") <0
l 1P l P [ pl .
always holds because |x/ — B}|” — |—x{ — B/|” < 0 for x/, B} > 0 vj always holds

due to (73).4

Due to Theorem 1, by Monotonic NC, A7 is always accurately classified if A7 € RI*

q q-1 q q+1
/.L]- +/-L/' l"j +/,Lj

2 ’ 2

where qu* = ( >Vj. As seen from the formulation of R9*, these
redundancy regions are in shape of boxes.

R regions are demonstrated for a three-class example in Figure 4.4.
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criterion 2

A

criterion 1
.
»

i+ g B+
2 2
Redundancy regions are in the form of boxes. Any point in R** can only be
assigned to class three and cannot be assigned to other classes. Each of those
CEI+ (!‘_1 .u,q +.uq_1
boxes are separated by — . I — and

for each criterion j.
Figure 4.4 A 3-class example of the redundancy regions

Another redundancy condition occurs depending on A7 and monotonic centroids as

follows. A} is always misclassified if A7 € R/™ or A] € Rj™ where R/ =
q,,9-1 q,, q+1
Hi+H , q- 1+ ,

(—oo,%) vjand R} = (%w) vj.

Theorem 2: A] cannot be accurately classified if A7 € R~ and it is always

classified to a class less than q (C",r < q).

q, q-1
Proof: (67) and (68) never holds for A7 € R/™ (A]; < %). Rewrite A7, <
q, q-1
B85 as follows:
q _ 4 “}H q-1 pg-1
Ay=75+==8 B >0 (74)

Show that u9™" is always closer to Af; than uf.
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wl ul™ q-1 w7 q—lp q-1 q-1|P
Siwi(F =L+ B =BT ) = w (T AT

|—qu_1 + ﬁ]q_1|p) > 0. |qu_1 + ﬁ]q_1|p — |—xﬁ_1 + ﬁ]q_1|p >0, for qu_l,

B~ > 0vj always holds due to (73). O

Theorem 3: A7 cannot be accurately classified if A7 € R, and is always classified

to a class greater than q.

q+1
Proof: (67) and (68) never holds for A7 € R~ (4], > H’ “’ ~——). Rewrite A},
plapd*t

L/ as follows.

q “/ “7“ q+1 pq+1

Al =L 4L pI* pI* > 0 (75)

Show that u"“ is always closer to A than li, Thus, NC cannot classify Aq to class

q.

q q+1 p q+1 q p

i H q+1| | K ul § — q+1 q+1|P
Y|z =% 6 =L =B =Ty (| -
| q+1 ’Bq+1| ) |_ —ﬁQ+1| | q+1 ﬁq+1| >0 for xq+1 Bq+1

0 vj always hold due to (73). 4

Due to Theorems 2 and 3, and alternative 4; satisfying A7 € R~ or AT € R~ cannot

be accurately classified and is a redundant alternative.

Let us categorize alternative 4] € R9* as Accurately Redundant (AR) and A7 € R}~
or A} € RI™ as Inaccurately Redundant (IR). An example of R9*, R/ and R~
regions is illustrated in Figure 4.5. Intuitively, a proposed method to maximize
(minimize) the number of AR (IR) alternatives enlarges (diminishes) the R7*(R97)

area(s) in Figure 4.5.
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\ Criterion 2

criterion 1
=

-1 1
A
2 2
Dotted regions are IR regions and box grid filled region is AR

region

Figure 4.5 A representation of AR and IR regions.

To conclude this section; it is shown that when centroids are in monotonic order,
there are redundancy regions. Those regions are classified into two as AR and IR
regions. In the AR region of class g, any alternative belonging to class q (A7) is
always accurately classified. There is no positive weight set that can violate this
condition. If an alternative is in the IR region of class g (R; and R;;), it cannot be
accurately classified and is always classified to some other class. There is no positive
weight set that can violate this condition too. The formulations of redundancies are

linear expressions.

Examples of AR and IR alternatives are illustrated in Figure 4.6. Small shapes are
alternatives and large shapes are centroids. Triangles are from class one; black circles
are from class two and white circles are from class three. Examples are illustrated
for alternatives of class two. Alternative one from class two (42) and alternative four
from class two (A2) are IR alternatives since A% € RZ~ and A% € R?~. Alternative
three from class two is an AR alternative since A% € R?*. Alternative two from class

two A% is not an AR or IR alternative. Class assignment of A3 is based on the
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decision boundary of classification (DBC2). If criterion weights change, then it may

be assigned to different classes. Therefore, it is not a redundant alternative.

A Rﬁ_
. 2
. o .,Al
qu—‘“ fa) o
.. 0 ®
. °
ARj ™ 9 A7 e
AL "
°
A A . A
DBC1 DBC2

Figure 4.6 An example illustration for alternatives in AR and IR regions
4.2  Proposed Model

In this section, using Theorems 1, 2 and 3; an LP model is developed to maximize
the accurate redundancies and minimize inaccurate redundancies. For formulation of

R9*,R]™ and R!™ in MP, new decision variables A}; and 2} are introduced. In the

following set of constraints, /’lﬁj, Ai; = 0vjif Al € R?* which is desired to improve
accuracy. Because A7 € R cannot be misclassified. New notation is as follows.

¢; is the weight of alternative i. This is used in the computation of centroids as a
weighted sum of alternatives. ¢,,;, IS the minimum weight of alternatives. 6]."

separates the class centroids. ¢,,;, and 5]9 are artificial variables to avoid trivial

solutions. The explanation of trivial solutions are given and illustrated in Appendix

H. Constraint formulation of R7*, R/~ and R;]™ is as follows.

q,,9-1

14,9
AL+ 2 2t e v, Vi, Vg > 1 (76)
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q q+1

A% -2 <M —evj, i, Vg < Q (77)
ul™ = ul + 67 vj, vg < Q (78)
uj = XiAl¢: ¥, V) (79)
diecad; = 1Vq (80)

rin < &: Vi, Vg (81)
AL, A5 =0 Vi, Vj (82)
ul = 0vq,vj (83)
¢ =0Vi (84)

min = 0 (85)
81 2 evqVj (86)

In constraint (76), it is checked whether Aﬁj > 0 for any j. In this case, A] € R9*
condition is violated. If A}; > 0for all j then, A{ € R/™. The same applies to
constraint (77) such that if A}, > 0 for any j then, Al € R?* condition is violated. If
AY; > 0forall j then, A € R} Constraint (78) orders centroids from the best to
worst class that provides the monotonic centroids. 6]9 in constraint (78) is maximized

in the objective function to avoid trivial solutions and it is a strictly positive variable.
Constraints (79)-(80) ensure that the centroid of class q is estimated as the convex
combination of alternatives of class q. With these constraints it is guaranteed that the
centroid is an interior point of the class that it represents. Constraint (81) is used to
find the alternative that contributes the least in the computation of the centroids and

is maximized in the objective. Constraints (82)-(86) are sign constraints. 4;; + AL j
are minimized, 6]9 and ¢,,,;, are maximized in the objective functions. Maximization
of 6]9 and ¢, In objective function does not serve the optimization of redundant
alternatives. They are used to avoid trivial solutions. Therefore, they are
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regularization variables. These objective functions are formulated as equations (87)-

(89). z; objective is to be minimized and z, and z; objectives are to be maximized.

All of the objectives are scaled to [0,1] range in the objective function?.

u l

Z1 = Zq Yieca Zj 1cq|m (87)
.54

Z; = quz# (88)
q *

25 = 24 PminlCl (89)

Q

To obtain efficient solution from constraints (76)-(86) and objective functions (87)-
(89), scalarizing function is used. As scalarizing function formulation, Augmented
Tchebycheff [31] program is used. Accurate and Inaccurate Redundancies

Optimization (AIRO) model with three-objectives is as follows.

(AIRO)
Minimize zo, + p(21 — 27" + 2" — 7, + 23" — 23) (90)
Subject to:
Zo 2 Vi(21 — 271" (91)
zo 2 0 (557 - 7)) (92)
Zow 2 S (257 — 25) (93)

Constraints (76)-(86)

Equations (87)-(89)

! z, is divided by |C?|m (class cardinality times number of criteria) to scale this objective to [0,1] range. Because the highest
value that A} + Al ; can take is 1 due to normalization of data. z, is divided by Qm because the largest value 6}.’1 can take is 1.

The highest value ¢7 . can take is ﬁ Therefore, it is multiplied by |C9| and divided by Q.

min
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z7*,z5" and z3* are predetermined parameters, namely utopian points. Utopian point
i a point that is too good that it is impossible to achieve and formulated as z;* =
z; —€,z," =z, + e€and z3* = z3 + €. z;, z; and z3 denotes optimal values of z,, z,
and zs. V; is used to define the projection direction of the closest efficient solution
from the utopian point. It is defined by the user. The Augmented Tchebycheff
program is explained in Chapter 6 (Section 6.1.2). AIRO model is presented for a
sorting problem with maximization criteria. For minimization criteria, model is

modified as follows:

Modify constraint (78) as (94).

uj-’“ >ud +681vj, vqg<Q (78)
wit <l -5 vj, va<Q (94)

Modify constraints (76)-(77) as (95)-(96)

0. g
AL+ 2 = e, Vi, vg > 1 (76)
Al =2 < “?Jr:;m —€Vj, Vi, Vg<Q (77)
Al + 2 2”3?%“?““\1]', Vi, Vg > 1 (95)
AL -2 < it +:? C . Vj, Vi, ¥q < Q (96)

No matter what criterion weights (as long as positive) and L,, distances are used, it
is shown that the redundancy conditions are valid. To perform NC class assignment,

a distance function and criterion weights are also needed.

To obtain and evaluate criterion weights, two different approaches are used. The first
approach is developed based on the weight estimation LP in the study of Korhonen
et al. [32]. The second approach is the equal weight case. This approach is named,
AIRO-Equal Criterion Weights (AIRO-ECW) The second approach is applied to
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analyze whether the weight estimation LP improves the classification accuracy or

not.

Instead of linear value function used by Korhonen et al. [32], distance-based criteria
aggregation function is used to be consistent with NC method that is also the
distance-based method. A new unrestricted in sign (u.r.s), ©9, is introduced which
takes negative value if the preference relationship between alternatives of two classes

are violated. Weight Estimation (WE) LP model is as follows.
(WE)
Maximize ¥, 09 97)

Subject to:

14
Siwilal - 4P = 2w |a% - | 2 07 vq < @ vie ¢, vir e 1t

i

(98)
0%urs (99)
Constraints (22)-(23)

Referring to the relationship between alternatives and classes, alternatives should be

consistent with the order of classes that is A; € C? and 4;, € C9*1, then 4;, > A, for

q<aqQ.

Constraint (98) of WE measures the consistency of alternatives of ordered classes. It
should be satisfied that the alternatives of a better class are preferrable to the
alternatives of a worse class. 04 is maximized in the objective function (97) to satisfy
consistency of alternatives of ordered classes. Constraint (99) is the sign constraint.
When WE weights are applied to AIRO, it is named AIRO-WE.

Application procedure of the proposed method for monotonically ordered centroids

is as follows.
AIRO Method

Step 1: Solve AIRO model for the training data and obtain monotonic centroids.
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In solution of AIRO model, Augmented Tchebycheff program is used to avoid
weakly efficient solutions. The objective weight, V; is determined by empirical study
based on preliminary experiments. More explanation about the experiment setting of

AIRO model is given in Section 5.3.

Step 2: Determine p value of L, distance, solve WE model for training data and

obtain the criterion weights.

Step 3: Using the test data, with the L, distance used in Step 2 and the criterion
weights obtained in step 2 and the centroids obtained in step 1 compute test accuracy
by computing errors using DISWOTH model. Solving DISWOTH model is not an

optimization since the criterion weights are inputs to the model.

Step 4: If more L, distances are to be evaluated, change the L, distance to be

evaluated and return to step 2. Otherwise, terminate.

Step 5: Calculate test accuracy for all V' values and L, distances used in AIRO.

Choose the best test accuracy among them.

In step 1 of the solution procedure, the values of objectives do not have any economic
meaning for the decision maker. Therefore, it may be beneficial that a set of V; values
are used in the step 1. For application of AIRO, different L, distances are evaluated

with step 4. The output of application procedure of AIRO is a single best test

accuracy of a set of test accuracy outcomes of L,, distances with different p values.

Since AIRO is an LP model, different solutions for different L, distances can be

explored by solving many computationally inexpensive LP models.

Proposed methods are listed in Table 4.1.
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Table 4.1 List of proposed methods

Proposed Developed Centroid Distance  Model
Method Based on Choice Function  Type
_ DISWOTHand L, —Centroid  weighted
L,Dis _ q NLP
L,, —Centroid (ﬂLp,,) Ly,
. Arithmetic Weighted
Bin-Dis DISWOTH MIP
Average L,
_ _ L,Disand Bin-  Lp —Centroid  Weighted
Bin-L,Dis q MIP
DiS (MLp*) Lp*
Bin-L,Dis and .
Bin-L, Dis P L, —Centroid  Weighted
Compromise q MIP
COM _ ) Lp.
Ranking
Bin-L,Dis  Bin-L,Disand Ly —Centroid  \eighted
MIP
ADM ADM (g,.) Ly
Monotonic Any
AIRO DISWOTH centroids based Weighted LP
on AIRO L,
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CHAPTER 5

EXPERIMENTS OF DISWOTH EXTENSIONS AND MONOTONICALLY
ORDERED CENTROIDS CASE

51  Experiment Settings

Performance of proposed methods are compared with DISWOTH [6] and UTADIS
[3]. 5 intervals are used in each criterion of UTADIS. Each data set is partitioned
into two as training and test data. Training data includes approximately 80 of whole
data containing 80 of each class. Remaining 20 is taken as test data containing 20 of
each class. All models are solved for training data, and the optimal criterion weights
are used for the classification of test data. All the missing information in data sets
are eliminated before experiments. For all data sets, whole data is normalized to [0,1]
range using criterion wise Min-Max Feature Scaling. Normalization procedure is
given below. € is chosen as 107° in all of the models. In preliminary experiments, it
is observed that e > 105 decreases the classification accuracy and values lower

than 10~° does not change the classification accuracy.

Aij—mini{Aij}

Normalized A;j = (100)

maxi{Aij}—mini{Aij}

The experiments are conducted on 9 data sets from different application areas. They
are obtained from UCI Machine Learning Repository [33], WEKA [34] and study of
Amine Lazouni et al. [35]. Details about the data sets are explained in the next

section.

5.1.1 Data Sets

The data sets are chosen from different application areas to show the applicability of

the proposed methods to different areas. The application areas are automotive
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industry, health and medical area, employee selection, construction, and hardware

performance. The data sets are as follows.
Automotive Industry

Car Evaluation Data Set (CAR): This data set consists of 1728 rows (alternatives).
There six categorical criteria and four ordinal classes. The criteria used for sorting

and the criterion type are as follows.

