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ABSTRACT 

 

LINEAR APPROXIMATIONS AND EXTENSIONS TO DISTANCE BASED 

MULTICRITERIA SORTING METHODS 

 

 

 

Taş, Hasan 

Master of Science, Industrial Engineering 

Supervisor : Prof. Dr. Esra Karasakal 

 

 

August 2022, 159 pages 

 

 

Multicriteria sorting is the assignment of alternatives to predefined preference 

ordered classes. In this thesis, linear approximations to nearest centroid and distance-

based multicriteria sorting methods are studied. Three studies are conducted. The 

first study is the linearization of a nearest centroid based method. In the second study, 

the nearest centroid classifier method is investigated under monotonic centroids and 

a new linear programming model is developed based on the feasibility and 

redundancy conditions. In the third study, a new linear octagonal approximation for 

nonlinear oval contours of distance functions is developed and analyzed. It is shown 

that the new approximation is consistent with distance functions. Due to the 

elimination of nonlinearities in mathematical programs, solution time significantly 

decreases. It is also observed that the classification accuracy increased in the studied 

models. 

Keywords: Multicriteria sorting, distance functions, distance based sorting, nearest 

centroid classifier, linear approximation 
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ÖZ 

 

MESAFE FONKSİYONU BAZLI SIRALI SINIFLANDIRMA 

PROBLEMLERİ İÇİN DOĞRUSAL YAKLAŞIMLAR VE İLAVE 

YÖNTEMLER GELİŞTİRİLMESİ 

 

 

Taş, Hasan 

Yüksek Lisans, Endüstri Mühendisliği 

Tez Yöneticisi: Prof. Dr. Esra Karasakal 

 

 

Ağustos 2022, 159 sayfa 

 

Çok kriterli sıralı sınıflandırma problemi alternatiflerin önceden tanımlanmış tercihe 

göre sıralı sınıflara atanmasıdır. Bu tezde en yakın merkez ve mesafe fonksiyonu 

bazlı çok kriterli sıralı sınıflandırma problemlerine doğrusal yaklaşımlar 

geliştirilmiştir. Bu bağlamda üç çalışma yapılmıştır. Birinci çalışmada en yakın 

merkez bazlı sınıflandırma problemine bir doğrusal yaklaşım geliştirilmiştir. İkinci 

çalışmada ilk çalışmanın monoton merkezli versiyonu incelenmiş ve olurluluk 

koşulları baz alınarak yeni bir doğrusal programlama modeli geliştirilmiştir. Üçüncü 

çalışmada doğrusal olmayan mesafe fonksiyonları sekizgen bir çerçeve ile 

yakınsanmış ve doğrusal bir mesafe fonksiyonu yaklaşımı geliştirilmiştir. Bu 

yaklaşım detaylı olarak incelenip mesafe fonksiyonları ile tutarlı olduğu 

gösterilmiştir. Matematiksel modellerde doğrusal olmayan formüllerin doğrusal 

yaklaşımları sayesinde çözüm süresinde önemli ölçüde iyileşmeler sağlanmıştır. 

Ayrıca çalışılan modellerde sınıflandırma kesinliğinin arttığı da gözlemlenmiştir. 

Anahtar Kelimeler: Çok kriterli sıralama, mesafe fonksiyonları, mesafe bazlı 

sıralama, en yakın Merkez bazlı sınıflandırma, doğrusal yaklaşım 
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CHAPTER 1  

1 INTRODUCTION 

When there is a discrete set of alternatives that are evaluated under multiple criteria, 

there are  three main problems in Multi-Criteria Decision Aid (MCDA) [1]. Those 

problems are the choice problem, ranking problem, and sorting problem.  

1. Choice problem: a single best or a group of best alternatives is chosen.  

2. Ranking problem: alternatives are ranked from best to worst according to a 

preference order.  

3. Sorting problem: alternatives are assigned to predefined preference ordered 

classes. 

The solution to each of these problems may require preference information from the 

decision maker. The preference information can be in the form of criterion weights, 

reference profiles, reference/preference alternatives (a previously ranked or sorted 

data), and/or method-specific parameters (e.g., preference, indifference, and veto 

thresholds). According to the timing of obtaining the preference information, MCDA 

methods can be categorized into three as follows [2].  

1. A priori methods: The first category is “before” methods called a priori. 

Preference information is obtained before model construction and solution 

approach.  

2. Interactive methods: The second category is “during” methods called 

interactive. Preference information is obtained in different phases of the 

solution approach. According to the information obtained in every step, the 

solution is updated and converged to a final state.  

3. A posteriori methods: The third category is “after” methods. First, a method 

is applied, then alternative solutions of that method are evaluated according 

to the preference information obtained from the decision maker.  
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In this thesis, distance-based multicriteria sorting methods are studied where the 

preference information is obtained via a reference set. The reference set is available 

at the beginning of the solution process. Therefore, the proposed method is a priori 

method.  

Multicriteria sorting is the assignment of alternatives to the predefined ordinal 

classes. The alternatives are compared to class representatives. The class 

representatives can be in the form of class thresholds, limiting profiles, central 

profiles, and centroids. Those class representatives are ordered as classes. An 

alternative is evaluated concerning multiple criteria that are maximization or 

minimization type. Evaluated alternatives are compared to class representatives. 

Evaluation of alternatives and comparison can be based on utility function [3], 

preference relations such as outranking degree [4] and value functions [5]. Since the 

class representatives are also ordered with respect to (w.r.t) the class order and the 

alternatives are compared to these class representatives, preference order of 

alternatives is implicitly or explicitly applied in sorting. The class assignment can be 

performed based on deterministic measures [3] or probabilistic measures [7]. 

The classification and sorting problems are different [5]. Classification methods are 

descriptive approaches that are utilized for detecting and characterizing the 

similarities within a set of data. Sorting is a prescriptive approach to aid the Decision 

Maker (DM) to make wise decisions. In multicriteria sorting, the preference of the 

DM is associated with example decisions or preference information while this 

feature is not employed in classification. The other difference of classification and 

sorting is in the definition of classes and criteria. In sorting, classes are in ordinal 

scale, ordered from best to worst (or vice versa) according to the preference of the 

DM, which is called preference order. In classification, classes are nominal. 

In both classification and sorting, higher classification accuracy and shorter solution 

(or training) time is desirable. The classification accuracy is the percentage of 

alternatives that are assigned to their correct classes. The solution time is the time 

that is required to elicitate or learn the preferences of DM.  
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The aim of this study is to improve the existing distance-based sorting methods in 

terms of solution time and classification accuracy. In the problem setting, DM 

provides the preference information as example class assignments of the alternatives 

or historical data that the class assignments are performed in the past. The analysts  

apply a sorting method to this data to elicitate the preferences of the DM with highest 

classification accuracy. In general, this elicitation is performed with mathematical 

programs that maximize the classification accuracy (or minimize error). In distance-

based sorting methods, the mathematical programs include distance functions in their 

constraints. The distance functions are nonlinear formulations in general. Therefore, 

they are nonlinear programming models that are computationally expensive to solve. 

Due to variability of distance functions, it is not clear to use which distance function. 

One other issue is that the class representatives can be formulated in different forms. 

For instance, the centroid choice of [6] is handled by arithmetic average but it is not 

a necessity to choose this formulation. In this thesis, three different methods are 

developed to overcome the computational burden and distance function choice. The 

distance function used in this thesis is Minkowski distance (𝐿𝑝 distance).  

In this thesis, a study is defined as an analysis (or a series of analyses). Method is 

defined as a result of a study. The first study conducted in this thesis is based on 

nearest centroid type of sorting method. The nearest centroid classifier type of 

sorting method is studied for linearization and parameter selection to improve the 

solution time and classification accuracy. The distance function choice problem is 

handled with a parameter selection method in the literature. Based on the main 

characteristics of this nearest centroid classifier type method, another study is 

conducted. Based on the results of the study, a new linear programming is proposed 

for monotonic centroids case that is computationally less expensive than nonlinear 

programming. From a much wider perspective, a third study is conducted as linear 

approximations of all distance-based methods that are not restricted to multicriteria 

sorting. In the second and third studies, solution time is improved by the linear 

approximation. The distance function choice and classification accuracy 

improvement are also tied to the improvement in solution time by linearization. 
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Because a set of different linear programs with different distance functions can be 

solved within the time that is required to solve a single nonlinear program. The 

distance function resulting with the highest accuracy can be chosen from the 

solutions of this set of linear programs with different distance functions. In this 

thesis, the terms “linearization” and “linear approximation” are used 

interchangeably. 

To summarize the studies conducted and methods proposed in this thesis, a list is 

presented as follows.  

1. The first study: a nearest centroid type nonlinear programming sorting 

method is linearized, distance function and centroid selection is studied. Five 

methods are proposed in this study.  

2. The second study: monotonically ordered centroids case of the first study is 

analyzed. It is proven that if the centroids are in monotonic order, there is a 

linear relationship between classification accuracy of a specific set of 

alternatives and centroids. The linear relationship between centroids and 

alternatives are used to construct a linear programming model. 

3. The third study: a general linear approximation to distance functions is 

studied that is not restricted to multicriteria sorting. 

In all of the three studies, experiments result in solution time and accuracy 

improvement. The improvements in the first study is due to linearization and 

distance function and centroid selection. In the second study, the linearization 

improves the solution time. In the third study, distance function linearization 

improves the solution time in multicriteria sorting methods significantly. This 

study finishes the discussions on the linearization of distance functions in this 

thesis. The linearization in the third study is recommended for all distance based 

mathematical programming settings.  