Table 5.1 Details about CAR data set

Criteria Values Type

N Low (1), Medium (2), o
Buying Price ) ] Minimization
High (3), Very High (4)
] Low (1), Medium (2), L
Maintenance Cost ] ] Minimization
High (3), Very High (4)

2(1),3(2),4(3),5and

Number of Doors Maximization
more (4)
2 (1), 4 (2), 5and more o
Number of People @) Maximization
Small (1), Medium (2), o
Luggage Boot ) Maximization
Big (3)
Low (1), Medium (2), o
Safety Score ) Maximization
High (3)

Unacceptable (1),
Acceptable (2), Good -
(3), Very good (4)

Car Acceptability*
(Class labels)

Automobile Fuel Consumption Miles/Gallon Data Set (AUTOMPG): AUTOMPG
data set contains fuel consumption data of different automobile models in
miles/gallon. Data set originally consists of 8 criteria each defining a different spec

of automobiles. Car name is not predictive and not used in classification. Cylinder,
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displacement, horsepower, weight, acceleration, model year and origin criteria are
used for classification. Acceleration, model year and origin are maximization criteria
and others are minimization. There are 392 rows. MPG column is continuous and
binarized from median, lower than median being class 1 and remaining being class
2. (Available at UCI Repository)

Table 5.2 Details about AUTOMPG data set

Criteria Values Type
Cylinder 4, 6, 8 Cylinders Minimization
_ Integer values varying o
Displacement Minimization
between 68 and 455
Integer values varying L
Horsepower Minimization
between 46 and 230
Integer values varying
Weight between 1613 and Minimization
5140
) Values between 8 and o
Acceleration Maximization
24.8
Years between 70 o
Model Year Maximization
(1970) and 82 (1982)
o Integer values varying o
Origin Maximization
between 1 and 3
Miles Per Gallon* Values between 9 and
(MPG) 46.6 (Binarized from -
(Class labels) median)
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Health and Medical Areas

Breast Cancer Data Set (BC): BC data set contains 286 rows, 9 columns 2 classes.
Breast and breast-quad columns are non-predictive, and they are excluded.
Remaining 7 criteria are used for sorting. Age and menopause state criteria are

minimization criteria and others are maximization. (Available at UCI Repository)

Table 5.3 Details about BC data set

Criteria Values Type
Ordinal categorical data
Age 10-19 (1), 20-29 (2), Minimization
..., 60-69 (6)
1t40 (0), ge40 (1),
Menopause (0). gedo () Minimization

premeno (2)

) Integer values varying L
Tumor Size Maximization
between 1 and 11

Integer values varying o
Inv Node Maximization
between 1 and 7

Node Caps Yes (0), No (1) Maximization
Deg-Malign 1,2,3 Maximization
Irradiate Yes (0), No (2) Maximization
Recurrence*
1,2 -

(Class labels)
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Mammaographic Mass Data Set (MMG): MMG data set contains 961 different breast
cancer screening information. All criteria are used for sorting and all of them are

maximization type. Severity column is to be predicted.(Available at UCI Repository)

Table 5.4 Details about MMG data set

Criteria Values Type

Ordinal categorical data o
BI-RADS Assessment Maximization
between 1 and 5

Integer values varying o
Age Maximization
between 18 and 96

Integer values varying o
Shape Maximization
between 1 and 4

] Integer values varying o
Margin Maximization
between 1 and 5

) Integer values varying o
Density Maximization
between 1 and 4

Severity*

1,2 -
(Class Label)

American Society of Anesthesiologists Scores Data Set (ASA): ASA data set [35]
has 16 criteria and 898 rows divided into 2 classes. All 16 criteria are used for sorting.
Bradycardia, cardiac steadiness, spo2 and hypoglycemia are maximization criteria

and others are minimization criteria.
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Table 5.5 Details about ASA data set

Criteria Values Type
2 months to 105 years o
Age Minimization
old
Hypertension No (0), Yes (1) Minimization
Diabetes No (0), Yes (1) Minimization
Respiratory Failure No (0), Yes (1) Minimization
Hearth Failure No (0), Yes (1) Minimization
Brady Cardia (Hearth | Integer values between o
) Maximization
Rate in bpm) 58 and 70
Tachycardia (Hearth Integer values between L
) Minimization
Rate in bpm) 58 and 70
Steadiness of Heart rate No (0), Yes (1) Maximization
Pacemaker No (0), Yes (1) Minimization
Atrioventricular Block No (0), Yes (1) Minimization
Left Ventricular S
No (0), Yes (1) Minimization
Hypertrophy
_ Integer values between o
Oxygen Saturation Maximization

43 and 100
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Table 5.5 Continued

Hypoglycemia (Glucose

Values between 0.7 and

Maximization
level as lower) 0.92
Hyperglycemia (Glucose | Values between 0.92 and o
Minimization
level as upper) 3.8
Values between 9 and o
Systole Minimization
20.5
Diastole Values between 5 and 13 | Minimization
ASA Class*

(Class Label)

1,2

Employee Selection and Performance Evaluation

Employee Selection Data Set (ESL): ESL data set contains evaluations of expert
psychologists about 488 applicants. Data set consists of 488 rows and 4 ordinal
criteria. All criteria are maximization. Name of the criteria are not given by the
donator of the data set. Applicants are evaluated by psychologists of a recruiting
company in an ordinal scale from 1 to 9 points based on psychometric test results.
Evaluations are binarized by dividing from 6, employees with larger than 6 points

being class 2 and others 1. (Available at WEKA)
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Table 5.6 Details about ESL data set

Criteria Values Type

o Ordinal categorical data S
Criteria 1 Maximization
between 1 and 9

o Ordinal categorical data o
Criteria 2 Maximization
between 1 and 9

o Ordinal categorical data S
Criteria 3 Maximization
between 1 and 8

o Ordinal categorical data o
Criteria 4 Maximization
between 1 and 8

1,2, ...,9 (Binarized

by cutting from 6
Class Labels* ) -
points. 1-6 (1) and 7-9

(2))

Lecturer Evaluation Data Set (LEV): LEV data set contains evaluations of students
about lecturers. LEV data set consists of 1000 rows and 4 criteria. All criteria are
maximization. Name of the criteria are not provided by the donator. Each criterion
is evaluated with categorical ordinal scores between 1 and 4. Outcome column is to
be predicted having 5 ordinal integer values between 1 and 5. Values 4 and 5 are

assumed to be class 2 while others are class 1. (Available at WEKA)
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Table 5.7 Details about LEV data set

Criteria Values Type

o Ordinal categorical data S
Criteria 1 Maximization
between 1 and 4

o Ordinal categorical data o
Criteria 2 Maximization
between 1 and 4

o Ordinal categorical data S
Criteria 3 Maximization
between 1 and 4

o Ordinal categorical data o
Criteria 4 Maximization
between 1 and 4

1,2, ...,5 (Binarized

by cutting from 3
Class Labels* ) -
points. 1-3 (1) and 4-5

(2))

Material Science and Construction

Concrete Compressive Strength Data Set (CCS): CCS data set contains information
about different types of concrete where concrete compressive strength is the
outcome. CCS data consists of 1030 rows and 8 predictive criteria. All 8 criteria are
used for sorting. Fly ash, water, coarse aggregate, and fine aggregate are
minimization criteria and others are maximization. Concrete Compressive Strength
(in MPa) column is to be predicted. CCS column is binarized from median as classes
1 and 2. (Available at UCI Repository)
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Table 5.8 Details about CCS data set

Criteria Values Type
Cement (component Values between 102 o
) ) Maximization
1)(kg in a m3 mixture) and 540
Blast Furnace Slag
_ Values between 0 and L
(component 2)(kg in a Maximization
) 359.4
m3 mixture)
Fly Ash (component Values between 0 and L
) ) Minimization
3)(kg in a m3 mixture) 200.1
Water (component Values between 121.8 S
_ ) Minimization
4)(kg in a m3 mixture) and 247
Superplasticizer
] Values between 0 and o
(component 5)(kg in a 322 Maximization
m3 mixture) '
Coarse Aggregate
] Values between 801 S
(component 6)(kg in a Minimization
_ and 1145
m3 mixture)
Fine Aggregate
] Values between 594 S
(component 7)(kg in a Minimization
) and 992.6
m3 mixture)
Integer values between o
Age (day) Maximization

1 and 365

Concrete Compressive
Strength (CCS: MPa,
megapascals)*
(Class Label)

Values between 2.3 and
82.6 (Binarized from

median)
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Hardware Performance

Computer Hardware Data Set (CPU): CPU data set contains information about
different computer hardware and their estimated relative performance. CPU data
originally consists of 209 rows, 9 criteria and 6 of which are predictive while other
three criteria are non-predictive. Cycle time, min memory, max memory, cache
memory, minimum channels and maximum channels criteria are used for sorting.
Cycle time is minimization criterion and others are maximization. Estimated
Relative Performance (ERP) attribute is to be predicted. ERP column is binarized

from median as classes 1 and 2. (Available at UCI Repository)

Table 5.9 Details about CPU data set

Criteria Values Type
Machine Cycle Time in | Integer values between L
Minimization
Nanoseconds 17 and 1500
Minimum Main Integer values between o
o Maximization
Memory in Kilobytes 64 and 32000
Maximum Main Integer values between o
o Maximization
Memory in Kilobytes 64 and 32000
Cache Memory in Integer values between o
] Maximization
Kilobytes 0 and 256
Minimum Channels in | Integer values between o
) Maximization
Units 0 and 52
Maximum Channels in | Integer values between o
) Maximization
Units O0and 176
Relative Performance | Integer values between o
) Minimization
(published) 6 and 1150
Relative Performance | Integer values between
(estimated)* 15 and 1238 (Binarized -
(Class Label) from median)
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Discretization of continuous class columns are performed similar to [4], [36]. A

summary related to data sets and their p* values are given in Table 5.10.

Table 5.10 Brief information about data sets

Application No. Of No. Of No.Of p*
Data Sets ] o
Area Alternatives Criteria Classes valuel
Automotive CAR 1728 6 4 4.3
Industry AUTOMPG 392 7 2 0.2
BC 286 7 2 1.4
Health and
_ MMG 961 5 2 2.1
Medical
ASA 898 16 2 2.6
ESL 488 4 2 4.2
HR
LEV 1000 4 2 1.2
Construction CCS 1030 8 2 1.5
Hardware
CPU 209 6 2 0.7
Performance

1p* values are obtained with DC algorithm.

Evaluations of criteria as maximization and minimization is an assumption. This
assumption is based on Pearson Correlation Coefficient. The correlation coefficient
between each criteria and the class label column is computed. If the resulting
coefficient is positive, then the criteria is assumed to be a maximization type.

Otherwise, it is assumed to be minimization type.

51.2 Hardware Setting and Performance Measures

To model the proposed methods, (General Algebraic Modeling System release 23.9.
5.) GAMS modeling language is used. To solve MIP and LP models, IBM ILOG
CPLEX (version 12.4.0.1) is used, to solve NLP models, BARON Solver (version

11.5.2) is used. Solver settings are as follows: Nodetable limit (Nodlim=1E+9), time
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limit (Reslim=14400, 4 hours), optimality gap (Optcr=1E-9), integer tolerance
(Epint=1E-9). The hardware setting is 8 GB RAM, Intel(R) Core (TM) i7-8550U
@1.80GHz, Windows 10 PC.

Performance of models is evaluated using three performance measures, namely
training accuracy, test accuracy and solution time. Training and test accuracies are
the percentages of correct class assignments in training and test data, respectively.
Solution time is the elapsed time of the solver. Further analyses on solution time and
accuracy are conducted to determine the best method. A time versus test accuracy
trade-off matrix is constructed to compare the methods in terms of both accuracy and
time as a single measure. Also, TOPSIS [37] is used to rank the methods from best
to worst based on time and test accuracy performance. Performance of the models
are compared with UTADIS [3] and DISWOTH [6] with Ly, L,, L3, Ly, distances.
Different from L,Dis, DISWOTH with L,,, denotes the DISWOTH model with L,
distance as distance function and arithmetic average as centroid. DISWOTH with

L,, distance is compared with L, Dis to examine the effect of using L,-Centroid,

ligp*- Total accuracy (Ac(.)) is calculated for different models with equations (101)-

(103). 6(.) is an indicator function which returns 1 if the condition in the parentheses
is true and O if false. 6 (.) is used for counting 0/1 loss for UTADIS, DISWOTH and
L,Dis. n, (ng) represents number of alternatives in training (test) data. i, (is)
represent the alternatives in the training (test) data. i, € {1,2,...,n,} and is €
{1,2,...,n4}.

For Bin-Dis, Bin-LpDis, Bin-LpDis COM and Bin-LpDis ADM:
Ac()=(1-X; i—) * 100 (101)

For DISWOTH and LpDis:

Ac() = (1 - %, == + 100 (102)

For UTADIS:
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6(ei“; >00re;. >0)

Ac()=(1-3; ) * 100 (103)

ny

Computation of e; and total accuracy is the same for both training and test data. For
test accuracy calculations, replace i,- and n, with i and ng in equations (101)-(103).
To compute the test accuracy same mathematical models are used with test data input
and optimal criterion weights (and class thresholds for UTADIS). Accuracy is a

larger-the-better type of performance measure.

Time(m1)—-Time(m?2)
Ac(m1)—Ac(m2)

A(m1,m2) = (104)

A(m1,m2)calculates average amount of seconds required to improve 1 accuracy
given that accuracy of m1 is larger than that of m2. A(m1,m2) € (—o, ) is a
smaller-the-better type of performance measure. If A(m1,m2) <0, then ml
dominates m2 according to the specific experiments. The time vs. test accuracy
trade-off is evaluated with the average time and average test accuracy. Average
accuracy and the time are calculated using experimental results of 9 data sets for

each method.

Solution time is the elapsed time. A time limit of 14400 seconds (4 hours) is
established to solve each model. Time efficiency of the models is compared based
on the time vs. test accuracy trade-off matrix using a trade-off variable A(m1, m2).
m1 and m2 are the two models to be compared such that Ac(m1) > Ac(m2).

A(m1,m?2) is calculated as follows.

Time(m1)—-Time(m?2)
Ac(m1)—Ac(mz2)

A(m1,m2) = (105)

A(m1,m2)calculates average amount of seconds required to improve 1 accuracy
given that accuracy of m1 is larger than that of m2. A(m1,m2) € (—o, ) is a
smaller-the-better type of performance measure. If A(m1,m2) <0, then m1l
dominates m2 according to the specific experiments. The time vs. test accuracy
trade-off is evaluated with the average time and average test accuracy. Average
accuracy and the time are calculated using experimental results of 9 data sets for

each method.
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5.2  Experiments of DISWOTH Extensions

Training and test accuracy (in percentages) and solution time (in seconds) results of
the experiments for 9 data sets and 5 methods (13 methods with different model
inputs) are presented in Tables 5.11-5.14. L,,Dis, Bin-Dis, Bin-L,Dis, Bin-L,Dis
Com and Bin-L,Dis ADM are compared with UTADIS and DISWOTH. In Table

5.12, Mean Absolute Deviation (MAD) row is used to examine the tendency of the
models to overfit to the given training data set. MAD between test and training
accuracy is computed for each method as follows.

MAD (method) = %Z?=1|Training Accuracy(method, t) —

Test Accuracy(method,t)| (106)
where t represents each data set.

DISWOTH with L, improves the average training accuracy DISWOTH with Ly, L,
and Lz by 2.65 , 1.57 and 2.35, respectively (see Table 5.11). Moreover, L,Dis
improves the average training accuracy of DISWOTH with L,, by 0.33. The

improvement provided by llgp* IS not significant in the training accuracy.

Bin-Dis increases the training accuracy of DISWOTH for each data set as reported
in Table 5.11. Bin-Dis improves the average training accuracy of the DISWOTH
with Ly, L, L3 and L,, by 3.88, 3.51, 4.33 and 3.37, respectively. Bin-Dis improves
the average training accuracy of the DISWOTH more than DISWOTH with L, and
L,Dis. Bin-L,Dis and the two extensions give better training accuracy compared to
UTADIS, DISWOTH and L, Dis methods. Bin-L, Dis improves training accuracy of
L,Dis by 3.76. Bin-L, Dis method results in higher average training accuracy than
other methods. In 4 out of 9 experiments, training accuracies of Bin-Dis with L,, are
the best among all methods. Bin-L,Dis method provides the best results in 5 out of
9 experiments. Note that the monotonicity restriction does not reduce the training

accuracy since the models are primarily designed for seeking the alternative solution

with the best accuracy.
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Test results are reported in Table 5.12. DISWOTH with L,,, model improves the
average test accuracy of DISWOTH with L, L, and L; by 3.15, 4.76 and 2.47,
respectively. L, Dis improves the average test accuracy of DISWOTH with L,, L,
L, and Ly, by 9.37, 10.99, 8.70 and 6.23, respectively. But it improves training
accuracy of DISWOTH with L, only by 0.33. L, with u‘jp* yields a significant

improvement on the average test accuracy compared to DISWOTH with L,,.

Bin-Dis extension increases test accuracy of DISWOTH in 31 out of 36 experiments
as given in Table 5.12. The remaining 5 exceptions are observed in the experiments
of ESL, BC, and LEV data sets. Test accuracy of ESL data set decreases for Bin-
Dis with L; and L, compared to DISWOTH with L, and L,. Test accuracy of LEV
data set decreases for Bin-Dis with L, and L,,, compared to DISWOTH with L, and
L,.. Test accuracy of BC data set decreases for Bin-Dis with L; compared to
DISWOTH with L. Bin-Dis improves the average test accuracy of the DISWOTH
with Ly, L,, L3 and L,, by 10.09, 11.50, 8.37 and 8.39, respectively. Using binary
variable instead of continuous error variable constitutes a significant improvement
similar to using L,-Centroid. Bin-L,Dis and its extensions gives better test
accuracies than UTADIS and DISWOTH methods. Bin-Dis provides a better test
accuracy only for CCS and CAR data sets compared to Bin-L,,Dis.

Bin-L,Dis method improves average test accuracy of L,Dis by 4.19. It provides

higher average test accuracy than other methods. In 5 out of 9 experiments, test

accuracies of Bin-L,Dis method are the best among all methods. For all Bin-Dis

methods, 8 out of 36 test accuracy results are the best among all. The best average
test accuracy result is obtained with ADM extension. However, the average test

accuracy improvement is only 0.12 when compared with Bin-L, Dis method that

does not consider monotonicity.
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Generalization of the models are measured with MAD given in Table 5.12. For all
DISWOTH models, MAD measure is above 11. MAD significantly decreases to the
range between 6.134-8.14 for Bin-Dis and L, Dis methods. MAD is decreased to 5.39
for Bin-L,Dis. Compromise ranking extension increases MAD whereas ADM

extension improves MAD by only 0.12. The monotonicity extensions do not provide

a significant improvement on MAD for Bin-L, Dis model.

Robustness of the proposed models w.r.t different L, distances can be examined in
Tables 5.11 and 5.12. In training results of Bin-Dis, the worst average accuracy is
observed with L, as 85.72 and best average accuracy is observed with L,,, as 87.76.
In test results, the worst average accuracy is observed with L5 as 78.67 and the best
average accuracy is observed with L., as 81.16. The range of average accuracy for
Bin-Dis is less than 2.5 for different L,, distances in both training and test results.

These results show that Bin-Dis is a robust method on accuracy performance

measure w.r.t different L,, distances. Similarly for Bin-L,,Dis and its extensions, the

range of test accuracy (between 83.07 and 83.31) is less than 0.25 although different

monotonicity constraints are used.
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Solution times are reported in Table 5.13. Bin-Dis models improve the average
solution time of DISWOTH with L,, L and L,, distances by 2494.61 seconds
(43.57), 5010.20 seconds (59.92) and 5746.41 seconds (77.15), respectively. The
improvement on L, Dis model provided with linearization (Bin-L,Dis) is 4890.31
seconds (60.39). Bin-Dis with L; performs worse than DISWOTH with L; by
686.381 seconds. The result is expected since Bin-Dis with L; is an MIP model while
DISWOTH with L, is an LP model.

CCS data set solutions are not solved within time limit. Thus, they are not proven
optimal for both NLP and MIP models except for Bin-Dis with L,. CAR data set is
solved with proven optimal solution with all NLP and LP models whereas a proven
optimal solution is provided by only Bin-Dis with L; and L,,. among the MIP models.
Solution time of Bin-Dis with L, is the shortest of all NLP and MIP models on

average.

UTADIS and DISWOTH with L, are LP models. These LP models are solved within
the shortest solution times when compared with MIP (Bin-Dis and Bin-L,,Dis and its

extensions) and NLP (DISWOTH with L,, L3 and L,,) models as expected.

Solution times of Bin-Dis models are at least as short as their NLP versions for 23
out of 27 experiments. The remaining four exceptions are observed in the
experiments of MMG and CAR data sets. The solution times of DISWOTH with L,
and L, increase with binary variable adjustment for the MMG data set. The solution
times of DISWOTH with L, and L5 increase with binary variable adjustment for the
CAR data set. Respecting the monotonicity of centroids improves the solution time
less than 1 second on the average for both ADM and compromise ranking extensions.
There are 11 experiments that are not solved within time limit for NLP DISWOTH
models while there are 5 such experiments for Bin-Dis. For instance, DISWOTH
with L,, L3 and L, are not optimally solved on ASA data set while Bin-Dis is solved.
There are 5 experiments for L, Dis that are not optimally solved in time limit while

there are only two for Bin-L,Dis, Bin-L,Dis COM and Bin-L,Dis ADM. Although
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time improvement is not guaranteed in conversion of NLP to MIP models, solution

times significantly improve on average.

The solution time improvements in the proven optimal experiments of NLP models
are more significant. Bin-Dis models improve the APO solution times of DISWOTH
with L,, L and L,.distances by 1349.52 seconds (96.73), 3335.97 seconds (94.50)
and 1772.12 seconds (93.94), respectively. The improvement for proven optimal
solutions of Bin-L,Dis on L,Dis model provided with linearization is 95.66 with
210.36 seconds. On the proven optimal solutions, linearization with binary variables

gives a better average solution time performance with improvement larger than 90.
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To compare the methods based on the solution time and accuracy together, a trade-
off matrix is used. Trade-off matrix results are reported in Table 5.14. If accuracy of
method in column is larger than that of the method in row, the time (in secs.) required
to get 1 more test accuracy on average is given in Table 5.14. Bin-Dis with L,and

L,., Bin-L,Dis and Bin-L,Dis COM dominate six of the methods according to the

ps
average results of these specific experiments. DISWOTH and Bin-Dis with L, Bin-
Dis with L,, and Bin-L,Dis ADM are not dominated. Bin-L,Dis ADM is non-
dominated and dominates eight of the methods. Other positive entries indicate that
there is a time-accuracy trade-off between the methods according to the average

results of the experiments.

To rank the methods, TOPSIS [37] is used. TOPSIS is a multi-criteria ranking
method used for ranking alternatives from best to worst. All methods are ranked for
each data set considering time and test accuracy criteria. Then average ranks for 9
data sets are evaluated. W,. and Wy;,,. denote the weights of test accuracy and
model solution time, respectively. TOPSIS is applied with 7 different TOPSIS
distances (Lq, Ly, L3, L4, Ls, L1go, L) and three different performance measure
weights such that Wrme € {0.1,0.5,0.9} and Wy, = 1 — Wrime. Since TOPSIS is
a distance-based ranking method, to avoid scaling effect, performance measures are
scaled to [0,1] range. To analyze whether a solution time favoring or a test accuracy
favoring method is ranked better, L., distance is included in the analyses since as p
of L,, distance increases, larger weighted differences become more dominant [6]. The
analysis provides intuitions about methods such that when L, distance is used and
weight of time is higher (Wy;,. = 0.9 and W,. = 0.1), a time effective method
should be ranked better. When the weight of test accuracy is higher (Wy;,e = 0.1
and W,,. = 0.9), an accuracy effective method should be ranked better. Ranks of the
methods for different TOPSIS distance functions and weights are reported in Table
5.15. For all TOPSIS distances and criterion weights, the Bin-L,,Dis, Bin-L,Dis
COM and Bin-L,,Dis ADM are in the best three methods. Bin-Dis with Ly, is ranked
as the fourth best method. DISWOTH with L; is ranked the fifth based on average
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ranks of 7 distance functions. To summarize, Bin-L,Dis is shown to be both time

and accuracy favoring method among all methods.
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5.3  Experiments of Monotonically Ordered Centroids Case

The data sets, training-test partitioning and the hardware setting used for AIRO, and
WE models are the same as in the experiments of UTADIS, DISWOTH in Section

5.1. The assumptions on the criteria, normalization and the ICV are also the same.

The objective weights of AIRO model are determined by empirical study. To
examine the change in the test accuracy w.r.t changing V; values, 5 different values
are used such that V; € {0.5,0.6,0.7,0.8,0.9} based on preeliminary experiments.
To evaluate whether WE model estimates weights that improve classification
accuracy or not, the equal criterion weights (AIRO-ECW) case is also evaluated. The
distance functions used in the experiments are the same as in experiments of
DISWOTH.

Accuracy calculation of AIRO model is the same as in DISWOTH. To ease the
comparison, best test accuracy obtained by the AIRO and DISWOTH models are
reported in Table 5.16. Also, UTADIS results are presented in the table. Detailed
results are reported in Appendix B. Test accuracy of AIRO-WE and AIRO-ECW are
reported in Appendix B, Tables 10.1-10.9.

Table 5.16 Comparison of AIRO with DISWOTH and UTADIS

Best of

UTADIS DISWOTH AIRO-WE AIRO-ECW
AUTOMPG 77.78 80.25 91.36 92.59
CPU 76.74 81.40 90.70 93.02
BC 50.00 62.07 62.07 67.24
ESL 79.17 90.63 84.38 87.50
CAR 57.39 82.61 46.38 60.00
CCS 37.44 61.08 66.01 59.11
LEV 68.69 79.80 80.30 72.73
ASA 93.85 94.97 71.51 81.01
MMG 76.25 38.75 76.88 82.50
Average 68.59 74.62 74.40 77.30
SD 17.32 17.56 14.62 13.12
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In Table 5.16, AIRO-ECW results are better than UTADIS in 8 out of 9 experiments.
When it is compared with DISWOTH, 4 out of 9 experiments are better than
DISWOTH. AIRO-WE results are better than UTADIS in 7 out of 9 experiments.
When it is compared with DISWOTH, 6 out of 9 results are better than DISWOTH.
In comparison of number of better/worse accuracy results, there is not advantage of
AIRO-WE over AIRO-ECW. Both are advantageous when compared with UTADIS
as the majority of experiment results are better.

The average test accuracy does not improve significantly when DISWOTH results
are compared with AIRO-WE. This result can be interpreted as that criterion weights
obtained by WE model do not improve the classification accuracy. This is consistent
with findings of [38] which makes the results intuitive. Average test accuracy of
AIRO-WE is 0.22 worse than DISWOTH and 5.81 better than UTADIS. Average
test accuracy of AIRO-ECW is 2.68 better than DISWOTH and 8.82 better than
UTADIS. The improvement obtained by considering the monotonicity does not
bring a significant improvement of accuracy which is an intuitive result that is also
reported by [21].

Solution time results are reported in Table 5.17. The time performance in this section
is the total time to solve all models for all selected distance measures. For
DISWOTH, it is the sum of solution times of DISWOTH with four distance functions
p € {1,2,3,p"}. For AIRO, it is the sum of solution times of four distance functions
and the solution time of WE model. With 5 different V; values and four distance
functions, solution time reported for AIRO is the sum of 20 solution times. Solution
time reported for AIRO-ECW is the solution time of AIRO-WE minus solution time
of WE model.
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Table 5.17 Total solution time comparison

Total
utADIs  SOMUON A lRO.WE  AIRO-ECW
time of
DISWOTH
AUTOMPG 012 3047866  5.65 1.27
CPU 011  296.88 2.06 0.94
BC 010 3875935  2.92 0.87
ESL 0.17 19.47 3.89 0.98
CAR 0.6l 2175961 12253 1.66
ccs 0.87 4200010  426.03 2.05
LEV 0.21 88.60 16.00 0.70
ASA 0.53 4200013  193.90 4.50
MMG 0.19  14050.81  16.56 0.91
Average 032 2105040  87.73 1.54
SD 028 1817341  143.80 1.19

UTADIS solution time is the shortest among all. In Table 5.17, it can be observed
that addition of WE model to the AIRO significantly increases the solution time.
Instead, simply using equal criterion weights is more efficient than adding the WE
model to classification. As a result of comparison with DISWOTH, solving a limited
set of LP models (twenty models for AIRO-ECW and twenty four models for AIRO-
WE) take shorter time than solving NLP models with the same data size. The same
comment is also valid for solution time comparison of UTADIS (solving one LP
model) and AIRO.

Trade-off matrix used in Section 5.1 is also constructed and evaluated in this section.
Trade-off matrix is tabulated and reported in Table 5.18. According to trade-off
matrix, AIRO-ECW dominate DISWOTH and AIRO-WE. Although AIRO-ECW
dominate UTADIS, only 0.14 seconds are required to obtain 1 more accuracy with
AIRO-ECW. 0.14 seconds can be considered as a negligible difference for 1 test
accuracy. According to trade-off matrix, there is a significant gain of using AIRO-
ECW instead of DISWOTH.
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Table 5.18 The trade-off matrix

AIRO- AIRO- Nr. of
UTADIS | DISWOTH WE ECW Negatives

UTADIS - - - - 0

DISWOTH | 3490.89 - 95284.86 - 0

AIRO-WE 15.04 - - - 0
AIRO-

ECW 0.14 -7854.05 -29.72 - 2
Nr. of

negatives g : : g

Footnotes for Table 5.14 are also valid for this table.