Organization of this thesis is as follows. Literature review for the first and the 

second studies based on the nearest centroid type sorting method is presented in 

Chapter 2. In Chapter 3, proposed methods of the first study is presented. The 
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second study that is monotonically ordered centroids case of the nearest centroid 

classifier is presented in Chapter 4. Experimental results of first and second 

studies are reported and discussed in Chapter 5. In Chapter 6, a new linear 

approximation to distance functions is developed. The related work, application 

technique, example applications of the approximation method to multicriteria 

sorting and alternative courses of actions are presented. Experimental results of 

the third study are reported and discussed in Chapter 7. In Chapter 8, a general 

discussion of the three studies and the experimental results are given. Results of 

experiments are associated with the related literature. Finally in Chapter 9, 

concluding remarks and potential future research directions are presented. 
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CHAPTER 2  

2 LITERATURE REVIEW 

In this chapter, literature review of the first two studies based on the nearest centroid 

type sorting method are presented. In Section 2.1, the related literature of 

multicriteria sorting, distance-based sorting methods and centroid-based methods are 

provided. In Section 2.2, theoretical background is given.  

2.1 Literature Review 

Ordinal classification methods can be categorized into three groups as statistical, 

non-parametric and multicriteria methods. Ordinal classification multicriteria 

methods are called multicriteria sorting. 

The first group of methods are statistical methods. Early studies in this group are 

Linear Discriminant Analysis (LDA) [8] and Quadratic Discriminant Analysis 

(QDA) [9]. Statistical methods have two main disadvantages as the statistical 

assumptions and the parametric structure.  

The second group of methods are non-parametric methods. Examples of non-

parametric methods are K-Nearest Neighbor (KNN) [10] and Artificial Neural 

Networks (ANN) (e.g., [11]).  

The third group of methods are multi-criteria methods. Multi-criteria methods can 

be classified into two groups as Direct Judgement (DJ) methods and Preference 

Disaggregation (PD) analysis methods. DJ methods require the preference 

information from DM to perform the class assignment. Preference information can 

be in the form of reference profiles or limiting profiles (class thresholds), value 

functions or preference functions, preference thresholds and criterion weights. The 

preference information is used to construct the model to perform the class 
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assignment. Therefore, it is obligatory to specify the preference information in DJ 

methods. However, obtaining preference information from DM may require extra 

effort and/or cognitive load for DM. Examples of direct judgment methods are 

Evaluation based on Distance from Average Solution (EDAS) [12],  ELimination 

and Choice Translating REality (ELECTRE-TRI) [13] and ELECTRE-TRI nC [14]. 

 

ELECTRE-TRI [13] is an outranking relation method. In outranking relation 

methods, outranking degree is determined for each alternative. The outranking 

degree of each alternative is determined based on the comparison of the alternative 

to a reference profile. If the outranking degree of an alternative is greater than a 

specified reference profile, then the alternative outranks the reference profile. Each 

ordinal class is separated by a reference profile. Sorting is performed based on the 

comparison of alternatives to the reference profile of each class. The need for 

outranking relation methods is due to the absence of incomparability of value 

function based methods and transitivity of indifference. 

EDAS [12] is another DJ method. The reference profile is not required in EDAS. 

The required preference information are criterion weights and class cardinalities. A 

reference artificial alternative (average solution) is computed based on the arithmetic 

average of each criterion of all alternatives. Based on the comparison of each 

alternative to the average solution, Positive Deviation from Average (PDA) and 

Negative Deviation from Average (NDA) are computed for each criterion. PDA and 

NDA are aggregated with weighted sum and normalized. An Appraisal Score (AS) 

based on this criteria aggregation is computed. AS is a higher the better type of 

measure. The alternatives are ranked from best to worst in descending order of AS. 

Class assignment is performed based on class cardinalities. In EDAS [12], an 

inventory ABC classification is studied. The class assignment is performed based on 

the class cardinalities of the ABC classes. The class cardinality means the number of 

alternatives in the class.  

PD sorting methods elicit DM’ s preference information from a set of example 

decisions of DM or historical data of past decisions. They minimize the effort that is 

due to obtaining the preference information from DM in DJ methods. In multicriteria 
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sorting, the decision is to assign alternatives to predefined ordinal classes. Therefore, 

PD sorting methods elicit the preference information of DM from a set of example 

classifications or historical data. In this thesis, example classifications and historical 

data are referred as training data. In PD sorting methods, a criteria aggregation 

function can be used to elicitate the preference of the DM. 

The criteria aggregation function can be a utility/value function or a distance 

function. An example of sorting methods with utility function based criteria 

aggregation is Utilities Additives DIScriminantes (UTADIS) [3]. In UTADIS, 

additive utility function is employed to represent preference information of DM and 

class thresholds are used to discriminate the classes. The additive utility function is 

formulated in a way that it represents the ordinal relation between the alternatives. 

The class thresholds are also ordered from best to worst. UTADIS is a Linear 

Programming (LP) approach that is used to find optimal criterion weights and class 

thresholds to minimize classification error. Classification error is minimized on the 

training data. The validity of the criterion weights and class thresholds are tested 

based on the test accuracy/error level that is calculated using the test data. 

Distance-based PD methods are [5]–[7], [15]. To describe distance-based methods, 

the term Ideal Criterion Vector (ICV) (or ideal point) is explained. ICV is the best 

possible point in the criterion space. ICV is described as the best point in each 

criterion of the non-dominated alternatives. In studies of [5], [7], [15], criteria 

aggregation is formulated as the distance of alternatives to the ICV. In general, 

weighted 𝐿𝑝 distance is employed as the distance function. Mathematical 

Programming (MP) is employed in [5]–[7], [15]. 

Chen et al. [5] and Chen et al. [15] develop squared a Euclidean distance-based 

criteria aggregation model. Centroid (arithmetic average) of the best class is assumed 

as the ICV. Each criterion of the alternatives and ICV is compared with the squared 

deviation. Then, criteria aggregation is performed with the weighted sum of the 

squared deviations. The criteria aggregation is compared with the class thresholds 

and the class assignment is performed. The total squared classification error  is 

minimized in the objective function. The classification error, class thresholds and the 
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criterion weights are the decision variables. When using squared Euclidean distance, 

the square of the criterion weighs is not taken. Therefore, the distance formulation is 

not a regular distance norm when weighted Euclidean distance is evaluated in this 

way [16]. Although the distance function formulation is linear, both methods are 

nonlinear quadratic models due to the minimization of total squared classification 

error. When the regular 𝐿𝑝 distance is used, the distance-based sorting method is also 

a NonLinear Programming (NLP) model and the computational burden increase.  

The distance-based sorting is extended to other 𝐿𝑝 distances by Çelik et al. [7], [16]. 

Çelik et al. [7], [16] study Probabilistic Distance-based Sorting method (PDIS). They 

evaluate the alternatives with distance-based criteria aggregation with regular 𝐿𝑝 

distance and use MP approach. This makes it an NLP model. Their criteria 

aggregation function is also based on distance to ICV. Alternatives are evaluated 

with distance-based criteria aggregation function. As in [5], [15], the evaluation is 

compared with the class thresholds. In the experimental results, it can be observed 

that the accuracy performance measure highly deviates for different 𝐿𝑝 distances. 

Robustness of the proposed method w.r.t different 𝐿𝑝 distances can be questioned. 

Although it is not clear which specific 𝐿𝑝 distance results in better classification 

accuracy, it is shown that low 𝑝 values (1 ≤ 𝑝 ≤ 3) result in better classification 

accuracy.  

There are four main differences between [5], [15] and [7], [16]. The first difference 

is that [7], [16] use regular weighted 𝐿𝑝 distance and their formulation allows the 

usage of other 𝐿𝑝 distances in addition to Euclidean distance. The second difference 

is that the proposed method is probabilistic in [7], [16]. The class assignments are 

determined based on a probabilistic approach. The resulting class assignment is a 

conditional probability, and the probabilistic approach is fundamentally based on the 

Bayesian approach. For class assignment, uniform and triangular probability 

distributions are used. Since it is a multicriteria method, the probability distribution 

is a joint formulation. Criteria are assumed to be independent therefore the joint 

probability formulation is employed accordingly. The third difference is that the risk 



11 

 

attitude of the DM is also considered in PDIS. Different class assignments for a risk-

averse and a risk-seeking DM is shown in the study [16]. Also, optimistic and 

pessimistic class assignment procedures are developed in [7], [16]. The fourth 

difference is that the class assignment for the test data is performed by a MP. After 

thresholds and criterion weights are optimized, a new model is solved to perform the 

class assignments of the test data. In [7], [16], different accuracy measures are 

developed based on the class assignment probabilities of alternatives. Besides the 

criteria aggregation, in [5], [7], [15], [16], class thresholds are also ordered from best 

to worst as in UTADIS [3]. The main difference between UTADIS and [5], [7], [15], 

[16] is that the additive utility function is used in UTADIS, and the distance function 

is used in [5], [7], [15], [16]. 

Another distance-based multicriteria sorting method is DIstance-based Sorting 

WithOut class THresholds (DISWOTH) that is developed by Karasakal and Civelek 

[6], [17]. In DISWOTH, a class centroid (a class representative) is estimated for each 

ordinal class. Alternatives are evaluated based on their proximity (similarity) to each 

class centroid. The 𝐿𝑝 distance function is employed for formulating the proximity 

or similarity of an alternative and a class centroid. They [17] also show how the 𝐿∞ 

distance can be employed for DISWOTH with an LP model. Class assignment of an 

alternative is performed based on the evaluation of similarity between class centroids 

and the alternatives. An alternative is assigned to the class of the most similar 

(nearest) centroid. Therefore, DISWOTH is a Nearest Centroid classifier (NC) type 

of sorting method, which is similar to K-Means clustering method [18] in terms of 

cluster assignment. Class centroids are estimated with the arithmetic average of the  

alternatives of each class. As in PDIS [7], [16], the formulation allows the utilization 

of different 𝐿𝑝 distances. NC type classification methods have roots in nominal 

classification, it is also called nearest centroid neighborhood [19] and Rocchio 

classification [20]. Therefore, the NC type formulation of DISWOTH also enables 

the method to handle the nominal classification.  

Unlike PDIS [7], [16] and the study of Chen et al. [5], [15], ordering of classes and 

alternatives are ignored to improve the classification accuracy in DISWOTH. This 
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enables DISOWTH to evaluate data with non-monotonic criteria that can be viewed 

as the flexibility of the method. Ignoring ordering (or monotonicity) to improve 

classification accuracy is discussed in the literature [21]. Findings of Ben-David et 

al. [21] show that there is no statistically significant difference of classification 

accuracy between the methods that consider ordering and the ones that ignore the 

ordering. Furthermore, it is discussed that adding monotonicity to the learning 

methods impair accuracy.  

There are also statistical ordinal classification methods that are based on class 

centroids  [22]–[26]. Liu et al. [23] and Sun et al. [24] develop ordinal classification 

methods based on LDA. The centroids are employed to find a projection that best 

discriminates the ordinal classes. Pelckmans et al. [26] develop Least-Square 

Support Vector Ordinal Regression (LS-SVOR) method that is based on Support 

Vector Machines (SVM) and LDA. The utilization of centroids in [26] is the same 

as in [23], [24]. A different nearest centroid-based statistical method is Ordinal 

Nearest Centroid Projection (OrNCP) that is developed by Tian and Chen [22]. They 

employ the total absolute deviation from class centroids that is basically an NC 

formulation with 𝐿1 distance. From that perspective, DISWOTH is an extension of 

OrNCP that allows the usage of other 𝐿𝑝 distances. In OrNCP, different from 

DISWOTH, ordering of classes is considered. In these statistical methods [22]–[26], 

centroids are also estimated with arithmetic average.  

Recently a study is conducted by Tian et al. [25] that focus on centroid choice. Tian 

et al. develop a centroid estimation method based on 𝐿𝑝 distances. In their study, 

they show that arithmetic average results in a centroid that minimizes total within 

class distance when the distance function is the Euclidean norm (that is 𝐿2 distance). 

They argue that there must be different centroids for different 𝐿𝑝 distances. Tian et 

al. [25] propose the 𝐿𝑝-Centroid method that gives different centroids for different 

𝐿𝑝 distances. The 𝐿𝑝-Centroids that is given by the method minimize within class 

distance when 𝐿𝑝 distance is chosen. Therefore, the output of the method is a 

different centroid for an 𝐿𝑝 distance, which we can call a centroid-distance pair.  
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To conclude the literature review, there are distance-based multicriteria methods that 

are NLP models  [5]–[7], [15]–[17]. There are also centroid-based multicriteria 

sorting methods [6], [12], [17]. EDAS [12] is a DJ method and DISWOTH [6], [17] 

is a PD method and it is based on the NC formulation. There are also centroid-based 

statistical machine learning methods  [22]–[26]. Except for [25], they use the 

arithmetic average as the centroid estimation method. Figure 2.1 summarizes the 

literature review of the multicriteria sorting methods. Figure 2.2 summarizes the 

centroid-based methods.  

 

Figure 2.1 Categorization of multicriteria methods  
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Figure 2.2 Categorization of centroid-based methods  

In the literature review, it is observed that the centroid-based methods employ 

arithmetic average as the centroid estimation method and 𝐿𝑝-Centroid method is not 

adapted to NC formulations. Furthermore, NC based sorting method (DISWOTH) is 

an LP model when 𝑝 ∈ {1, ∞} and it is NLP model that is computationally expensive 

to solve when 𝑝 ∉ {1, ∞}. For NC and MP based methods (DISWOTH), our critics 

are as follows. 

1. Only arithmetic average is employed as the centroid estimation method and 

𝐿𝑝-Centroid method can be adapted.  

2. It is not clear to use which 𝐿𝑝 distance since it is not known in advance that 

which distance function results with better accuracy.  

3. 𝐿𝑝 distance is a nonlinear formulation. When used in MP, it is an NLP model. 

NLP models are computationally expensive to solve. 

In addition to those three points, DISWOTH can be criticized due to ignoring the 

ordering of classes and the centroid choice for different 𝐿𝑝 distances. 
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Based on these three points, in this chapter, four new NC based multicriteria sorting 

methods are developed. Developed methods are MP approaches as DISWOTH. 

Therefore, they can be viewed as extensions to DISWOTH. In the first method, NLP 

formulation of DISWOTH is linearized by employing binary variables. In the second 

method, 𝐿𝑝-Centroid method is adapted to DISWOTH to examine the effect of 

centroid and distance function choice to the accuracy. In the third method, first two 

methods are combined, and two extensions are developed to represent ordering of 

classes. Choosing a proper centroid and distance pair is handled with 𝐿𝑝-Centroid 

method in the second and third models. Ordering of classes is considered with 

compromise ranking and additive difference of utilities [27] as extensions to third 

model.  

As mentioned, Ben-David et al. [21] discuss that adding monotonicity to learning 

models may impair the classification accuracy. Not to impair accuracy with 

monotonicity, the two extensions are considered with soft constraints that seek 

alternative optimal solutions to the best accuracy outcome.  

2.2 Theoretical Background 

In this section, criteria aggregation based on utility functions is exemplified with 

UTADIS method. Theoretical background for the distance functions and criteria 

aggregation based on distance functions are explained. Then, MP formulation of 

DISWOTH is presented. Lastly, 𝐿𝑝-Centroid method is explained. 

Relevant notation for the multicriteria sorting methods is as follows. Index 𝑖 ∈

 {1,2, ⋯ , 𝑛} represents alternatives, 𝑗 ∈  {1,2, ⋯ , 𝑚} represents criteria, and 𝑞, 𝑟 ∈

 {1,2, ⋯ , 𝑄} represents ordinal classes. The ordering of the classes is presented such 

that class 1 is the worst class and class 𝑄 is the best class. 𝜖 is an infinitesimal positive 

scalar. 𝐴 represents the set of alternatives and 𝐴𝑖 represents 𝑖𝑡ℎ alternative. 𝐴𝑖𝑗
𝑞

 

represents the 𝑗𝑡ℎ criterion evaluation of alternative 𝑖 belonging to class 𝑞, 𝐴𝑖
𝑞 =

{𝐴𝑖1
𝑞 , 𝐴𝑖2

𝑞 , … , 𝐴𝑖𝑚
𝑞 }. 𝐶𝑞 is the set of alternatives belonging to class 𝑞 that is 𝐴𝑖

𝑞 ∈ 𝐶𝑞. 

An example setting of the reference set (training data) is illustrated in Table 2.1.  
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The alternatives and classes are defined as follows. 

1. 𝐶𝑞 ∩ 𝐶𝑟 = ∅ for 𝑞 ≠ 𝑟 

2. 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ … ∪ 𝐶𝑄 = 𝐴 

3. 𝐶𝑞 ≠ ∅ and 𝐶𝑞 ∈ 𝐴 

The preference and indifference settings for alternatives and ordinal classes are as 

follows. ~ denotes indifference relationship (equally preferred entities) and ≫ 

denotes preference relationship. 𝐴~𝐵 means DM is indifferent between 

alternatives/actions 𝐴 and 𝐵. 𝐴 ≫ 𝐵 means DM prefers 𝐴 to 𝐵. 

1. If 𝐴𝑖 and 𝐴𝑖′ ∈ 𝐶𝑞, then 𝐴𝑖~𝐴𝑖′. 

2. If 𝐴𝑖 ∈ 𝐶𝑞 and 𝐴𝑖~𝐴𝑖′, then 𝐴𝑖′ ∈ 𝐶𝑞. 

3. 𝐴𝑖 ∈ 𝐶𝑞 and 𝐴𝑖′ ∈ 𝐶𝑞+1, then 𝐴𝑖′ ≫ 𝐴𝑖 for 𝑞 < 𝑄. 

Table 2.1 Example setting for training data 

Alternatives Criterion 1 Criterion 2 … 
Criterion 

m 

Class 

Label 

Alternative 1 𝐴11
1  𝐴12

1  … 𝐴1𝑚
1  1 

Alternative 2 𝐴21
2  𝐴22

2  … 𝐴2𝑚
2  r 

Alternative i 𝐴𝑖1
𝑞

 𝐴22
𝑞

 … 𝐴𝑖𝑚
𝑞

 q 

… … … … … … 

 

In this thesis, it is assumed that each criterion is monotonic. The monotonic criterion 

is explained as follows. A criterion can be “higher the better” type (maximization 

type or benefit type) or it can be “lower the better” type (minimization type or cost 

type). Without loss of generality, terms maximization type and minimization type 

are used in this thesis. If a criterion is maximization type,  then higher values of that 

criterion are preferred to lower values. If a criterion is minimization type, then lower 

values of that criterion are preferred to higher values. A criterion can also be non-

monotonic, meaning that an intermediate value can be the most preferred value. This 

case is not considered in this thesis. It is assumed that the criteria are independent. 
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Based on assumptions, preference order of alternatives is determined based on the 

evaluation of monotonic criteria. The values of each alternative on each criterion can 

be categorical and numerical. Numerical criterion can be discrete or continuous. The 

trade-off between criteria is defined by criterion weights.  