TOPSIS ranking method is also used to compare the methods with the same
parameters as in Section 5.1. Results are reported in Table 5.19. According to
TOPSIS rankings, AIRO is the best method for all TOPSIS distance parameters and

performance measure weights we used.

Table 5.19 Average TOPSIS ranks

Best of
UTADIS DISWOTH AIRO-WE | AIRO-ECW
Wrime=0.1 Wac=0.9

L1 3.00 3.33 2.11 1.56

L» 3.00 3.33 2.11 1.56

Ls 3.00 3.33 2.11 1.56

L4 3.00 3.33 2.11 1.56

Ls 3.00 3.33 2.11 1.56

L100 3.00 3.22 2.22 1.56

Le 3.00 3.33 2.11 1.56
Average 3.00 3.32 2.13 1.56

SD 0.00 0.04 0.04 0.00
RANK 3 4 2 1
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Table 5.19 Continued

WrTime=0.5 Wac=0.5

Ly 3.00 3.22 2.22 1.56
L. 3.11 3.11 2.22 1.56
Ls 311 311 2.22 1.56
L4 311 311 2.22 1.56
Ls 3.11 3.11 2.22 1.56
L100 3.00 3.22 2.22 1.56
Lo 3.00 3.22 2.22 1.56
Average 3.06 3.16 2.22 1.56
SD 0.06 0.06 0.00 0.00
RANK 3 4 2 1
Wrime=0.9 Wac=0.1
L1 3.33 2.56 2.33 1.78
L. 3.33 2.67 2.33 1.67
Ls 3.33 2.67 2.33 1.67
L4 3.22 2.78 2.33 1.67
Ls 3.11 3.00 2.22 1.67
L1oo 3.11 3.11 2.22 1.56
Lo 2.74 2.66 1.97 1.39
Average 3.17 2.78 2.25 1.63
SD 0.21 0.20 0.13 0.12
RANK 4 3 2 1
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CHAPTER 6

LINEAR APPROXIMATION OF L, DISTANCE BASED ON AUGMENTED

TCHEBYCHEFF PROGRAM

This chapter presents the third study conducted in this thesis. In this chapter, a new
linear approximation to the L,, distance function is presented. To approximate all L,
distances, a single formulation is developed based on the formulations of Augmented
Tchebycheff program [31] and Chaudhuri et al. [39]. The new formulation is affine
combination of L, and L, distances. Metricity conditions of the new formulation is
analyzed and shown that it is consistent with L,, distances. Important characteristics
of the new formulation are analyzed and a complete guideline for MP usage is
presented. It is shown that by employing formulations of Charnes et al. [40] and
Kelley [41], it can be adapted to LP which is computationally inexpensive. An
algorithm is developed for approximating a set of L,, distances progressively, to solve
the problem of determining a proper L, distance. The LP formulation and the
algorithm are combined as a method and applied to the distance-based multicriteria
sorting methods (that are NLP models) to improve the solution time. Based on the

new method, three alternative courses of actions are developed for implementation.

Organization of this chapter is as follows. In Section 6.1, related work of linear L,,
distance approximation and L,, distance formulations for MP are explained. The base
of new approximation, Augmented Tchebycheff Program is explained. In Section
6.2, the new approximation formulation is presented. Empirical and theoretical
foundations about the new approximation is reported. Those foundations are also
used as a guideline for usage of the new approximation method. The MP formulation
of the new approximation method is formulated in Section 6.3, and it is applied to
two distance-based sorting methods that use NLP model. These NLP models are

linearized with the new approximation. To solve the new LP approximation an
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algorithm is introduced. A heuristic algorithm is developed for appropriate
implementation of approximation. In Section 6.4, to fully benefit from the new
approximation method, alternative courses of actions are presented. In Chapter 7,
experiments are conducted on two distance-based sorting methods. The results of
approximations are compared with the original methods. Results and improvements

are reported and discussed.

6.1 Related Work

In this section, theoretical background is presented with literature review.
Augmented Tchebycheff program is explained. A research question is asked in this

section and answered in the next section.

6.1.1 Theoretical Background on Distance Functions

Consider two variables x; and y; where j € {1,2,..,m},1<m <o and a; =
|x; — ;|- The L, distance of vector a is formulated as ||al| | = p/Zj af for0 <p <
co. A specific case of L, distance is Lo, distance. It is formulated as ||al| =

® /Z ja®> = max{a;} and called Tchebycheff distance. Contours of L, distances for
J

p € {0.5,1,2,4,10, o} are illustrated in Figure 6.1. A distance measure, denoted
with [[al|, is a norm (metric) if it satisfies three properties below. These three
properties are also presented in Chapter 2. But in this chapter, second property is
renamed as homogeneity to be consistent with the studies presented in the literature
review [39], [42]-[45].

1. Nonnegativity and definiteness: ||a|| > 0 and [|al|| = 0 iffa = 0.
2. Homogeneity: ||kal| = |k| ||al]-
3. Triangular inequality: ||a + bl| < |lal| + ||b].
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To ease the usage of formulation and conveying ideas, L,, distance is denoted as a?
in this chapter. It satisfies all of three properties of metricity for p > 1 and does not
satisfy triangular inequality if 0 < p < 1. Therefore, a? is a metric for p > 1 and

not a metric for p < 1 due to violation of triangular inequality.

Figure 6.1 L,, distance contour examples for p € {0.5, 1, 2,4, 10, o}

In MP setting, various L, distance models are studied. L, distance model is first
studied by Charnes et al. [40] on an LP model as a goal programming approach to

estimate executive compensation as in MP1.

(MP1)
minimize },;u; + v; (105)
Subject to:
Xi—yitu—v; =0V (106)
u;,v; =2 0Vj (107)
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u; and v; are nonnegative variables and they are used to formulate the absolute

deviation. L, distance formulation in MP setting is studied by Kelley [41]. Kelley

[41] formulates L., distance as an LP model as in MP2.

(MP2)
minimize u (108)
Subject to:
u=x;—yVvj (109)
u=y—xVj (110)

The general L, distance modelling problem is formulated in [46] as an NLP model
for p & {1,00}. In [47] an NLP model is formulated for p** power L, distance
approximation. Various other NLP formulations are proposed in the literature.

Interested readers may refer to [48] and [49] and Chapter 1 of Gonin & Arthur [50]

(for a review).

A linear approximation for the nonlinear L, distance (Euclidean distance) is first
studied by Chaudhuri et al. [39] by using the convex combination of L, and L,
distances as in (109). Rhodes [42], [43] and [45] improve the approximation error of
Chaudhuri et al.” s [39] formulation. In those studies, formulation is rewritten as
(110). A positive weight V € (0,0.5) is defined to approximate L, distance. [43]
states that any L,, distance can be approximated by linear combinations of other L,
distances. Distance approximation formulations in (111)-(112) form an octagonal
contour as in Augmented Tchebycheff program (explained in Section 6.1.2).
However, the presented formulation is not extended for any MP and other L,
distances. To our knowledge, there is no study in the literature that formulates the

general L, distance approximation for LP model for p & {1, o}. For the following

formulation assume a;+ = a* = max{|a;|}. aZ denotes the approximation function
)

of the Euclidean distance.
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- 1

a2 =(1-V)a;+ +Val,V € [0.5,1) (112)

It is worth noting that L, distance approximation makes the MP a multi-objective
optimization problem when used with other constraints and objective functions in
the model that depend on the distance functions. For such an example, see L,
distance approximation of Karasakal & Civelek [6]. However, to make this study
self-explanatory, an example can be given with MP3 by employing formulation in
MP2 of Kelley [41]. Objective function (113) isa multi-objective formulation. X is
a nonempty feasible region that is constructed by a set of known constraints. In such
models, choice of coefficient C,, is important since a large C.,value may cause a
trade-off between objective function z(x, y) and u. On the other hand, a small C,,

may result with an incorrect L, approximation resulting in u > max{|x; — y;|}.
]

Choosing a suitable C,, value is handled by empirical study in the study of Karasakal
& Civelek [6].

(MP3)
minimize z(x,y) + Cou (113)
Subject to:

Constraints (109)-(110) and x,y € X

6.1.2 Augmented Tchebycheff Program

Optimizing multiple conflicting objectives is handled with multi-objective
optimization. Many methods are employed to optimize multiple conflicting
objectives. Several examples to these methods can be weighted sum method, e-
constraint method, goal programming method and other scalarizing functions etc.

For scalarizing functions, Tchebycheff Program and Augmented Tchebycheff
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Program are frequently used [31]. [31] also shows how L,, distances can be used in

multi-objective Optimization.

In general, the aim is to find a non-dominated (efficient) outcome (and the solution)
that is preferable for the DM between possibly infinitely many outcomes. Such
efficient solutions are sought on the non-dominated frontier of the objective space.
Finding a non-dominated solution is also problematic because a non-dominated
solution can be a weakly efficient solution. To clarify the concept of weakly efficient
solutions, the objective space and non-dominated solutions consider MP4 with k
conflicting maximization objectives, z, (x). A two-objective example of MP4 with
z,(x) and z,(x) is illustrated in Figure 6.2. Z is the objective space that is the
objective function outcomes of all feasible solutions. The thick black line is the
efficient frontier that is non-dominated, and the dashed line is the weakly efficient

outcomes that are weakly dominated by the outcome z’ on the objective z,.

(MP4)
maximize z,(x) Vk (114)
x€X
)
A
. Z**
e e — @ Z
Z
I|'_1

Figure 6.2 An example illustration of objective space
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Different solutions from the efficient frontier can be found by many different
methods but this study is interested in Tchebycheff program and the Augmented
Tchebycheff program. Tchebycheff program projects a given reference point (z** in
Figure 6.2) to the non-dominated solutions by minimizing the Tchebycheff distance
(L distance) between the reference point and z; and z,. Geometrically, Tchebycheff
program form a rectangular contour (Figure 6.3a and Figure 6.3b) around the
reference point to reach an efficient solution. The reached efficient solution is the
one with minimum L., distance from the reference point. Tchebycheff program for
MP4 is formulated as in MP5.

(MP5)
Minimize a® (115)
Subject to:
a® = (2™ =z, (x)) Vk € {1,2} (116)
x€X

However, Tchebycheff program may result in a weakly efficient solution. To
overcome this problem, Augmented Tchebycheff program is introduced. A small
augmentation is provided to the L, contour with the addition of L, distance with a
small positive coefficient p. Augmented Tchebycheff program form an octagonal
contour around the reference point to reach the efficient frontier. Augmented
Tchebycheff program can be formulated as MP6. To illustrate how the efficient

frontier is found by the two methods, Figure 6.3 is presented.

(MP6)
Minimize a® + p Yreq,23(2™" — 7 (x)) (117)
Constraint (116) and x € X

In Figure 6.3a, an efficient solution from efficient frontier is obtained with the

Tchebycheff program. In Figure 6.3b, the problem of obtaining a weakly efficient

solution with Tchebycheff program is illustrated. In Figure 6.3c, an efficient solution
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found by the Augmented Tchebycheff program is illustrated. In Figure 6.3a, z"' is
reached by the rectangular contour of Tchebycheff program and not dominated by
any outcome in objective space. In Figure 6.3b, z"' is reached by the rectangular
contour and it is weakly dominated by the outcome z’. In Figure 6.3c, z"'is reached
by the octagonal contour of the Augmented Tchebycheff program and it is not

dominated by any other outcome.

* %

Z * %k
r [ 17, !

n

a b C

Figure 6.3 An example illustration of how the efficient frontier is reached by
Tchebycheff and Augmented Tchebycheff program

It should be noted that, both formulation of Chaudhuri et al. [39] in (111)-(112) and
Augmented Tchebycheff formulation (117) in MP6 form octagonal contours. In
Augmented Tchebycheff, the shape of contour depends on the parameter p. In
formulation of Chaudhuri et al., the shape of the octagon depends on the coefficient

that is multiplied with ¥ ..+ a;.

Here we question “Can the L, distance contours illustrated in Section 6.1 (Figure
6.1) be approximated by the octagonal contour provided by Augmented Tchebycheff
program (Figure 6.3c) by working on the formulation given in objective function
(116) and equations (111)-(112)?”. In the next section, this question is answered

with empirical and theoretical foundations.

6.2  Proposed Approximation Method

In this section, first, new notation for discrete MCDM problem setting and the
proposed formulation is presented. Empirical foundations are illustrated with figures
in Section 6.2.1. Then, a suitable error function is set up for the new approximator

in Section 6.2.2. The proposed formulation is examined w.r.t approximation error
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and approximation parameters. According to the theoretical foundations in Section
6.2.2, important characteristics of the approximation method is presented. The
characteristics presented in Section 6.2.2 are also a complete guideline for the usage
of the approximator. Relevant notation used in the previous chapters are revisited

and the new notation is presented as follows.
Notation:

Jj € {1,2, ..., m} denotes the criteria where m € {2, ...} and w; denotes the criterion
weights. Formulation of a? is presented as weighted L,, distance as in equation (117).
V' denotes the weight for the affine combination of L, and L. The approximator,
Augmented Tchebycheff L,, distance Approximation method (ATLA), is denoted

with aP (V) and formulated as the affine combination of Tchebycheff (L) and

Rectilinear (L,) distances in (118). Criterion weights are normalized in (119)-(120).

w,=zqzjwfap (117)

aP(V)=Va®*+ (1 —-V)al, —o<V <1 (118)
wj = 0 Vj (120)

It should be noted that equation (120) is a modified version of equation (111) and
objective function (116). Equation (111) is not able to approximate all L,, distances
for the assumed range of V, especially when p < 1. This formulation enables
approximator to approximate all L, distances with different V' values. This
formulation is similar to (112), but it is not necessarily a positive linear combination
as in [43]. To present the capabilities and characteristics of a?(V), empirical
foundations about the aP(V) contour and theoretical foundations related to

properties of aP (V) are reported in Sections 6.2.1 and 6.2.2, respectively.

95



6.2.1 Empirical Foundations

In this section, examples of contours that are obtained with the ATLA and aP are
illustrated and compared. First, let us examine the four of example illustrations given
in Figure 6.4 for different p and V values. As it is illustrated in Section 6.1, a”
contours can be closely approximated by piecewise linear octagonal contours of new
approximator in equation (118). Criterion weights are equal in this illustration.

p=2 ‘ ' p=4
V=05 v=0.8

p=0.5 ‘ p=0.2
V=-3 ' V=-30

S

b i

Figure 6.4 Example illustration of aP (V) (dashed lines) and a” (solid curves)

contours

From Figure 6.4, it is observed that negative V values can approximate a? contours

for p < 1 and positive V values can approximate a? contours forp > 1. And as it is
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clear from equation (118), V = 0 gives a® distance and V = 1 gives a® distance. In

Figure 6.4, VV and p increase together, which forms a close approximation.