In PD methods, criteria aggregation is performed using criteria aggregation function 

and criterion weights. A composite indicator or a score is computed. Then, the score 

is compared with class thresholds to perform the class assignment. After monotonic 

criteria and ordinal class concepts are introduced, a class assignment example of 

multicriteria sorting is illustrated in Figure 2.3.  

 

 

Figure 2.3 A class assignment example with criteria aggregation 

2.2.1 UTADIS 

In this section, utility function based criteria aggregation PD sorting method, namely 

UTADIS [3] is introduced. Additional notation for UTADIS method is as follows. 

Decision variable 𝑤𝑗 is the weight of the 𝑗𝑡ℎ criterion. Decision variable 𝑇𝑞  is the 

threshold separating classes 𝑞 and 𝑞 + 1. 𝑈(. ) denotes the additive utility function 

and 𝑢𝑗(. ) is the marginal utility function. 𝑔𝑗∗ and 𝑔𝑗
∗ are the worst, and the best values 

for criterion 𝑗. Moreover, criterion 𝑗 is divided into 𝛬𝑗 − 1 intervals, the intervals are 

denoted by 𝑡 ([𝑔𝑗
𝑡, 𝑔𝑗

𝑡+1], 𝑡 = 1,2, … , 𝛬𝑗 − 1). The value of 𝛬𝑗 is determined by DM. 

𝛬𝑗 is used to approximate the utility function by determining the number of marginal 
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utility points 𝑢𝑗 . Therefore, the larger 𝛬𝑗, the approximation becomes more precise. 

𝑔𝑗
𝑡 is calculated as in equation (1). Equation (1) is a linear interpolation.  

𝑔𝑗
𝑡 = 𝑔𝑗∗ +

𝑡−1

𝛬𝑗−1
(𝑔𝑗

∗ − 𝑔𝑗∗)         (1) 

The aim of introducing the intervals is to calculate the marginal utility of alternatives 

in the interval [𝑔𝑗
𝑡, 𝑔𝑗

𝑡+1]. For 𝐴𝑖𝑗
𝑞 ∈ [𝑔𝑗

𝑡, 𝑔𝑗
𝑡+1], 𝑢𝑗(𝐴𝑖𝑗

𝑞 ) is calculated as in equation 

(2).  

𝑢𝑗(𝐴𝑖𝑗
𝑞 ) = 𝑢𝑗(𝑔𝑗

𝑡) +
𝐴𝑖𝑗

𝑞
−𝑔𝑗

𝑡

𝑔𝑗
𝑡+1−𝑔𝑗

𝑡 [𝑢𝑗(𝑔𝑗
𝑡+1) − 𝑢𝑗(𝑔𝑗

𝑡)], 𝐴𝑖𝑗
𝑞 ∈ [𝑔𝑗

𝑡, 𝑔𝑗
𝑡+1]    (2) 

UTADIS respects the preference order of breakpoints of the intervals based on 

monotonicity. The preference order of marginal utilities is satisfied with constraint 

(3). By respecting the preference order of breakpoints of intervals, according to 

equation (2), it also orders alternatives in each criterion. When equations (2)-(3) are 

considered together, an alternative falling in a higher interval dominates the 

alternative falling in the lower interval. 

𝜔𝑗𝑡 = 𝑢𝑗(𝑔𝑗
𝑡+1) − 𝑢𝑗(𝑔𝑗

𝑡) ≥ 0, ∀𝑗, ∀𝑡 ≤ 𝛬𝑗 − 1      (3) 

𝜔𝑗𝑡 is the utility value of interval [𝑔𝑗
𝑡, 𝑔𝑗

𝑡+1]. Therefore, 𝑢𝑗(𝑔𝑗
𝑡) can be reformulated 

as equation (4) and equation (2) can be reformulated as equation (5). Additive utility 

function for an alternative is formulated as equation (6). 𝑈(𝐴𝑖
𝑞) maps an 𝑚 

dimensional real numbered vector 𝐴𝑖
𝑞 ∈ 𝑅𝑚 to a single dimension 𝑅1, 𝑈(. ): 𝑅𝑚 →

𝑅1. The marginal utility for each criterion is normalized as in equations (7)-(8). 

𝑢𝑗(𝑔𝑗
𝑡′) = ∑ 𝜔𝑗𝑡

𝑡′−1
𝑡=1 , ∀𝑗, 𝑡′ = 1,2, … , 𝛬𝑗 − 1     (4) 

𝑢𝑗(𝐴𝑖𝑗
𝑞 ) = ∑ 𝜔𝑗𝑡

𝑡′−1
𝑡=1 +

𝐴𝑖𝑗
𝑞

−𝑔𝑗
𝑡

𝑔𝑗
𝑡+1−𝑔𝑗

𝑡 𝜔𝑗𝑡′, ∀𝑗, 𝑡′ = 1,2, … , 𝛬𝑗 − 1    (5) 

𝑈(𝐴𝑖
𝑞) = ∑ 𝑢𝑗(𝐴𝑖𝑗

𝑞 )𝑚
𝑗=1          (6) 

∑ 𝑢𝑗(𝑔𝑗
∗)𝑚

𝑗=1 = 1          (7) 

∑ 𝑢𝑗(𝑔𝑗∗)𝑚
𝑗=1 = 0          (8) 



19 

 

Classification of an alternative with UTADIS is performed as follows. 

𝐴𝑖 ∈ 𝐶1 if 𝑇1 > 𝑈(𝐴𝑖
1) ∀𝑖        (9) 

𝐴𝑖 ∈ 𝐶𝑄 if 𝑇𝑄−1 ≤ 𝑈(𝐴𝑖
𝑄) ∀𝑖                          (10) 

𝐴𝑖 ∈ 𝐶𝑞 if 𝑇𝑞 > 𝑈(𝐴𝑖
𝑟) ≥ 𝑇𝑞−1 ∀𝑖, 1 < 𝑞 < 𝑄                        (11) 

In UTADIS, a class assignment is accurate if the three conditions hold as follows. 

1. 𝑇1 > 𝑈(𝐴𝑖
1).  

2. 𝑇𝑄−1 ≤ 𝑈(𝐴𝑖
𝑄). 

3.  𝑇𝑞 > 𝑈(𝐴𝑖
𝑞

) ≥ 𝑇𝑞−1 ∀𝑖, ∀𝑞 ∉ {1, 𝑄}.  

If conditions 1-3 do not hold, then it is an inaccurate (erroneous) class assignment.  

Two error variables are used to define erroneous class assignments, 𝑒𝑖
+and 𝑒𝑖

−. 𝑒𝑖
− is 

the class assignment error of 𝐴𝑖
𝑞
 to a worse class and 𝑒𝑖

+ is the class assignment error 

of 𝐴𝑖
𝑞
 to a better class. 𝑒𝑖

+and 𝑒𝑖
− are formulated as equations (12)-(13). 

𝑒𝑖
− = 𝑚𝑎𝑥 {0, 𝑈(𝐴𝑖

𝑞) − 𝑇𝑞−1}                          (12) 

𝑒𝑖
+ = 𝑚𝑎𝑥 {0, 𝑇𝑞 − 𝑈(𝐴𝑖

𝑞)}                 (13) 

UTADIS minimizes class assignment errors. UTADIS model is as follows. 

(UTADIS) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑒𝑖
+ + 𝑒𝑖

−
𝑖                 (14) 

Subject to: 

𝑈(𝐴𝑖
𝑞) + 𝑒𝑖

− − 𝜖 ≥ 𝑇𝑟 + 𝜖, ∀𝑖, ∀𝑟 < 𝑄              (15) 

𝑈(𝐴𝑖
𝑞) − 𝑒𝑖

+ + 𝜖 ≤ 𝑇𝑟−1 + 𝜖, ∀𝑖, ∀𝑟 > 1                         (16) 

∑ ∑ 𝜔𝑗𝑡
𝛬𝑗−1

𝑡=1
𝑚
𝑗=1 = 1                (17) 

 𝑇𝑟 − 𝑇𝑟−1 ≥ 𝜖, ∀𝑟 > 1               (18) 

𝜔𝑗𝑡 ≥ 0, ∀𝑗, ∀𝑡                 (19) 

𝑒𝑖
+, 𝑒𝑖

− ≥ 0, ∀𝑖                 (20) 

Objective function (14) minimizes the total class assignment error. Constraints (15)-

(16) perform class assignments by comparing the criteria aggregation and class 

thresholds. Constraint (17) is used to normalize the criterion weights w.r.t monotonic 

utility values of the predetermined criterion intervals. Constraint (18) orders class 
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thresholds in strictly increasing order from worst to best as utility is a higher the 

better type of measure. Constraints (19)-(20) are sign constraints. 

A global preference mechanism is modeled with criteria aggregation using additive 

utility functions in UTADIS. Then, criteria aggregation is compared with class 

thresholds that are class representatives. Class assignment with UTADIS is 

illustrated in Figure 2.4 for a three-class example.  

 

 

Figure 2.4 Class assignment illustration of UTADIS on a three-class example 

2.2.2 Distance Functions and Distance-based Criteria Aggregation 

Criteria aggregation can be formulated based on distance functions as well. Distance-

based ordinal classification methods that use criteria aggregation are [5]–[7], [15], 

[22].  

To describe distance-based methods, the term Ideal Criterion Vector (ICV) (or ideal 

point) is explained. ICV is the best possible point in the criterion space that is the 

best point in each criterion of the alternatives. In studies of [5], [7], [15] criteria 

aggregation is performed based on the distance of alternatives to the ICV. Weighted 

𝐿𝑝 distance is employed as the distance function that is formulated as equation (21). 

Lp distance is called Rectilinear (Manhattan or city block) distance when p = 1 and 

Euclidean when p = 2. A specific version of Lp distance is p = ∞, which is called 

Tchebycheff distance. 

[5], [15] use squared Euclidean (𝐿2
2) distance as the distance function. ICV is 

determined as the centroid of the best class. Çelik et al. [7] extend the formulation of 
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[5], [15] to all 𝐿𝑝 distances and develop a probabilistic class assignment method, 

namely PDIS. As in UTADIS, criteria aggregation and class thresholds are used to 

discriminate the classes. In this thesis, 𝑑𝑝
𝑤(𝐴, 𝐵) represents weighted 𝐿𝑝 distance 

between two points 𝐴 and 𝐵. 𝑑𝑝
𝑤(𝐴, 𝐵) is formulated as in equations (21)-(23).  

𝑑𝑝
𝑤(𝐴, 𝐵)  =  √∑ 𝑤𝑗

𝑝|𝐴𝑗 − 𝐵𝑗|
𝑝

𝑗

𝑝

                (21) 

∑ 𝑤𝑗𝑗 = 1                   (22) 

𝑤𝑗 ≥ 0, ∀𝑗                   (23) 

A distance function is called metric (norm) if it satisfies the following three 

properties. 𝐿𝑝 distance is a metric when 𝑝 ≥ 1 and it is not a metric for 𝑝 < 1. 

𝑑𝑝(𝐴, 𝐵) denotes 𝐿𝑝 distance and 𝐴, 𝐵, 𝐶 ∈ 𝑅𝑚. 

1. Positivity: 𝑑𝑝(𝐴, 𝐵) > 0 and 𝑑𝑝(𝐴, 𝐵) = 0 iff 𝐴 = 𝐵. 

2. Symmetry:  𝑑𝑝(𝐴, 𝐵) = 𝑑𝑝(𝐵, 𝐴) 

3. Triangular inequality: 𝑑𝑝(𝐴, 𝐵) ≤ 𝑑𝑝(𝐴, 𝐶) + 𝑑𝑝(𝐵, 𝐶)     

The criteria aggregation function employed in [7], [16] is as in equation (24). ICV is 

denoted by 𝐼 and 𝑗𝑡ℎ criterion value of ICV is denoted by 𝐼𝑗. Since ICV is the best 

possible point, distance (or dissimilarity) to ICV is a lower the better type of measure. 

Class assignment with distance-based criteria aggregation function is illustrated in 

Figure 2.5 on a three-class example.  

𝑑𝑝
𝑤(𝐴𝑖

𝑞 , 𝐼)  =  √∑ 𝑤𝑗
𝑝 |𝐴𝑖𝑗

𝑞 − 𝐼𝑗|
𝑝

𝑗

𝑝

                (24) 
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Figure 2.5 Class assignment illustration of distance-based sorting on a three-class 

example 

The illustration in Figure 2.5 can be formulated as follows. 

𝑑𝑝
𝑤(𝐴𝑖, 𝐼) ≤ 𝑇𝑄−1 → 𝐴𝑖 ∈ 𝐶𝑄 

𝑇𝑞+1 ≤ 𝑑𝑝
𝑤(𝐴𝑖, 𝐼) ≤ 𝑇𝑞  → 𝐴𝑖 ∈ 𝐶𝑞 ∀𝑞 < 𝑄 

𝑑𝑝
𝑤(𝐴𝑖, 𝐼) ≥ 𝑇1 → 𝐴𝑖 ∈ 𝐶1  

Class thresholds are ordered in decreasing order from best to worst as opposed to 

UTADIS (compare Figures 2.4 and 2.5). This is because the utility function 

(equation (6)) is a higher the better and distance-based value function (equation (24)) 

is a lower the better type of measure.  

To represent classification error, similar to UTADIS, equations (25)-(26) are used. 

A more detailed model is given in Section 6.3.1. 

𝑒𝑖
− = 𝑚𝑎𝑥 {0, 𝑇𝑞−1 − 𝑑𝑝

𝑤(𝐴𝑖
𝑞 , 𝐼) }                          (25) 

𝑒𝑖
+ = 𝑚𝑎𝑥 {0, 𝑑𝑝

𝑤(𝐴𝑖
𝑞 , 𝐼) − 𝑇𝑞}                (26) 

Figure 2.5 is an illustration of the class assignment logic of distance-based sorting. 

In criterion space, a class threshold forms the contour of 𝐿𝑝 distance chosen. An 

example illustration for two criteria and two class problem is given in Figure 10.2 in 

Appendix F. 
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2.2.3 DISWOTH and Nearest Centroid Classifier 

DISWOTH is a NC type sorting method. In this setting, each class has a class 

centroid which can be defined as a typical artificial (or real) alternative of that class. 

DISWOTH and NC assign the alternatives to the class of the nearest centroid. 

Additional notation for DISWOTH and NC are as follows. 𝜇𝑗
𝑞
 is the 𝑗𝑡ℎ criterion 

value of the centroid of class 𝑞. Instead of 𝑒𝑖
+ and 𝑒𝑖

− of UTADIS, a single error 

variable is used as 𝑒𝑖.  

For DISWOTH and NC, class centroids are calculated as in equation (27) as the 

arithmetic average of the alternatives of each class. However, it is not necessary to 

use arithmetic average as the class centroid. Class assignment is performed as in 

equation (28). Class assignment error is calculated as in equation (29) for NC and 

equation (30) for DISWOTH.  

𝜇𝑗
𝑞  =

1

|𝐶𝑞|
∑ 𝐴𝑖𝑗

𝑞
𝑖|𝐴𝑖∈𝐶𝑞  

, ∀𝑞, ∀𝑗                 (27) 

𝐴𝑖 ∈ 𝐶𝑞 if 𝑞 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑟 {𝑑𝑝
𝑤(𝐴𝑖, 𝜇𝑟)}               (28) 

For NC, 

𝑒𝑖 = {
0  𝑖𝑓  𝑑𝑝

𝑤(𝐴𝑖
𝑞 , 𝜇𝑞) = 𝑚𝑖𝑛𝑟 {𝑑𝑝

𝑤(𝐴𝑖
𝑞 , 𝜇𝑟)} 

1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 ∀𝑖                          (29) 

For DISWOTH, 

𝑒𝑖 = 𝑚𝑎𝑥{0, 𝑑𝑝
𝑤(𝐴𝑖

𝑞 , 𝜇𝑞 ) − 𝑑𝑝
𝑤(𝐴𝑖

𝑞 , 𝜇𝑟 )}                (30) 

Formulation of DISWOTH is as follows. 

(DISWOTH) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑
𝑒𝑖

|𝐶𝑞|𝑖|𝐴𝑖∈ 𝐶𝑞                 (31) 

Subject to: 

Constraints (22)-(23) 

𝑒𝑖 − 𝜖 ≥ 𝑑𝑝
𝑤(𝐴𝑖

𝑞 , 𝜇𝑞 ) − 𝑑𝑝
𝑤(𝐴𝑖

𝑞 , 𝜇𝑟) ∀𝑖, 𝑞 ≠  𝑟             (32) 

𝑒𝑖 ≥ 0                  (33) 

Objective function (31) minimizes class-weighted classification error. In objective 

function (31), |𝐶𝑞| is the cardinality of class 𝑞. Class cardinality weighted total 

classification error is minimized. Constraint (32) performs class assignments and 
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computes the classification errors based on equation (30). The class assignment logic 

of DISWOTH is illustrated in Figure 2.6 for a three-class example. As it can be 

noticed from DISWOTH model, different from [3], [5], [15], [7], ordering of classes 

(or monotonicity) is ignored. This is done to improve the classification accuracy. 

 

 

Figure 2.6 Class assignment illustration of DISWOTH on a three-class example. 

2.2.4 𝑳𝒑-Centroid Method 

Previous centroid-based studies employ arithmetic average as the centroid estimation 

method. A different centroid estimation method for centroid-based classifiers is 

developed by Tian et al. [25], namely 𝐿𝑝-Centroid method. Tian et al. [25] criticize 

the usage of arithmetic average (equation (27)) as the centroid estimation. They show 

that equation (27) can be obtained by minimizing the total squared Euclidean 

distance of all alternatives to a point as in equation (34). ||𝜇𝑞 − 𝐴𝑖
𝑞 ||2

2 represents the 

squared Euclidean distance. Authors argue that, for each 𝐿𝑝 distance, a different 

centroid should be estimated.  

1

|𝐶𝑞|
∑ 𝐴𝑖𝑗

𝑞
𝑖|𝐴𝑖∈𝐶𝑞  

=  𝑎𝑟𝑔𝑚𝑖𝑛𝜇𝑗
𝑞   {∑ ||𝜇𝑞 − 𝐴𝑖

𝑞 ||2
2

𝑖| 𝐴𝑖∈ 𝐶𝑞 }               (34) 



25 

 

𝐿𝑝-Centroid method is formulated as equation (35) and estimates different centroid 

for each 𝐿𝑝 distance. ||𝜇𝑞 − 𝐴𝑖
𝑞 ||𝑝

𝑝
 denotes the 𝑝𝑡ℎ power of 𝐿𝑝 distance. (35) is 

solved with 𝐿𝑝-Centroid Algorithm [25]. 𝜇𝐿𝑝

𝑞
 is the 𝐿𝑝-Centroid of class 𝑞. Besides 

providing a different centroid for each 𝐿𝑝 distance, the regularization effect of 𝐿𝑝-

Centroid method is also discussed. 