Studying IV > 1 is out of scope since ATLA formulation will return a negative value
in this case. A negative output cannot be returned by a distance function. As V
increases, the value returned by ATLA decreases which is a consistent finding of
previous presumption (VV and p increase together) since it is known that a® < a? <

a® for p > 1. The relationship between V and p are analyzed in Section 6.2.2. L,

and aP (V) are also illustrated in Figure 6.5.

Figure 6.5 Illustration of a? (V) (on the left) and a? (on the right) with different V
and p values, respectively.

Response of contours to changing criterion weights is illustrated in Figure 6.6. The
change in the contours of both ATLA and aP is similar to the same criterion weights.
This is expected since ATLA itself is a function of two L,, distances that are L; and
L., and response of L, distances to criterion weights are the same. The response of
L, contours to criterion weights is as follows. The contour extends on along the axis

of lower criterion weights and squeezed along the axis of higher criterion weights.

97



o2 v : . . . . o2

v=05 || V=0.5
w, =0.35 w =01
=065 .| w,=0.9

— : : —
V=05 ' : V=05

w =065 w,=0.9
w,=036 w,=0.1

Figure 6.6 An example of the response given by ATLA (dashed lines) and a?
(solid curves) contours to criterion weights

6.2.2 Theoretical Foundations

In this section, ATLA is analyzed for its theoretical properties. The analyses in this

section are as follows.

e Approximation error

e Optimal approximation parameter and specific cases
e Verification and approximation conditions

e Characteristics of the approximator

e Consistency of metricity conditions

98



To analyze the approximator, let us define an error function error (V). Find the least

square error (LSE) between aP and aP (V) with (121)-(122).

(LSE)
minimize error(V)? (121)
Subject to:
error(V) = aP(V) — aP (122)

LSE is a convex programming model as shown in inequality (123). Therefore,

equation (124) is applied to find the optimal approximation parameter V* with

Serror(V) _

p 0.
2
5 e;:/ozr(V) — 9 (aooz —2ala® + alz) =2(a'—a®)2>0 (123)
. (aOO_al)(ap_al) al_ap
V= (a®—-al)? = ai—a® (124)

Undefined Case a! = a®

V* isundefined for a® = a® dueto a® — a® in denominator of equation (124). There

are two cases of a where a' = a®.

Case 1: a = 0. In this case, aP = 0 Vp and the approximation can be performed with
error(V*) = 0.

Case 2: a has only one non-zero entry. In this case, a? = a? = a® = a' Vq # p.

Again, the approximation can be performed with e(V*) = 0.

To sum up, the undefined cases result with zero error (e(V*) = 0). As a result, it can
be said that e(V*) = 0 if there are at most one non-zero entry in a and choice of V

is irrelevant.
Error of Approximation of Parameter V*

To find the level of error, use V* in error (V) as follows.
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1,0_ 0,0 1,0_41,4%
a-a arfa"+a a a-a
al|—aP = —aP =qP —
al_q®

al-a? o . aP-a®

error(V*) = [

al—ag® al—q®
a? =0 (125)
Theoretically, the ATLA can approximate any L,, distance with zero error for a given
a. Note that this does not mean an octagon can approximate an oval shape with zero

error. Because the contour of aP distance is formed by infinitely many different a

vectors.
Verification

For p = 1, function returns V* = 0 (al). For p = oo, function returns V* = 1 (a*®)

as expected. From (118), it is clear that a? (V") < aP (V) for V' =V, since a® > a®.

Condition 1: For p > 1, a? < a'. Thus, the range 0 < V* < 1 can be applied since
a® <aP(V) <alvV e|[0,1].

Condition 2: For p < 1, a? > a'. Thus, the range —co < V* < 0 can be applied as
aP(V) = a' VV € (—,0)

Conditions 1 and 2 are also proven in Theorem 4 in this section. The range of
parameter V is established with the verification based on Conditions 1 and 2 as V €

(—o0, 1] which is supported with Theorem 4.

From equations (124)-(125), Conditions 1 and 2, for a given a, it can be inferred that

all L,, distances can be found using equation (118) with V € (—o, 1]. In practice, V*

is not used since it is a function of a? and if a? is calculated then V* is not needed.
Characteristics of V*

Equations (124)-(125) show that there is a V* value for each p for a given a.

Therefore, we can denote IV* as V(p|a). V(p|a) is linear w.r.t aP as shown below.

Vv(pla) _ 1 ) 1

Sap — aeat < 0 where a®™ # a (126)
82V (p|

0P =0 (127)
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Since aP is decreasing in p, V(p|a) is increasing in p due to (126)-(127). This

validates the intuitions stated in empirical foundations.
Theorem 4: V(p|a) is a concave and asymptotic function of p.

Proof: Since monotonicity of V(p|a) w.r.t. p is shown, if (128) holds then it is
concave. (128) is simplified to (129) and then (130) after elementary operations.

V(hpy + (1 — h)p,) = hV (p1) + (1 — h)V(p,) h € [0,1] (128)
1_ahp1+(1-R)p2 1_,P1 1_gp2

2k (- ) (129)

ahPit(=mpz = qpalhgp2(~1) < papi 4 (1 — p)qPe (130)

Using logarithm to relax the exponents h and (1 — h), we can obtain (129).

hlog(aPt) + (1 — h) log(aP?) < log(haP* + (1 — h)aP?) (131)

(131) always holds since the logarithm is a concave function. Moreover, V(p|a) is

asymptotic when p — co and p —» 0* as shown below.

I11_)1‘[010 aP = a® and V(pla) = :11__2: -1 (132)
1_gP
pllr(r)1+ aP = oo and V(pla) = :1_;‘00 - —o0 (133)

(132) is a trivial result. (133) can be proven by using exp of In(.) (x = e!™*):

. L1 o1
lim P = epllr(x)l+1n (aP) _ epll»r(?*’ Eln (af+---+a£l) _ eplil(r)l"'g(pl—l)?"' 1n(af+~-~+a,z;l)) _
p—0*

el" (M — o since oo >m > 2and In(m) > 0.0

Plot of V(p|a) w.r.t. p for a given a is shown in Figure 6.7. Due to (121)-(133), a?

function with 0 < p < oo can be approximated with V' € (—oo, 1].

101



V versus p

Figure 6.7 Plot of V versus p
Metricity Conditions of aP (V)

As a reminder, L, (or aP) distance function is a metric when p > 1 and is not a

metric when p < 1 due to the violation of triangular inequality.

Theorem 5: aP(V) is a metric for V > 0 which approximates Ly, distance withp = 1

which is also a metric.
Proof: (134)-(135) are used when showing the triangular inequality.
(a+b)t =al +b?! (134)
(@a+b)*” <a”+b™,since max{aj + b]-} < max{aj} + max{b]-} (135)
j j j
1. Va® + (1 —V)a® > 0 always hold for since the formulation is a convex

combination of two positive numbers for V > 0. Also, Va® + (1 — V)al =
0iff a=0.

2. Vm}ax{ lkla;} + (1 =V) X lklaj = V|k| m}ax{aj} + @A -=V)klXja

holds due to absolute function in a® and a® distances.
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3. V@+b)*+@-V)(@a+b)l<V(@®+b®)+ (1 —-V)@ +bl). This
inequality is simplified to V(a+b)* < V(a® +b®) due to (134).
V(a+b)® < V(a® + b®) always hold due to (135). A

In [45], it is stated that when V < 0, aP (V) formulation may not satisfy the metricity

conditions, but it is not proven. In this study, it is proven by Theorem 6.

Theorem 6: aP(V) is not a metric for V < 0 which approximates L,, distance function
with 0 < p < 1 which is also not metric . Metricity is violated by triangular

inequality as in L, with 0 < p < 1.
Proof:

1. Va®+ (1 —-V)al >0 always holds for since a!>a®. Va® + (1 -
V)at =0 iffa = 0.

2. ijax{ lklaj}+ (A —=V)X;lkla; =V |k|m}ax{aj} + (1 =-V)klXjq
holds due to absolute function.

3. V@+b)*+@-V)(a+b)!<V(@®+b®)+ (1-V)@*+bl). This
expression is simplified to V(a + b)* < V(a® + b*) due to (134) and the

result does not hold due to (135) and since V < 0, except for the equality

case. The equality case occurs when the a® = a; and b® = by and j’ = j".

Q

In Theorems 4-6, it is shown that the approximator aP (V) is not only consistent with

L, due to Conditions 1 and 2 but also consistent due to metricity conditions. Four

corollaries are presented as follows.

Corollary 1: There is a V value for each p of L, distance. All L, distances can be

calculated with aP (V) for a given a.

Corollary 2: V € [0,1] approximates the L,, distance with p > 1 and V € (—, 0)

approximates the L, distance with 0 < p < 1.
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Corollary 3: aP(V) is a metric when Ly, distance is a metric (p = 1and 1 =V = 0)
and aP(V) is not a metric when L, distance is nota metric(1 >p >0and 0 >V >

—oo),

Corollary 4: aP(V) is concave, monotonically increasing, and asymptotic w.r.t p

such that V.— —co when p - 0" and V —» 1 when p — oo.

It may not be precisely known which V approximates which L,, distance. However,
a set of V values can be supplied to ATLA to approximate a set of L, distances.

ATLA is illustrated with two different distance-based multicriteria sorting methods

in the next section.

6.3  Application of ATLA in MP: ATLAS Algorithm for Multicriteria
Sorting

Consider following nonlinear mathematical program, NLP1 where z(x, y) is a linear

objective function and f(.) is a linear function. The nonlinearity is caused by the

aP = p\/zj wjp|xj — yj|p in the constraint (137). RHS is a known parameter.

(NLP1)
Minimize z(x,y) (136)
Subject to:
f(aP) = RHS (137)
x,y €X

Constraints (119)-(120)

where a? contains decision variables w, x and y and it is an NLP formulation for
p & {1,}. NLP1 can be approximated as LP1 by employing formulations of
Charnes et al. [40], Kelley [41] in objective function (138) and constraints (139)-
(142).

104



(LP1)

Minimize z(x,y) + C; Xja; + Cea®™ (138)
Subject to:

f(Vva®+(1-V)X;a) =RHS,V € (—oo,1] (139)
a =x; —y; Vj (140)
aj =y — % Vj (141)
a® = a; vj (142)

Formulations of Charnes et al. [40] and Kelly [41] are minimization of distances.
Therefore, in their problem environment they are exact models. In multicriteria
sorting, the objective is to minimize error. In our case, those formulations are
approximation. Because in this study, aim is not to minimize the distance of an
alternative to a reference point. The aim is to find the exact values of the L, and L,
distance functions in an MP that are formulated with greater and equal to constraints.
In LP1, nonlinearity due to the L, distance is eliminated with ATLA as an
approximation of the original NLP1. Choice of coefficients C; and C,, are important
since the small coefficients may not properly approximate the distance functions and
large coefficients may cause a significant trade-off between the objective function
z(x,y) and distance function approximations C; ¥.; a; + C,a®. C; and C,, can be
decided via empirical study as in [6]. But to construct a well-defined approximation
method, in the next section, a heuristic algorithm is developed to find small

coefficients and it is applied to two distance-based sorting models as an example.

6.3.1 Application to Distance-based Sorting Method

In this section, a new approximation is applied to distance-based multicriteria
sorting. A distance-based multicriteria sorting formulation is constructed based on

[7] and [5]. The sorting model is named Distance-based Sorting (DS).
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Let us briefly revisit the notation and present the new relevant notation for DS. i €
{1,2, ...n} stands for the alternatives. Ordinal classes are denoted by q € {1,2, ... Q}
where class Q is the best class and class 1 is the worst class. C? is the group of

alternatives in class q. A]; stands for the criterion evaluation of alternative i from

class q on criterion j. I denotes ICV and I; denotes the j** element of I. Class

thresholds are denoted by T9. The L, distance, ||A‘Z - I|| , Is the distance-based
p

criteria aggregation function. Class assignment errors are determined by comparing
the criteria aggregation with the class thresholds of adjacent classes. e;” and e;”
represents the error of class assignment due to comparison of criteria aggregation to

worse class and better class thresholds, respectively.

DS model assigns the alternatives to the ordinal classes based on a criteria
aggregation function and class thresholds. Criteria aggregation of alternatives are
performed based on their distances to the ICV. The class thresholds are in monotonic

order increasing from most preferred (Q) to the least preferred class (1).

DS for a predetermined L,, distance is as follows.

(DS)
.. _ Yiecd ei++ei_
Minimize z = },, ST (143)
Subject to:
|AT — 1| . ef <TT ' vg>1 (144)
|4l 11| +er =T7vq<Q (145)
1| ="lg;wrlat — 1] vi 146
|i_|p_ Zjo|ij_j| vi,vq (146)
T 1>Td, 1<qg<o (147)
jwp=1 (148)
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wj = 0V (149)
T4 >0Vq<Q (150)

ei,e; 20Vi (151)

ir =

The criteria aggregation is as in equation (146). Class assignments are performed,
and assignment errors are computed in constraints (144)-(145). Class thresholds are
ordered in constraint (147) and criterion weights are normalized in constraint (148).

Class weighted total error is minimized in the objective function (143).

L, distance is used as criteria aggregation function in DS. Therefore, ATLA method

can be applied to the criteria aggregation function ||A§’ —1 |p.

To approximate the criteria aggregation function, the formulation is updated as

follows. (146) is replaced by (152) and ||A? — I|| in (144)-(145) is replaced by the
P

right hand side of equation (152). A new constraint (153) is added to approximate

the a® distance. Objective function is updated as (154). This version of the DS is

named Approximated DS.

||A§’—1||pzVa;>°+(1—V)2jwj|A?j—1j| (152)
tre” 0
Minimize z = ¥, Zieca & Tce; |+C°°‘Va‘ (154)

Since |A‘Zj — I;| term is a parameter, rectilinear distance is not approximated in this

model. C,,  in the objective function (154) should be decided properly. If it is a high
coefficient there may exist a trade-off that decreases the accuracy by increasing the
error. If it is low, then an a;°value may be determined erroneously, that is a;° >
w; |Al-j — Ij|. Therefore C,, , must be low to maximize accuracy and sufficiently high

to correctly approximate the L, (a;°) distance. To approximate a set of L,, distances
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and determine a proper C, coefficient, ATLA Sorting (ATLAS) algorithm is

developed.