(𝑳𝒑-Centroid) 

𝜇𝐿𝑝

𝑞 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜇𝑞   {∑ ||𝜇𝑞 − 𝐴𝑖
𝑞 ||𝑝

𝑝
𝑖| 𝐴𝑖∈ 𝐶𝑞 }.              (35) 

2.2.5 Nearest Centroids and Nearest Central Profiles 

In multicriteria sorting, the central profiles are also used as class representatives. The 

terms “central profiles” and “centroids” are often used interchangeably in the 

literature (e.g., [28], [29]). In this thesis, the term “central profile” is not used because 

the nearest centroid and nearest central profile approaches differ in comparison of 

the class representatives with alternatives.  

When central  profiles are employed in multicriteria sorting, a criteria aggregation is 

performed on alternatives and central profiles as the first step. That is both 

alternatives and central profiles are mapped into a single dimensional value space. 

Then, as the second step, the central profiles and alternatives are compared in the 

single dimension. Class assignments are performed accordingly. To clarify, a class 

assignment structure is used as follows. Let 𝑈(. ) be a criteria aggregation function. 

𝑈(𝐴𝑖) ≤ 𝑈(𝜇1) → 𝐴𝑖 ∈ 𝐶1 

𝑈(𝜇𝑞) ≤ 𝑉(𝐴𝑖) < 𝑈(𝜇𝑞+1) 𝑎𝑛𝑑 𝑈(𝜇𝑞+1) − 𝑈(𝐴𝑖) > 𝑈(𝐴𝑖) − 𝑈(𝜇𝑞) → 𝐴𝑖

∈ 𝐶𝑞 ∀𝑞 < 𝑄 

𝑈(𝜇𝑞) ≤ 𝑈(𝐴𝑖) < 𝑈(𝜇𝑞+1) 𝑎𝑛𝑑 𝑈(𝜇𝑞+1) − 𝑈(𝐴𝑖) < 𝑈(𝐴𝑖) − 𝑈(𝜇𝑞) → 𝐴𝑖

∈ 𝐶𝑞+1 ∀𝑞 < 𝑄 

𝑈(𝐴𝑖) > 𝑈(𝜇𝑄) → 𝐴𝑖 ∈ 𝐶𝑄 
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This structure is not used in the nearest centroid type of classifier. Instead, the class 

assignment structure in DISWOTH is employed with equation (28). 

To apply the class assignment structure in equation (28), alternative and the class 

representative is compared as the first step. Then, as the second step, the criteria 

aggregation is performed with a similarity measure. In DISWOTH, the 𝐿𝑝 distance 

is used as the similarity measure. To sum up, the difference between the nearest 

central profile based methods and nearest centroid-based methods is that the first and 

the second steps are switched.  
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CHAPTER 3  

3 EXTENSIONS TO DISWOTH METHOD 

This chapter presents the first study conducted in this thesis. The base method, 

DISWOTH [6], that is a nearest centroid type of sorting method is extended to 

improve the classification accuracy and solution time. Five methods are proposed in 

this chapter. 

The first method is a linear approximation of DISWOTH by employing a Mixed 

Integer Programming (MIP) approach. In the second method, 𝐿𝑝-Centroid method is 

employed. An algorithm is developed to choose a good 𝐿𝑝 distance and 𝐿𝑝-Centroid 

pair as a heuristic approach. The third method is the combination of the first two. 𝐿𝑝-

Centroid is adapted as in the second method and the formulation is linearized as MIP 

as in the first method. Two extensions to the third method are developed to reflect 

the ordering of classes in the model. These extensions are formulated in a way that 

they seek alternative solutions to the best accuracy solution. In the third method, 

objective function is changed so that the alternative solution seeking procedure is 

enabled. All of the three methods and the two extensions are based on DISWOTH. 

For the methods proposed in this chapter, it is assumed that the data and centroids 

are scaled to [0,1] range (explained in Chapter 5 equation (100)). Therefore, Big M 

values used in this section equal to 1. 

After introducing the proposed methods, application procedure and their 

categorization in the literature is presented.  

3.1 Linearization of DISWOTH with MIP, Bin-Dis Method 

The first method is the Binary variable DISWOTH method, namely Bin-Dis. NLP 

DISWOTH method is converted into a Mixed Integer NonLinear Programming 
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(MINLP) model by formulating the classification error with a binary variable. Then, 

the MINLP model is linearized.  

The main motivation behind the usage of binary variables can be explained by the 

means and ends objective approach [30]. The main aim and the fundamental 

objective are to maximize classification accuracy (minimize classification error). 

Note that maximizing classification accuracy (minimizing classification error) is 

directly formulated with maximizing (minimizing) the total “number” of accurate 

(inaccurate) class assignments. Minimizing the total classification error with a 

continuous variable does not necessarily minimize the total number of inaccurate 

class assignments. Therefore, it can be seen as a means objective that serves the aim. 

The ends objective in here is to minimize the total number of inaccurate class 

assignments. Summation of the binary error variables is exactly the ends objective 

here. With the introduction of binary variable classification error, the classification 

error of Bin-Dis is formulated as equation (29). To apply this adjustment, constraint 

(32) is changed as constraint (36)  and constraint (33) is changed as constraint (37). 

𝑀𝑒𝑖 − 𝜖 ≥ 𝑑𝑝
𝑤(𝐴𝑖

𝑞 , 𝜇𝑞  ) − 𝑑𝑝
𝑤(𝐴𝑖

𝑞 , 𝜇𝑟) ∀𝑖, 𝑞 ≠  𝑟              (36) 

𝑒𝑖 ∈ {0,1}                  (37) 

Big 𝑀 in constraint (36) is a sufficiently large number. Constraint (36) can be 

linearized as follows. 𝑒𝑖 = 1 iff,  √∑ 𝑤𝑗
𝑝 |𝐴𝑖𝑗

𝑞 − 𝜇𝑗
𝑞|

𝑝

𝑗

𝑝

> √∑ 𝑤𝑗
𝑝 |𝐴𝑖𝑗

𝑞 − 𝜇𝑗
𝑟|

𝑝

𝑗

𝑝

 for  

some 𝑞 ≠ 𝑟. Relaxing the roots does not change the value of 𝑒𝑖. Therefore, the 

inequality can be rewritten as ∑ 𝑤𝑗
𝑝|𝐴𝑖𝑗

q
− 𝜇𝑗

𝑞|
𝑝

𝑗 > ∑ 𝑤𝑗
𝑝|𝐴𝑖𝑗

q
− 𝜇𝑗

𝑟|
𝑝

𝑗 . After relaxing 

the roots, power 𝑝 of 𝑤𝑗
𝑝
 can also be relaxed based on the decision boundary of 

classification. Relaxation of power 𝑝 of 𝑤𝑗
𝑝
 is as follows.  

Let 𝐸 denote the set of equidistant points to 𝜇𝑞 and 𝜇𝑟 for classes 𝑞 ≠ 𝑟. 𝐸 satisfies 

equation (38) below. Equation (38) can be rearranged as equation (39). Assume a 

positive constant Ω as in equation (40).  

∑ 𝑤𝑗
𝑝|𝐸𝑗 − 𝜇𝑗

𝑞|
𝑝

𝑗 = ∑ 𝑤𝑗
𝑝|𝐸𝑗 − 𝜇𝑗

𝑟|
𝑝

𝑗                 (38) 
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∑ 𝑤𝑗
𝑝(|𝐸𝑗 − 𝜇𝑗

𝑞|
𝑝

− |𝐸𝑗 − 𝜇𝑗
𝑟|

𝑝
)𝑗 = 0                (39) 

Ω ∑ 𝑤𝑗
𝑝(|𝐸𝑗 − 𝜇𝑗

𝑞|
𝑝

− |𝐸𝑗 − 𝜇𝑗
𝑟|

𝑝
)𝑗 = 0                (40) 

Decision boundary equations (39) and (40) result with the same decision boundary. 

Because positive constant Ω can be cancelled due to zero in the RHS of (40). 

Therefore, if there exist 𝑣𝑗  which equals Ω𝑤𝑗
𝑝
 (𝑣𝑗 = Ω𝑤𝑗

𝑝
) then it can be used instead 

of  𝑤𝑗
𝑝
 to linearize constraint (36). Such 𝑣𝑗  satisfies equation (41). 

1

Ω
=

𝑣1

𝑤1
𝑝 =

𝑣2

𝑤2
𝑝 = ⋯ =

𝑣𝑚

𝑤𝑚
𝑝                  (41) 

Based on equation (41), 𝑣𝑗  can be represented as equation (42) for some index 𝑘 ∈

{1,2, … , 𝑚}/𝑗. 

𝑣𝑗 =
𝑤𝑗

𝑝

𝑤𝑘
𝑝 𝑣𝑘∀𝑗                   (42) 

To analyze whether equation (42) violates constraint (22) (weight normalization 

constraint), replace 𝑤𝑗 in constraint (22) with 𝑣𝑗  formulation in equation (42). (43) 

is the resulting equation. For simplicity, let 𝑘 = 𝑚 in equation (42). 

𝑤1
𝑝

𝑤𝑚
𝑝 𝑣𝑚 +

𝑤2
𝑝

𝑤𝑚
𝑝 𝑣𝑚 + ⋯ +

𝑤𝑚
𝑝

𝑤𝑚
𝑝 𝑣𝑚 = 1 → 𝑣𝑚 ∑

𝑤𝑗
𝑝

𝑤𝑚
𝑝

𝑚
𝑗=1 = 1 → 𝑣𝑚 =

𝑤𝑚
𝑝

||𝑤||
𝑝

𝑝           (43)  

(43) shows that a linear substitute of 𝑤𝑗
𝑝
 is obtained by the distributive normalization 

of 𝑤𝑗. Insert 
𝑤𝑗

𝑝

||𝑤||
𝑝

𝑝 in constraint (22) to see that constraint (22) is not violated. This 

result is shown in equation (44). 

∑
𝑤𝑗

𝑝

||𝑤||
𝑝

𝑝
𝑚
𝑗=1 =

||𝑤||
𝑝

𝑝

||𝑤||
𝑝

𝑝 = 1                 (44) 

The linearization of criterion weights in weighted 𝐿𝑝 distance is exemplified with a 

numerical example (see Appendix G).  
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As a result, there exist a linear variable as a substitute for optimal criterion weights 

𝑤𝑗
∗. By employing binary variable, it is shown that 𝑤𝑗

𝑝
 in constraint (36) can be 

linearized and reformulated as MIP with constraint (45). 

𝑀𝑒𝑖 − 𝜖 ≥ ∑ 𝑤𝑗|𝐴𝑖𝑗
𝑞 − 𝜇𝑗

𝑞|
𝑝

𝑗 − ∑ 𝑤𝑗|𝐴𝑖𝑗
𝑞 − 𝜇𝑗

𝑟|
𝑝

𝑗 ∀𝑖, 𝑞 ≠  𝑟            (45) 

Bin-Dis model is proposed as linearized version of DISWOTH. Bin-Dis model is as 

follows. 

(Bin-Dis) 

Objective function (31) 

Subject to: 

Constraints (22)-(23), (37) and (45)   

3.2 𝑳𝒑 Centroid Induced DISWOTH, 𝑳𝒑Dis Method 

The second method is the 𝐿𝑝-centroid induced DISWOTH method, namely 𝐿𝑝Dis. 

𝐿𝑝-Centroid method [25] is adapted to DISWOTH to improve the classification 

accuracy.  

To properly adapt 𝐿𝑝-Centroid method to DISWOTH, an algorithm is developed. 

Distance Choice (DC) algorithm solves the problem of distance function and 

centroid choice. It finds a distance-centroid pair to improve the classification 

accuracy. 

DC algorithm: 

Step 1: Initialize 𝑝∗ = 0, 𝜇𝐿𝑝∗
= [0]𝑄𝑥𝑚 𝑎𝑛𝑑 𝑧∗ = 𝑛 . 

Step 2: Increment 𝑝 by a “small value” and solve 𝐿𝑝-Centroid Model for 𝐿𝑝 distance 

with 𝐿𝑝-Centroid Algorithm and find the resulting centroids 𝜇𝐿𝑝
= [𝜇𝐿𝑝

1 , 𝜇𝐿𝑝

2 , … , 𝜇𝐿𝑝

3 ]. 
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Step 3: With 𝜇𝐿𝑝
 and 𝑝, by 𝐿𝑝 distance, calculate total classification accuracy, 𝑧𝑝 =

∑ 𝑒𝑖𝑖 . Compute 𝑒𝑖 ∈ {0,1} using equation (29) with equal criterion weights. 

Step 4: If 𝑧𝑝 ≤ 𝑧∗ then, 𝑧∗ = 𝑧𝑝, 𝑝∗ = 𝑝 and 𝜇𝐿𝑝∗
= 𝜇𝐿𝑝

. 

Step 5: If 𝑝 < 𝑝′ then, return to Step 2. Else terminate.  

Outputs: 𝐿𝑝∗ and 𝜇𝐿𝑝∗

𝑞
 for each 𝑞 

The small value in step 2 of the DC algorithm is chosen as 0.1 and the stopping 

condition 𝑝′ is chosen as 10. Outputs of the DC algorithm are the 𝑝∗ value to use as 

𝐿𝑝∗ distance and the 𝜇𝐿𝑝∗

𝑞
 to use in DISWOTH as centroid estimation. DISWOTH 

method with 𝐿𝑝∗ distance and 𝜇𝐿𝑝∗

𝑞
 is named 𝐿𝑝Dis Method. Although the star sign 

(*) is used,  note that that 𝑝∗ and the 𝜇𝐿𝑝∗
 do not mean an optimal distance and 

centroid pair. They are improved distance and centroid pair in terms of nearest 

centroid classification accuracy according to the DC algorithm. Therefore, the DC 

algorithm is a heuristic approach to determine improved 𝑝∗ and the 𝜇𝐿𝑝∗
. 𝐿𝑝Dis is an 

NLP model and formulated as follows.  

(𝑳𝒑Dis) 

Objective function (31) 

Subject to: 

Constraints (22)-(23), (33)  

𝑒𝑖 − 𝜖 ≥ 𝑑𝑝∗
𝑤 (𝐴𝑖

𝑞 , 𝜇𝐿𝑝∗

𝑞 ) − 𝑑𝑝∗
𝑤 (𝐴𝑖

𝑞 , 𝜇𝐿𝑝∗

𝑟 ) ∀𝑖, 𝑞 ≠  𝑟         (46) 

3.3 MIP 𝑳𝒑-Centroid Induced DISWOTH, Bin-𝑳𝒑Dis Method 

The third method is Binary variable 𝐿𝑝-centroid induced DISWOTH, namely Bin-

𝐿𝑝Dis method. Linearization made in Section 3.1 for Bin-Dis is also used in this 
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method. As 𝐿𝑝Dis in Section 3.2, 𝜇𝐿𝑝∗

𝑞
 and 𝐿𝑝∗ are used. Constraint (46) is 

reformulated linearly as in constraint (47). 

𝑀𝑒𝑖 − 𝜖 ≥ ∑ 𝑤𝑗 |𝐴𝑖𝑗
𝑞 − 𝜇𝐿𝑝∗𝑗

𝑞 |
𝑝∗

𝑗 − ∑ 𝑤𝑗 |𝐴𝑖𝑗
𝑞 − 𝜇𝐿𝑝∗𝑗

𝑟 |
𝑝∗

𝑗  ∀𝑖, 𝑞 ≠  𝑟           (47) 

(Bin-𝑳𝒑Dis)  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑒𝑖
𝑛
𝑖=1                  (48) 

Subject to: 

Constraints (22)-(23), (37) and (47)   

3.4 Ordering of Classes 

In multicriteria sorting problem, classes are ordered w.r.t a preference order. In 

DISWOTH, the ordering is ignored to improve classification accuracy. In this 

section, ordering of classes is applied to Bin-𝐿𝑝Dis method. It is applied to the 

proposed methods with soft constraints that seek alternative solutions of best 

accuracy outcome. Referring to the findings of Ben-David et al. [21], with this 

approach, the ordering of classes is considered without decreasing the classification 

accuracy. In both extensions, criterion-wise min-max feature scaling is applied to 

data. The data sets are scaled to [0,1] range (explained in Chapter 5 equation (100)). 

3.4.1 Compromise Ranking Extension 

In this extension, it is assumed that the class centroids are ordered according to a 

preference order as the classes. The ordering relation is formulated with distance to 

ICV. It is assumed that the centroid of a more preferred class should be closer to ICV 

than a less preferred class. This formulation is similar to the criteria aggregation 

function of Çelik et. al [7]. Additional notation is as follows. 𝐽+ represents the set of 

maximization criteria and 𝐽− represents the set of minimization criteria. The ICV, 𝐼 

is found as in equation (49). 
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𝐼𝑗 = {
max

𝑗
{𝐴𝑖𝑗

𝑞 } = 1 ∀𝑗 ∈ 𝐽+

min
𝑗

{𝐴𝑖𝑗
𝑞 } = 0 ∀𝑗 ∈ 𝐽−

                (49) 

 The formulation for extension is given in constraint (50). 

√∑ 𝑤𝑗
𝑝 | 𝜇𝑗

𝑞 − 𝐼𝑗|
𝑝

𝑗

𝑝

> √∑ 𝑤𝑗
𝑝 |𝜇𝑗

𝑞−1 − 𝐼𝑗|
𝑝

𝑗

𝑝

 ∀𝑖 ∀𝑞 > 1             (50) 

Inequality (50) can be linearized and simplified to constraint (51). Because the 

greater than operator is not affected by the 𝑝𝑡ℎ degree root. After relaxation of the 

root, same linearization approach in Bin-Dis can be applied and formulated linearly.  

∑ 𝑤𝑗|𝜇𝑗
𝑞−1 − 𝐼𝑗|

𝑝

𝑗 − ∑ 𝑤𝑗|𝜇𝑗
𝑞 − 𝐼𝑗|

𝑝
𝑗 > 0 ∀𝑖 ∀𝑞 > 1             (51) 

Constraint (51) may not be feasible always. A new free variable 𝜆 is introduced to 

make (51) a soft constraint as in (53). Objective function is updated as (52). 