New notation for ATLAS is as follows. T, A(V), T,A(V),w* (V) and T*(V) denote
the training accuracy, test accuracy, optimal weights and thresholds that are obtained
for a predetermined V, respectively. Feasibility Condition (FC) is developed for

checking if the a;° approximations are correct. FC is formulated as follows:

FC =Y, (155)

a;’ — m]‘.lx{Wj|Aij ~ 1|}

FC = 0 means that all a;° approximation are correct and FS > 0 means that a;°
approximations are incorrect for at least one i. The accuracy (for both training and
test) is computed as follows. n, and n, denote the size of training and test data
respectively, i, € {1,2,...,n,} and is € {1,2,...,ns}. §(.) is an indicator function,

returns 1 if the expression in the parenthesis is true and returns 0 if it is false.

T.A(V) = =%, 8(eit + e, = 0) (156)
TAWV) ==X, 8(eif + e = 0) (157)

To compute T;A(V), find the error variables of the test data by supplying parameters
V,w*(V), T*(V) to TestCalculationModel-ApproximatedDS in Appendix E. w* (V)
and T*(V) wpair is the optimal solution of ApproximatedDS model for a
predetermined V. TestCalculationModel-ApproximatedDS is not an optimization

problem, since V,w*(V),T*(V) are known parameters except for ei‘; and e;_. It is
only used to calculate ei’; and e;. Cloop and Vloop are indexes used for looping

through a set of C, , and V values.

ATLAS algorithm supplies a set of V values to the approximated sorting model,
sequentially. For each V value an LP is solved, and feasibility check is done for the
approximation of a® with FC formulation. The LP that is solved is the

ApproximatedDS. C, ,, values are systematically increased from a small value to a
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higher value until FC = 0 is satisfied to find a small coefficient to approximate a®

distance in formulation of ATLA.
ATLAS Algorithm:

Step 1: Determine a set of V values,V = [...] ordered in ascending order of |V|.
Set Vioop = 1, Cloop = 1,Csy-1 = 0.

Step 2: Solve "Approximated DS" for training data with:

V = V[Vloop], Determine  Co 7[y100p](Cloop) such that Ce,7iyie0p)(Cloop) >
Co,7[vioop-1](Cloop), go to Step 3.

Step 3: Check feasibility of a®:
If FC = 0, Feasible a;°:
Reset Cloop = 1, record T, A(V), w*(V) and T*(V). Go to Step 4.
Else, Infeasible a;°:
Update Cloop = Cloop + 1. Go to step 2.
Step 4: Check termination condition:
If Vioop < |V|, Vloop = Vioop + 1, go to step 2.
Else Terminate.
Outputs: T, A(V),w*(V) and T*(V)

In the first step of the algorithm, the sets for performing two loops are initialized.
The first loop is for supplying a set of V values and the second loop is for finding a
small C,,, threshold. |V| is the cardinality of V. Cloop is used to find a small
coefficient of approximation to avoid trade-off between the original objective
function of the model (minimizing total error) and distance approximation. In the
second step, the sorting model is solved with the V and Cy, (Csy) Values. Co, is
recorded as C,, y and aggressively increased to speed up the algorithm as in equation

(158). In empirical studies, it is observed that this kind of aggressive increase in C,,
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do not decrease the solution quality but improves the solution time significantly. In

this study, C,y is determined such that:

Coo,y—1+Cloop*|V[Vioop]|+100
102

Coov(Cloop) = (158)

This formulation is determined by empirical study. In step 3, the feasibility of L,
distance is checked. If FC = 0 condition is true, then with a small C, coefficient
the correct a;° values are found, and the algorithm can iterate to the next V value. If
the feasibility condition is false, then the C,, value is increased as in step 2 until a
sufficiently large C,,y is found. However, different C,, formulations can be used
based on the choice of analyst or DM. In this way, a set of different L,, distances are

approximated and solutions for those L,, distances are explored.

ATLAS Algorithm solves two important problems addressed in Chapter 1. Firstly, it
explores a set of L, distances iteratively by solving a number of computationally
inexpensive LP models instead of computationally expensive NLP models. This is
done by looping through a set of V values. By looping through the C, , coefficients
from low to high values, it finds a small coefficient of weighted Tchebycheff distance
that is sufficiently large to satisfy af® = m]ax{wj|Al-]- — I;|} vi. Computationally
expensive NLP models are approximated as LP models and this can reduce the
solution time, significantly. ATLAS explores solutions of a set of L, distance
approximations. Therefore, obtaining the solutions of different approximated L,
distances in a short time is a solution to the problem of determining which L,
distance to use. Still, which V value approximates which L,, distance is not known.

This problem is handled with one of alternative courses of actions, namely BALA in
Section 6.4.

6.3.2 Application to DISWOTH

ATLAS is also applied to DISWOTH [6] that is a nearest centroid-based classifier.

Nearest centroid-based classifiers also require the usage of distance functions. In
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DISWOTH, class centroids are employed to represent the classes. Class assignment
of DISWOTH method is performed based comparison of alternatives to the class
centroids. An alternative is assigned to class q if the centroid of class q is the closest

centroid to the alternative.

Let us briefly recall the notation related to DISWOTH method. ,u}’ represents the j¢"
element of centroid of class q. /1? is estimated with arithmetic average as in equation

(159). €; is the error of class assignment. e; returns zero if the closest centroid to A?

IS .uj-’ and otherwise it returns a positive value. o is an infinitesimal positive scalar.

1 .
ul = Toa) Ziece Al V), vq (159)

DISWOTH model for a predetermined L,, distance is as follows.

(DISWOTH)
... _ Yiecd €i

Minimize z = ZQW (160)
Subject to:

ei—ez||A?—,uq||p—||A?—uT|quqtr,Vi (161)

P P

||A? — yr| , = sz ij |A?j —uj| Vi vr (162)
Constraints (148)-(149)

€; =>0Vi (163)

Objective function (160) minimizes the class weighted classification error.

Constraint (161) performs the class assignment and constraint (163) is the sign

in constraint (161) can be

constraint of e;. ||A? —uq||pand ||A§’ -y )

approximated with equation (164). Equation (162) is replaced with equation (164).
a;° can be approximated with constraint (165) and objective function is updated as
(166). This version of the DISWOTH is named ApproximatedDISWOTH.
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l

||A? - #"||p =Vay + (1 -V) X;w|A], — | vq,vi (164)

ai® = wj|Al, — uf| vj, vr, vi (165)
Minimize 7 = ., et oCter e (166)

Approximation of DISWOTH method with ATLAS is the same as in DS.
"ApproximatedDS" expression in step 2 of ATLAS is replaced by
"ApproximatedDISWOTH". Every explanation on the ATLAS algorithm for DS is
also valid for DISWOTH. There is no T*(V) in ATLAS for DISWOTH. For
computation of T,A(V) and T;A(V), e, e;. and e;,e; expressions of DS are
replaced by e; _ and e; , respectively. To compute T;A(V), find the error variables of
the test data by supplying parameters ¥V and w*(V) to TestCalculationModel-
ApproximatedDISWOTH in Appendix E for ApproximatedDISWOTH model.
Solving TestCalculationModel-ApproximatedDISWOTH is not an optimization
problem, since V,w*(V) are known parameters except for e; . It is only used for

computation of e; .

6.4  Alternative Courses of Actions and Implementation Plan

To present a full guideline on the efficient usage of ATLAS, three alternative courses
of actions related to implementation are presented. The alternative courses of actions
are also used to avoid from overfitting. The actions are solely based on training
accuracy of the ATLAS outputs. The test accuracy is computed based on the

alternative courses of actions.

To be able to clearly explain the application of alternative courses of actions, a
numerical example is given. Consider the following example solution of ATLAS
algorithm that is for DS model for a hypothetical data set in Table 6.1. ATLAS
algorithm is run for IV € {0.1,0.5,0.9}. The hypothetical data set has two classes and

three criteria. Numerical examples are given using this example for alternative
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courses of actions. Computations in the alternative courses of actions are performed
after ATLAS is applied.

Table 6.1 A numerical example for the alternative courses of actions

w (V) for3  T*(V) for

V Value T.A(V)
criteria 2 classes
0.1 0.2,0.1,0.7 3 78
0.5 0.4,0.2,0.4 2 79
0.9 0.2,0.3,0.5 5 72

Best of All Action (BA)

The first action is the Best of all Action (BA). In BA, the output of the ATLAS
algorithm is the best training accuracy giving V value. Therefore, in implementation
for DS to determine which w*(V)and T*(V) are to be used (only w*(V) for
DISWOTH), T, A(V) is used. BA action is applied as follows. First, V' value that
satisfies V' = arg mgX{TrA(V)} is chosen. Then, w*(V') and T*(V'") are used in

test accuracy calculation and T;A(V") is reported to DM. This action can be a greedy
approach and may result in a poor test accuracy (T;A(V")). For BA, on the numerical
example, T,A(V) is computed using V' = 0.5, w*(V") = [0.4,0.2,0.4] and T* (V') =
2.

Smoothing Action (SA)

The second action is the Smoothing Action (SA). In SA, the output of the ATLAS
algorithm is the training accuracy weighted V' value. It results in aggregated weight
(w) and threshold (T') instead of the best V, w*(V) and T*(V) in BA.

T,A(V') is computed with V', w and T. This action is developed to smooth out
overfitting results. To find training accuracy weighted V' value, training accuracy
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output of each V value is normalized. ¢ (V") denotes the normalized T,A(V") and

T A(VT)
ZV TTA(V) '

formulated as (V') =

The criterion weights and thresholds are computed asw = ), (V)w* (V) and T =
YroWMT*(V)and V' =Y, @(V)V. Then, by using w, T and V', compute the test

accuracy to be reported to DM (T, A(V")). For DISWOTH, to compute the T,A(V"),

78

T is not needed. On the numerical example, ¢(0.1) = 779173

= 0.3406, ¢(0.5) =

79
78+79+72

72
78+79+72

= 0.345, ¢(0.9) = = 0.3144.

For SA, parameters that are used to compute the T;A(V") are computed as follows.
Update V' value as V' = 0.3406 = 0.1 + 0.345 * 0.5 + 0.3144 = 0.9 = 0.489.

Update  Criterion  weights as  w = 0.3406 % [0.2,0.1,0.7] + 0.345 *
[0.4,0.2,0.4] + 0.3144 % [0.2,0.3,0.5] = [0.269,0.229,0.532].

Update Class threshold as T = 0.3406 * 3 + 0.345 * 2 + 0.3144 * 5 = 3.2838.

Best Accuracy L, Approximation Action (BALA)

The third action is Best Accuracy L, approximation Action (BALA). In BALA, the
outputs of the ATLAS algorithm are used with the original NLP sorting models.
w*(V) and T*(V) are supplied as parameters into DS (or DISWOTH) models
(originals models, not approximated ones) with different L, distances. e/ and e;_
are computed for given w*(V) and T*(V) for L,. Training accuracy for each V,
w*(V) and T*(V) and L,, distance is computed with (156). Not that this step does

not solve computationally expensive NLP models because the decision variables of

those NLP models are given as parameters to compute error variables.

w*(V) and T*(V) outputs of each VV value may result in different training accuracy
with each L, distance. The training accuracy table T, A(V, p) is obtained. For each
L, distance, the highest training accuracy giving V' is obtained as (V',p) =

argmax{T,A(V,p)}.
v
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After obtaining (V', p) pair for all p, w*(V") and T*(V") are used for computing the
test accuracy for the L, distance. The result is T;A(p) table BALA can be
recommended when L,, distance has a meaning for DM or the analyst conducting the

study. BALA is explained as follows for DS model.
BALA Action:
Step 1: Apply ATLAS algorithm to obtain w*(V) and T*(V).

Step 2: For all p and V, supply w*(V), T*(V) to L, distance-based sorting model
and solve for e{; and e;_ (error of training data). It should be noted that this step is

not an optimization since all decision variables of the DS model are supplied as
parameters except for errors. This step is just computation of errors w.r.t given
p,w*(V") and T*(V"). Obtain T, A(V, p) table.

Step 3: To obtain (V', p) pairs, apply (V',p) = argmax{T,-A(V,p)} for all p. Use
14

w* (V") and T*(V') in test accuracy computation to obtain e;; and e;_ (error of test
data). Calculate the test accuracy of L, distance-based original NLP model using

(157).
Step 4: Construct TS, A(p) table to present to DM.

After constructing T;A(p) table, the best test accuracies for different L, distances

can be obtained. The accuracy values in this table can also be interpreted as test
accuracy of heuristic solutions to the original model.

A new numerical example for BALA method is as follows. On the numerical
example, assume p € {1, 2, 3} are to be used. Supply w*(0.1), w*(0.5),w*(0.9) and
T*(0.1),T7*(0.5),T7*(0.9) to DS model with p € {1,2,3}. Solve DS model with
these weights for each p value to calculate e;; and e; . Obtain 3x3 T A(V, p) matrix

as in Table 6.2.
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Table 6.2 An example T, A(V, p) table

Inputs\p values p=1 p=2 p=3
V =0.1,w"(0.1),T(0.1) 82 71 70
V = 0.5, w*(0.5),T*(0.5) 70 81 75
V =0.7,w*(0.7),T*(0.7) 68 72 73

Based on Table 6.2, the (V/, p) pair can be found as in Table 6.3 as follows.

Table 6.3 Example of (V’,p) pairs based on the example T, A(V, p)

VI

T,A(p) is found

0.1

w*(0.1), T*(0.1)

0.5

w*(0.5), T*(0.5)

0.9

w*(0.7),T*(0.7)

From T,.A(V,p) table (Table 6.2), (V',p) is obtained as in Table 6.3. To compute
T,A(p),use w*(0.1) and T*(0.1) forp = 1, use w*(0.5) and T*(0.5) forp = 2, use

w*(0.9) and T*(0.9) for p = 3.

Implementation of ATLAS algorithm is based on those three alternative courses of
actions. One can apply one of them. All of them can be applied and between the test
results of three alternative courses of actions, the method with the best test accuracy

can be chosen.
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CHAPTER 7

EXPERIMENTS OF ATLAS METHOD

In this chapter, DS and DISWOTH model are solved for 10 different L, distances
forp € {0.5,1,1.5,2,2.5,3,3.5,4,4.5,5}. To approximate these distances, twenty-
four different V values are used as V = [0, 0.05, 0.1, 0.15,...,0.95,1,—3,—6,—9]
based on the empirical and theoretical foundations in Section 6.2.1. The original NLP
DS and DISWOTH results are compared with the ATLAS results based on the test

accuracy and the solution time performance measures.
Software and Hardware Setting

The software and the hardware setting are the same as in Chapter 5. Due to constraint
tolerance of the software, feasibility check step of ATLAS (step 3) is performed
using FC < 10~? instead of FC = 0.

Datasets

The data sets used to evaluate the performance of methods in this study and
assumptions for maximization and minimization criteria are the same as in Section
5.1.1.

7.1  Experiments of DS Model

Test accuracy for each p and total training time for all selected p values are reported
in Table 7.1. Also, average test accuracy of all p values for each data set and average
training time are calculated. On average, it takes 23794.03 seconds to train DS model
for a data set for 10 different p values. Training time of each data set for each p value
for DS model is reported in Table 10.10 in Appendix C.
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ATLAS results for BA and SA

Experimental results of ATLAS method are reported in Table 7.2. On average, it
takes 6.2 seconds to train ApproximatedDS model with ATLAS for a data set for 24
different V values. Maximum total training time of ATLAS for DS is 11.48 seconds
(CAR data set) while minimum total training time for DS is 210.34 seconds (ESL
data set). Training time of ATLAS for all V values and number of iterations to satisfy
FC condition are reported in Table 10.12 in Appendix D. A significant improvement

in training time is observed.

The average test accuracy for DS is 84.13 as reported in Table 7.1. In Table 7.2, BA
and SA approaches result in 85.60 and 80.45 average test accuracy, respectively.
Average test accuracy is better than original DS for BA action and worse than
original DS for SA action. SA approach may decrease the test accuracy in some cases
(e.g., BC data set test accuracy result). It is specifically designed for overfitting issue.
As an example, test accuracy and BA result of MMG data set can be seen. Test
accuracy of MMG significantly increase when SA is applied instead of BA. For the
results similar to MMG, SA may be used instead of BA. More than 99.9 average
time improvement is observed with 1.47 (3.68) improvement (loss) in average test
accuracy for BA (SA). In 5 (two) out of 9 experiments, BA (SA) results are better
than the best test accuracy obtained by DS.
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Table 7.2 ATLAS algorithm results for Approximated DS

Total
Approximated DS BA SA Training

Time!?
AUTOMPG 86.4213 90.12*14 6.95
BC 100.00* 62.07 4.64
CAR 96.23* 83.48 11.48
CCS 79.31 72.41 4.95
CPU 86.05* 86.05* 4.35
ESL 97.92* 87.50 4.63
LEV 88.89* 83.84 5.83
ASA 97.77 96.65 1.88
MMG 50.00 78.13 6.77
Average 85.60* 80.45 5.72

2 Training Time column is the total time to solve all LP models for 24 V values.
13 Red colored entries are better than average DS results for each data set.

14 Entries with “*” are greater than highest test accuracy observed with DS model.

ATLAS results for BALA

BALA results are reported in Table 7.3. Table 7.3 is a T;A*(p) table for DS. In the
experiments of AUTOMPG and BC data sets, BALA results with better accuracy 9
out of 10 experiments. Except for CAR data set, BALA results in better test accuracy
for at least one distance function. 24 out of 90 experiments (the ones with the *
sign), BALA accuracies are better than the highest accuracy obtained by DS. On the
average test accuracy, for all p values (Average row), BALA results with better
accuracies for six different p values. On the average test accuracy of data sets
(Average column), BALA results with better average accuracy for four out of 9 data
sets. On average, BALA test accuracy is 83.50 while DS test accuracy is 84.13. Less
than 1 loss is observed in average test accuracy. This is a promising result since the

time improvement is more than 99.9.
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7.2 Experiments of DISWOTH Model

DISWOTH model is also solved for 9 data sets and 10 different p values as DS. Test
accuracy for each p and total training time for all selected p values are reported in
Table 7.4. Also, average test accuracy of all p values for each data set and average
training time are calculated to compare ATLAS with average accuracy value and
average time. On average, it takes 77605.08 seconds to train DISWOTH model for
a data set for 10 different p values. Training time of each data set for each p value
for DISWOTH model is reported in Table 10.11 Appendix C.
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ATLAS results for BA and SA

Experimental results of ATLAS method are reported in Table 7.5. On average, it
takes 50.99 seconds to train Approximated DISWOTH model with ATLAS for a
data set for 24 different IV values. Number of iterations to satisfy FC condition are
reported in Table 10.13 in Appendix D. The average test accuracy for DISWOTH is
72.18 as reported in Table 7.5. BA and SA approach result in 74.8 and 78.12 test
accuracy, respectively. Average test accuracy is better than DISWOTH for both BA
and SA actions. More than 99.9 improvement in average solution time is observed
with 2.62 (5.94) improvement is observed with BA (SA) action. In DISWOTH

experiments, accuracy loss is not observed in average test accuracy results.

Table 7.5 ATLAS algorithm results for Approximated DISWOTH

: Total
Approximated o
BA SA Training
DISWOTH :
Time!®

AUTOMPG 83.95%19. 20 86.42* 8.16
BC 70.69* 79.31* 7.82
CAR 68.99 60.58 378.1
CCS 72.91* 75.86* 14.05
CPU 81.40 83.72* 3.36
ESL 89.58 85.42 3.39
LEV 78.79 82.32* 11.51
ASA 94.97* 73.18 28.6
MMG 31.88 76.25 3.93
Average 74.80 78.12 50.99

18 Training Time column is the total time to solve all LP models for 24 V values.
19 Red colored entries are better than average DISWOTH results for each data set.
20 Entries with “*” are higher than highest test accuracy observed with DISWOTH model
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ATLAS results for BALA

BALA results are reported in Table 7.6. Table 7.6 is a T,A*(p) table for DISWOTH.
For BC data set, BALA always results better test accuracy than DISWOTH. In the
experiments of CCS and MMG data sets, BALA results with better accuracies 9 out
of 10 p values. Except for CAR and ASA data sets, BALA results in better test
accuracy for at least 5 out of 10 p values. 52 out of 90 experiments (the ones with
the * sign), BALA accuracies are better than the highest accuracy obtained by
DISWOTH. On the average test accuracy, for all p values (Average row), BALA
always results with better accuracies. 9 out of 10 results, average BALA accuracies
are better than the best average result obtained by DISWOTH. On the average test
accuracy of data sets (Average column), BALA results with better average accuracy
for six out of 9 data sets. On average, BALA test accuracy is 77.27 while DISWOTH
test accuracy is 72.18. More than 99.9 average time improvement is observed with

more than 5 gain in average test accuracy.
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7.3  Comparison of ATLAS with UTADIS

The UTADIS results in Chapter 5 are also used in this section. ATLAS for DS and
DISWOTH are compared with UTADIS. To compare BALA with UTADIS, average
test accuracy of each data set is used (Average column in Tables 7.3 and 7.6). Test
accuracy and training time of UTADIS are reported in Table 7.7. To ease the
comparison, BA, SA, and BALA (average column) results are added to Table 7.7.
There are only six test accuracy results in three data sets that are worse than
UTADIS. The training time is worse than UTADIS for all data sets. This is expected
since only a single LP model is solved for UTADIS while 24 of LP models are
solved for ATLAS. Although the solutions that are obtained with ATLAS are results
of approximations, the test accuracy is significantly higher than UTADIS.
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CHAPTER 8

DISCUSSION

In this chapter, the proposed methods and the results are discussed. Three different
topics are studied in this thesis. Comments and discussion on the topics studied are

as follows.

8.1 Discussions on Linearization of DISWOTH and L,,-Centroid

The first study is the linearization of DISWOTH with MINLP approximation and
improving accuracy with L,-Centroid. It is proven that it can also be converted to
MIP. The MIP model is named Bin-Dis. Bin-Dis is advantageous in terms of both
time and training accuracy. The time improvement is intuitive due to linearization.
The accuracy improvement is also an intuitive result. Because the error formulation
of DISWOTH is continuous (a nonnegative continuous variable). However, the
definition of an erroneous class assignment is binary. In Bin-Dis, the error variable
is defined as a binary variable as accurate and inaccurate. It can be inferred from the
formulations of DISWOTH and Bin-Dis that minimizing the error with a continuous
variable is an indirect way to minimize the number of errors. Bin-Dis minimizes the
number of errors directly. This can be interpreted in terms of means and ends

objective.

The maximum accuracy is formulated as the minimum the number of errors in
Chapter 5 equations (101)-(103). Minimizing the continuous error variables in
DISWOTH is a means objective to reach maximum accuracy. Minimizing the
number of errors in Bin-Dis is ends objective to maximize accuracy and also the

fundamental objective.
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L,-Centroid [25] is employed as a centroid formulation. The problem of choosing an
appropriate centroid-distance pair is also solved with a heuristic algorithm (DC
algorithm). Employing the L,-Centroid, improved the test accuracy. This is also an
intuitive result based on the observations of Tian et al. [25]. The method is designed
to regularize the centroid-based learning methods (regularization is done by
improving the test accuracy). It improves the test accuracy of DISWOTH as it is

intended.

When L,,-Centroid and Bin-Dis are used together, namely, Bin-L,Dis, the results are
the best on average. Considering ordering of classes provides an insignificant benefit
to the accuracy. This result is also intuitive based on the study of Ben-David et al.
[21].

8.2  Discussions on Monotonically Ordered Centroids Case

For the DISWOTH method, when the centroids are monotonically ordered, it is
proven that there are redundant alternatives. It is shown that these redundancy
relations can be formulated with linear expressions. These linear expressions are
functions of centroids, and they work for all L, distances. With a reverse
engineering, a new LP model (AIRO) is developed to find monotonically ordered

centroids that works for all L, distances.

If the centroids were decision variables in DISWOTH, it would be highly nonlinear.
Solving such model is computationally expensive. The AIRO model is an LP model
that results in monotonic centroids for the DISWOTH (or NC) method. The fact that
the formulation is an LP allows the analyst or DM to analyze the method for different

L, distances in very short amount of time.

The economic interpretation of the monotonic order is related to the preference-
order. Since the classes are in ordinal scale and preference ordered, ordering the class
representatives that are so-called class centroids is a strong assumption. The

monotonic order is an indication of strict dominance. In any type of preference
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function, a strictly monotonic relationship is a direct indication of the preference. If
the alternative A strictly dominates another alternative B, on any occasion, A is

preferred to B.

The economic interpretation of monotonic centroids is intuitive. The classification
accuracy is not as high as other methods that are proposed in this thesis (e.g., Bin-
L,Dis). The weight estimation model (WE) may not be a good or correct way of
estimating criterion weights. However, the benefit of linearization of DISWOTH is
observed in the experiments. According to trade-off table, AIRO-ECW results in
better accuracy and solution time compared with DISWOTH. Results of AIRO-WE
is worse than the AIRO-ECW. This means that there may be a better way of

estimating the criterion weights that maximizes the classification accuracy.

8.3 Discussions on the ATLAS method

The third topic studied in this thesis is the linearization of all L, distances with a
single formula that is an approximation. ATLAS is an octagonal LP approximation
to NLP distance-based MP approaches. Although examples and experiments are
restricted with MP-based multicriteria sorting models, it can be used in any kind of

distance-based method that requires the usage of L,, distance.

The analyses on the new approximation are conducted with empirical and theoretical
studies. An analysis is conducted to examine the characteristics of the approximation
method. The Augmented Tchebycheff formulation can be converted to L,, distance

approximation with little effort due to its simplicity. Although the formulation is
quite simple, the benefits are noticeable. Besides, the characteristics of the

approximation used in the ATLAS method is consistent with L, distances. A set of
ATLAS parameters can be supplied to the method and a set of L,, distances can be

approximated in a noticeably short time.
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As the benefit of linearization, solution time decreases significantly. This is an
intuitive result. Besides the time improvement, test accuracy of the new

approximation is also higher than the original methods in most cases.

The outputs of the ATLAS method can be interpreted in different ways. In the
experiments, three different interpretations of outputs are introduced as alternative
courses of actions. Based on the interpretation, purposeful actions or formulations
can be studied. In our example, we have developed a greedy approach (BA), a
conservative aggregated approach (SA) and another approach that can be interpreted

as a heuristic approach to distance-based models (BALA).

As an example, to many possible extensions, a voting mechanism can be developed
based on the outputs of the ATLAS method. In our experiments, since 24 different
I values are used, there are 24 outputs of the ATLAS method. One output (i.e., say
the outcome of IV = 0.1) can classify an alternative into class 1 and another output
can classify the same alternative into class 2 (i.e., say the outcome of V' = 0.3). This
class assignments can be considered as votes. Out of 24 outputs, the number of times
that a specific alternative is voted for a specific class can be counted. This is the same
as counting the number of votes for the class assignment of the alternative. DM can
be informed about the possible class assignments (number of votes for each class)
for that alternative. Informing DM about the possible outcomes provides a clear

perspective on the valuation of the alternative.

Other than being an approximation method, ATLAS can also be considered as the
first Augmented Tchebycheff program based multicriteria sorting method in the
literature. The unique property of this method is that it can draw an octagonal
classification decision boundary around a reference point. The classification decision
boundary of ATLAS is illustrated in criterion space in Figure 8.1 for a two criteria

problem and three-class problem.
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Figure 8.1 Decision boundary of classification of ATLAS
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CHAPTER 9

CONCLUSION

In this thesis, three studies are conducted for distance-based multicriteria sorting.
Based on the studies, new methods are proposed. Experiments are conducted on
different application areas to examine the applicability of the new methods in

different areas.

The first study is based on DISWOTH which is a nearest centroid type of sorting
method. In this study, three new nearest centroid-based multi-criteria sorting
methods are developed as extensions of DISWOTH. The proposed methods are
linearized to improve solution time and classification accuracy. Linearization is
based on the MINLP formulation of the existing NLP DISWOTH model. L,-
Centroid is employed to improve the classification accuracy. Compromise Ranking
and Additive Difference Model constraints are also added to assure monotonicity of
class centroids. The models are regularized with monotonicity constraints that seek
monotonic alternative solutions. The models are solved for training data and
alternatives of test data are assigned to the class of the closest predetermined class
centroid by using optimal criterion weights of training data.

Model performance is evaluated over the solution time and test accuracy results.
Experiments are conducted on 9 data sets from different application areas. Additional
tests and evaluations are performed to rank the methods from best to worst. Bin-Dis,
L,Dis and Bin-L,Dis methods are compared with UTADIS and DISWOTH with Ly,

Ly, Lz and Ly,.

Results indicate that the solution times of NLP models significantly decrease after
linearization with binary variables in addition to improvement in all of training
accuracies and average test accuracies. Bin-L,,Dis and its extensions have the highest

average training accuracy and test accuracy. Experiments show that the Bin-L,Dis

135



method is both time and accuracy effective method when compared with UTADIS
and DISWOTH methods. TOPSIS ranked Bin-L,,Dis as the best method based on
average rankings considering both classification accuracy and solution time

performance criterion.

For future work, linearization of DISWOTH with a binary variable can be extended
to all p norms, and similar nearest centroid-based NLP models can be considered
with binary variables to benefit from linearization. Bin-L,Dis can be studied further
for different data sets with different sampling techniques and training sizes and can

be applied to real life problems.

The second study focuses on the monotonically ordered centroids case of the first
study. It is proven that there are conditions that a limited set of alternatives can be
redundant when the centroids are monotonically ordered. The redundancy
formulation is linear. A linear programming model is developed based on the
redundancy formulation. The new method is compared with DISWOTH and
UTADIS as in the first study. In the experiments and discussion, it is reported that
considering monotonicity (strict dominance) does not improve the classification
accuracy. The weight estimation method results in worse test accuracy than the equal
weights case. However, linearization benefits the solution time. The effect of this
benefit is observed with the accuracy-time trade-off and multicriteria ranking. Also,
economic interpretation of the monotonic order is given. This study can be extended
by applying different mathematical programs based on AIRO and different weight

estimation techniques.

In the third study, a new linear L,, distance approximation method is developed based
on Augmented Tchebycheff program and Chaudhuri et al.” s formulation. The
proposed method is analyzed to explain the characteristics. Metricity conditions are
presented and shown that they are consistent with L,, distance. The analyses provide
a full guideline for the user. It is shown that the new method can be adapted to
mathematical programming. The proposed method is adapted to distance-based
multicriteria sorting via an algorithm, namely ATLAS. ATLAS algorithm is
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developed for application of the new approximator to Multicriteria Sorting problems
that are based on mathematical programming and distance functions. Although it is
applied to multicriteria sorting as an example, it can also be applied to other
mathematical programming and multicriteria decision making settings. Examples
can be distance-based ranking methods, —multi-objective optimization, and data
mining methods. ATLAS provides a linear approximation for the distance-based
nonlinear programming models. Three alternative courses of actions are developed
to fully benefit from outputs of the method. One of the actions (SA) are specifically

designed to protect decision maker from overfitting issue.

Experiments are conducted to compare the original distance-based sorting methods
with their approximations based on test accuracy and training time performance
measures. When compared with the first two studies, more distance functions are
used in experiments. Experimental results show that ATLAS is a time effective
method as it is computationally inexpensive. On average, test accuracy results of the
ATLAS method are better than the results of original distance-based NLP sorting
models. To sum up, the new linear approximation and ATLAS significantly decrease
the training time of distance-based nonlinear programming and increase the average
test accuracy. Based on the outputs of the ATLAS, new alternative courses of actions
can be developed. Test accuracy results of new alternative courses of actions can be

examined. The parameter of approximation (V' value) can be further analyzed.

To sum up, in all of three studies, improvements in computation times are obtained

as a result of linearization according to the experimental results.
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APPENDICES

A. Proof of Ordered Alternative Solutions

To illustrate the alternative ordered solutions in Com and ADM extensions, let z* =

Y.ia; where a; € {0,1} as in Bin-L, Dis and the two extensions. z* denotes optimal

total classification error and a; denotes the optimal class assignment error of A7. Let
z4,2z8,z¢ € N* in Figure 10.1, denote three alternative solutions of minimum
number of incorrect assignments that is z4 = z8 = z¢ = z*. Let 14,25 and A€ be
the A values obtained in nodes A, B and C, respectively. Variable A is the alternative
solution seeking variables in constraints (53) and (57). Assume A4 > A8 > A€ in
Figure 10.1. Then, z4 — 24 < z8 — 28 < z¢ — A€ (objective function (51)) holds
and z4 — A4 is chosen as the optimal solution. Since 14,15, A¢ € (—1,¢] and z4 —
M<zr+1,28-28<z°+1, 2z — 2° < z* + 1, ordering of classes extensions

do not decrease classification accuracy.

Node
Node A Node Node Node
ZA,WA,AV\!
Node B Node Node C
C C 7C
zB whB, 2P zv,w", A

Figure 10.1 Example illustration of alternative solution of best accuracy outcomes
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Without decreasing accuracy, alternative solution in Node A is selected which satisfy

ordering the most for Bin-L,,Dis Com extension as follows.
wA q _ wA q+1 wB q _ wB q+1
o dy Wi, —dy Wi >dy (w1 —dy (ui™,1)
w4 q _ w4 q+1 wC q _ wC q+1
o Ay (ui,D)—day” uithD >dy (ui, ) —dy (uithI)
Same applies to Bin-L,Dis ADM extension as follows.

o Upau?—pT™H > U, s(ul—pi™)
o Upya(u?—p®™H) > U, c(u?—pu?™1)
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B. AIRO Experiments

Table 10.1 AIRO test accuracy results of AUTOMPG data set

AIRO-WE

V\p L, L, Ls L,

05 8148 9136 9136  81.48
0.6 6296 9136 9136  54.32
07 6296 9136 9136  54.32
08 6296 9136 9136  54.32
09 7778 9136 9136  51.85

AIRO-ECW

V\p L, L, Ls L,

05 4815 7037  69.14  80.25
0.6 4815  69.14 9259  60.49
0.7 4815  69.14 9259  60.49
0.8 4815  69.14 9259  60.49
09 4815 8272 7531  71.60

Table 10.2 AIRO test accuracy results of CPU data set

AIRO-WE

V\p L, L, Ls L,

05 86.05 8140 8837  86.05
0.6 8837 90.70 8837  83.72
07 8837 9070 8837  83.72
0.8 8837 90.70 8837  83.72
09 8140 8140 90.70  83.72

AIRO-ECW

V\p L, L, Ls L,

05 7442 7209 7209  74.42
0.6 9070  93.02  93.02  93.02
07 9070  93.02  93.02  93.02
0.8 9070  93.02  93.02  93.02
09 9070  90.70  93.02  90.70
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Table 10.3 AIRO test accuracy results of BC data set

AIRO-WE

V\p Ly L, Ly Ly

0.5 62.07 62.07 62.07 62.07
0.6 62.07 62.07 62.07 62.07
0.7 62.07 62.07 62.07 62.07
0.8 62.07 62.07 62.07 62.07
0.9 62.07 62.07 62.07 62.07

AIRO-ECW

Vo o L, L, L L,

0.5 67.24 62.07 58.62 62.07
0.6 53.45 27.59 27.59 27.59
0.7 27.59 27.59 27.59 27.59
0.8 27.59 27.59 27.59 27.59
0.9 27.59 27.59 27.59 27.59

Table 10.4 AIRO test accuracy results of ESL data set

AIRO-WE

V\p L, L, Ls L,

05 6875 7500 8438 6250
06 5521 7083 5625  52.08
07 5521 7083 5625  52.08
08 5521 7083 5625  52.08
09 7500 70.83 8438  75.00

AIRO-ECW

V\p L, L, Ls L,

05 8750 8542 8229  82.29
0.6 8750 7396 7396  75.00
07 8750 7396 7396  75.00
0.8 8750 7396  73.96  75.00
09 8438 7396 7396  75.00
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Table 10.5 AIRO test accuracy results of CAR data set

AIRO-WE

V\p L, L, Ls L,

05 2406 2899 4638  28.99
06 3594 1681 4290  29.28
07 3536 2725 3942 1043
08 1971 2899 4638  16.23
09 4319 2928 3449 1246

AIRO-ECW

V\p L, L, Ls L,

05 3797 2812 2725 2522
06 4754 5652 5884  60.00
07 4638 5652  58.84  60.00
08 4638 5652 5884  60.00
09 4638 5652  58.84  60.00

Table 10.6 AIRO test accuracy results of CCS data set

AIRO-WE
V\p Ly L, Ls Ly
0.5 59.11 42.36 58.62 50.25
0.6 54.19 61.58 66.01 45.81
0.7 54.19 61.58 66.01 45.81
0.8 56.65 39.41 58.62 51.23
0.9 56.16 42.36 60.10 50.74

AIRO-ECW
V\p Ly L, Ls Ly
0.5 52.71 58.13 59.11 54.19
0.6 52.71 54.19 54.68 51.72
0.7 52.71 54.19 54.68 51.72
0.8 52.71 54.19 54.68 51.72
0.9 52.71 54.19 54.68 51.72
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Table 10.7 AIRO test accuracy results of LEV data set

AIRO-WE
V\p Ly L, Ly Ly
0.5 79.80 79.80 79.80 69.19
0.6 79.80 79.80 79.80 79.80
0.7 79.80 79.80 79.80 79.80
0.8 79.80 79.80 61.62 53.54
0.9 79.80 57.58 61.62 80.30

AIRO-ECW
V\p Ly L, Ly Ly
0.5 71.72 71.21 70.20 65.66
0.6 69.19 66.16 65.15 65.66
0.7 69.70 68.18 67.17 67.17
0.8 69.70 68.18 67.17 64.14
0.9 72.73 71.21 68.18 71.21

Table 10.8 AIRO test accuracy results of ASA data set

AIRO-WE

V\p L, L, Ls L,

05 6927 6927 7151  69.27
0.6 6760 5754 5754 4525
07 6760 5754 5754 4525
0.8  69.27 6927  69.27  69.27
0.9 69.83 4078 2793 3631

AIRO-ECW

V\p L, L, Ls L,

05 7877 7821 8101  80.45
06 7821 7709 7877 7877
07 7821 7709 7877 7877
08 7821 7709 7877  78.77
09 7821 7709 7877 7877
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Table 10.9 AIRO test accuracy results of MMG data set

AIRO-WE
V\p L, L, Ls L,
05 4688  5.00 438  46.88
06 4688 4688  76.88  46.88
07 46.88 4688  76.88  46.88
08 4688  46.88  46.88  46.88
09 46.88 4688  46.88  46.88

AIRO-ECW
V\p L, L, Ls L,
05 8250 8188  80.63 8125
06 8250 81.88  80.63  81.25
07 8250 81.88  80.63 8125
08 8250 81.88  80.63  81.25
09 8250 8250 81.88  81.88
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C. Training Time of DS and DISWOTH models for 10 different p values
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D. Number of Iterations to Satisfy the FC Condition

Table 10.12 Number of iterations it takes to satisfy the FC condition for ATLAS

with DS

AUTOMPG BC CAR CCS CPU ESL LEV ASA MMG

\Y
Values

14
10

0.05
0.1

0.15
0.2

0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6

0.65
0.7

0.75
0.8
0.85
0.9
0.95

66 89 66 66 66 28 68

68

66

Total
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Table 10.13 Number of iterations it takes to satisfy the FC condition for ATLAS

with DISWOTH
Va\I{J e AUTOMPG BC CAR CCS CPU ESL LEV ASA MMG

-9 2 2 1 2 2 2 2 3 2
-6 2 2 2 2 2 2 2 2 9
-3 3 3 3 3 3 3 3 2 3
0 1 1 1 1 1 1 1 1 1
0.05 3 6 15 3 3 4 9 6 3
01 2 3 6 2 2 2 4 2 2
0.15 3 7 18 3 4 4 10 7 4
0.2 3 3 7 3 2 2 5 3 2
0.25 3 8 19 3 4 5 1 7 4
0.3 3 3 8 3 2 2 5 3 2
0.35 3 8 19 3 4 5 12 8 4
0.4 3 3 9 3 2 2 5 3 2
0.45 3 9 19 3 4 5 12 8 4
0.5 3 3 9 3 2 2 5 3 2
0.55 3 9 20 3 4 5 12 8 4
0.6 3 3 9 3 2 2 5 3 2
0.65 3 9 20 3 4 5 13 8 4
0.7 3 3 9 3 3 2 5 3 3
0.75 3 9 20 3 4 5 13 8 4
0.8 3 3 63 3 3 2 5 3 3
0.85 3 9 26 3 4 5 13 8 4
0.9 3 3 64 3 3 2 5 3 3
0.95 3 9 26 3 4 5 13 8 4
1 3 3 64 3 3 2 5 3 3
Total 67 121 457 67 71 76 175 113 71
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E. Error Calculation Models of ATLAS

(TestCalculationModel-ApproximatedDS)

Minimize ¥; €. + €

Subject to:

VaP? + (A=W X;w V) Ay — | — et < T*(V) ¥q > 1Vig € C1
(E.2)

VaP + -V X;w* (V) |4y — | + e
(E.3)

ai = max{w WA, — |} Vis

e, eis = 0 Vi
(TestCalculationModel-ApproximatedDISWOTH)
Minimize ¥,;_e;_
Subject to:
e, —€e=2Val, +(1-V)X;w (V|4 —
V) Z]-W*(V)|Aisj - ,u]r| Vq # 1, Vi

ioq max{w (V)|Al j U |} Vis, Vq

el-s >0 Vls
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F. Decision Boundaries of Classification for Distance-based Sorting Method

A
L. ©

O 0

>

Figure 10.2 Decision boundaries of classification when distance-based sorting

method is used.

In Figure 10.2, black circles are from class one and white circles are from class two.
Star shape is the ICV. Interior of L,, distance contours (L4, L, Lo,) is the region of

class one and exterior is the region of class two.
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G. Numerical Example of Weight Linearization

Consider simple example with two criteria, two classes (two centroids) and
Euclidean distance is used. Assume that the model is solved and w; = 0.3, w; =

0.7 are obtained (w#* = 0.09, w2* = 0.49 in the distance calculation). The exact

2
same decision boundary can be obtained with vi = 07ng 5z = 0.155 and v; =
2
27— 0.845. If it is further examined, = =222~1724 (It is
0.74+0.3 0.09 0.49

approximately 1.724 due to rounding). It is clear that Q = 1.724 and 0.3 + 0.7 =
0.155 + 0.845 = 1. The resulting decision boundaries are 0.09|u; — E;|* —
0.49|u; — E{|> =0 and 0.155|u; — E{|*> — 0.845|u; — E{|> = 0 which are the
same decision boundaries. Because if the second one is divided by 1.724,
0.09|u; — E{|> —0.49|u; — E;|> =0 is obtained. Due to zero in RHS,

multiplications and divisions by constants results in the same equation.

Instead of Euclidean distance if Lg distance is used, again assuming the w; = 0.3,

w; = 0.7 are the same (wP* = 0.00243, w>* = 0.16807 are used in distance

5
=0.0143 and v3 = —"— =

.75+0.35

0.3°
0.75+0.35
00143 _ 0.9857
0.00243  0.16807

calculation). In linearized form, v; =

0.9857. If it is further examined, ~ 5.88 = ( (It is approximately

5.88 due to rounding).

H. The Trivial Solution Examples of Monotonically Ordered Centroids Case

Minimizing only A7, and Alij variables maximize AR alternatives and minimize IR
alternatives. However, a single DBC may be formed by infinitely many different
class centroids. Those class centroids may not be interior to the convex hull formed

by the alternatives of each class. This case is illustrated in Figure 10.3 below.

In Figure 10.3, there are alternatives of two classes that are illustrated with red and
yellow regions. The decision boundary of classification is illustrated with a solid

line. There are three examples of centroids that result in a single decision boundary
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of classification. When the term “centroid” is used, points similar to triangles are
considered. But if only 2 and Alij are minimized without any regularization, large

black and red circles denoted by u! and u? can also be obtained at monotonic class
centroids. Those centroids are not even interior to the alternatives of each class.
These are the trivial solutions of the AIRO model, regularized with additional

objective functions.

Figure 10.3 Examples of trivial solutions

159