(Bin-𝑳𝒑Dis Com) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑒𝑖
𝑛
𝑖=1 − 𝜆                (52) 

Subject to: 

Constraints (22)-(23), (37) and (47)   

∑ 𝑤𝑗(|𝐴𝑖𝑗
𝑞 − 𝐼𝑗|

𝑝
− |𝐴𝑖𝑗

𝑞−1 − 𝐼𝑗|
𝑝

)𝑗 ≥ 𝜆 ∀𝑖, ∀𝑞 > 1              (53) 

𝜆 ≤ 𝜖                   (54) 

𝜆 is 𝑢. 𝑟. 𝑠                  (55) 

Lastly, due to the scaling of the data and centroids, weighted 𝐿𝑝 distance formulation 

returns values in range [0,1]. Therefore, the difference of two such distance functions 

is in the range (-1,1) for 𝐿𝑝 distances 𝑝 ≥ 1. In constraint (53), centroids are ordered 

with compromise ranking formulation. Due to constraints (54)-(55), constraint (53) 

is a soft constraint. 𝜆 is maximized in the objective to satisfy constraint (51). As 𝑒𝑖 

is a binary variable and 𝜆 is in the range of (-1,𝜖], employing objective function (52) 
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provide an alternative solution of optimal of Bin-𝐿𝑝Dis model that satisfy constraint 

(51) as much as possible. Therefore, the solution of Bin-𝐿𝑝Dis Com model is the 

best accuracy obtained by Bin-𝐿𝑝Dis with ordered class centroids. The proof for 

finding alternative solutions with objective function (52) and constraints (53)-(55) is 

explained in Appendix A. 

3.4.2 Additive Difference Model Extension 

Additive Difference Model (ADM) [27] extension is applied to Bin-𝐿𝑝Dis method 

to reflect the ordering of classes. ADM is applied as a soft constraint as in Bin-𝐿𝑝Dis-

Com. This extension is named Bin-𝐿𝑝Dis ADM. Additional notation for Bin-𝐿𝑝Dis 

ADM is as follows. 𝑔𝑗(. ) is evaluation function of criterion 𝑗. 𝑔𝑗(. )  is formulated 

such that 𝑔𝑗(𝜇𝑗
𝑞) = 𝜇𝑗

𝑞 , ∀𝑗 ∈ 𝐽+ and 𝑔𝑗(𝜇𝑗
𝑞) = −𝜇𝑗

𝑞 , , ∀𝑗 ∈ 𝐽−. Assume linear utility 

function 𝑈(𝑥) = ∑ 𝑤𝑗𝑔𝑗(𝑥𝑗)𝑗∈𝐽+ + ∑ 𝑤𝑗𝑔𝑗(𝑥𝑗)𝑗∈𝐽− . For two centroids of two 

adjacent ordered classes, utility function 𝑈(. ) can be represented as constraint (56). 

𝑈(𝜇𝑞 − 𝜇𝑞−1) = ∑ 𝑤𝑗𝑔𝑗(𝜇𝑗
𝑞 − 𝜇𝑗

𝑞−1)𝑗∈𝐽+ + ∑ 𝑤𝑗𝑔𝑗(𝜇𝑗
𝑞 − 𝜇𝑗

𝑞−1)𝑗∈𝐽− =

∑ 𝑤𝑗(𝜇𝑗
𝑞 − 𝜇𝑗

𝑞−1)𝑗∈𝐽+ + ∑ 𝑤𝑗(𝜇𝑗
𝑞−1 − 𝜇𝑗

𝑞)𝑗∈𝐽− > 0 ∀𝑞 > 1           (56)  

Constraint (56) can be rewritten as (57) as a soft constraint. Definition of 𝜆 is as the 

same in Com extension.  

∑ 𝑤𝑗(𝜇𝑗
𝑞 − 𝜇𝑗

𝑞−1)𝑗∈𝐽+ + ∑ 𝑤𝑗(𝜇𝑗
𝑞−1 − 𝜇𝑗

𝑞)𝑗∈𝐽− ≥ 𝜆 ∀𝑞 > 1             (57) 

(Bin-𝑳𝒑Dis ADM) 

Objective Function (52) 

Subject to: 

Constraints (22)-(23), (37), (54)-(55) and (57)   
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3.4.3 Application Procedure and Categorization of the Proposed Methods 

The categorization of the proposed methods in the literature is presented in Figure 

3.1. For Bin-Dis, 𝐿𝑝Dis and Bin-𝐿𝑝Dis methods, ordering of classes is ignored as in 

DISWOTH. Therefore, they can be categorized into the same group. However, for 

Com and ADM extensions, ordering of classes is a necessary information and the 

knowledge of the objective type of criteria is required (as maximization or 

minimization). Therefore, they are categorized as multicriteria methods.  

 

 

Figure 3.1 The categorization of proposed methods in the literature 

The application procedure of the proposed methods is as follows. 

Step 1: Solve the proposed model with the following inputs and the training data set: 

1- A predetermined 𝐿𝑝 distance 

2- An estimated centroid  

3- The training data 
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Obtain the outputs: 

1- Training accuracy 

2- Optimal criterion weights 

Step 2: With optimal criterion weights, predetermined 𝐿𝑝 distance, estimated 

centroid and test data, compute the test accuracy.  

 Obtain output: 

1- Test accuracy 

To compute the test accuracy, solve the proposed method with test data and optimal 

criterion weights obtained from step 1. Since the decision variable criterion weights 

are known, solving the model is not an optimization. Since all of the decision 

variables are known, it is a simple computation for error variables. 

Formulations of training and test accuracy are explained in Chapter 5. In the next 

chapter, a specific case of DISWOTH is studied. Findings are reported. 
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CHAPTER 4  

4 MONOTONICALLY ORDERED CENTROIDS CASE OF NEAREST CENTROID 

CLASSIFIER 

This chapter presents the second study in this thesis. In this chapter, a specific case 

of DISWOTH is studied. It is proven that when the centroid estimations are 

monotonically ordered, there are redundant alternatives such that DISWOTH cannot 

change the class assignment of those alternatives.  

In section 4.1, decision boundary characteristics of DISWOTH with monotonically 

ordered centroids is explained. Based on decision boundary characteristics, 

redundant alternatives are detected. It is shown that the conditions that satisfy the 

redundancy are linear expressions. In Section 4.2, redundancy conditions are 

formulated, and an LP model is developed for all 𝐿𝑝 distances.  

4.1 Theoretical Background of Redundancy Conditions 

To analyze the decision boundary characteristics of DISWOTH, recall the 

equidistant point 𝐸 presented in Section 3.1. The decision boundary of DISWOTH 

is given as equation (39) in Section 3.1. Let DBC denote Decision Boundary of 

Classification. DISWOTH with monotonic centroids is denoted as Monotonic NC. 

∑ 𝑤𝑗
𝑝(|𝐸𝑗 − 𝜇𝑗

𝑞|
𝑝

− |𝐸𝑗 − 𝜇𝑗
𝑟|

𝑝
)𝑗 = 0                (39) 

DBC with Euclidean distance function is exemplified in equations (58)-(59) and 

Figure 4.1. 𝑏 denotes a positive scalar and 𝑎 is a real numbered vector, 𝑎 ∈ 𝑅𝑚. 

∑ (𝜇𝑗
𝑞)2 − (𝜇𝑗

𝑟)2 − 2𝐸𝑗(𝜇𝑗
𝑟 − 𝜇𝑗

𝑞) = 0𝑗                   (58) 

𝑎𝑇𝐸 + 𝑏 = 0                                (59) 
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𝑎𝑗 = −2(𝜇𝑗
𝑟 − 𝜇𝑗

𝑞) and 𝑏 = ‖𝜇𝑞‖2 − ‖𝜇𝑟‖2. Alternatively, 𝑎𝑗 = (𝜇𝑗
𝑟 − 𝜇𝑗

𝑞) and 𝑏 =

−
‖𝜇𝑞‖2−‖𝜇𝑟‖2

2
. Equations (58)-(59) form a line between  𝜇𝑞 and 𝜇𝑟. 

 

Figure 4.1 Decision boundary example of DISWOTH for Euclidean distance 

The weighted distance with nonnegative weights rotates the DBC. The rotation is 

defined as a circular movement around a fixed point. The fixed point of rotation for 

the example DBC in Figure 4.1 can be found via formulations (60)-(65).  

∑ |𝜇𝑗
𝑞 − 𝐸𝑗|

2
− |𝜇𝑗

𝑟 − 𝐸𝑗|
2

= ∑ 𝑤𝑗|𝜇𝑗
𝑞 − 𝐸𝑗|

2
− 𝑤𝑗|𝜇𝑗

𝑟 − 𝐸𝑗|
2

𝑗  𝑗               (60) 

In equation (60), distance without weights and with weights are equated to find the 

midpoint of the rotation. It is simplified to equation (61). 

∑ (1 − 𝑤𝑗)(𝜇𝑗
𝑟 − 𝜇𝑗

𝑞)(𝜇𝑗
𝑞 + 𝜇𝑗

𝑟 − 2𝐸𝑗) = 0𝑗                    (61) 

∑ 𝑤𝑗𝑗 = 1                        (62) 

𝑤𝑗 ≥ 0 ∀𝑗                    (63) 

𝜇𝑗
𝑞+1 ≥ 𝜇𝑗

𝑞 ∀𝑗                   (64) 

Constraint (64) is assumed for Monotonic NC. Equation (60) is simplified to 

equation (61). Regardless of values of 𝑤𝑗 and (𝜇𝑗
𝑟 − 𝜇𝑗

𝑞), the only condition that 

“always” satisfies the equation (61) is as follows. 
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𝐸𝑗 =
𝜇𝑗

𝑞
+𝜇𝑗

𝑟

2
                   (65) 

Equation (65) is the fixed point of rotation and called midpoint in Euclidean 

geometry. Figure 4.2a and Figure 4.2b demonstrate four example rotations of DBC 

for four different weights.  

 

Figure 4.2 Example rotations of DBC  

In Figure 4.2b where the extreme conditions on criterion weights are applied, there 

are regions that the DBC cannot reach. Those regions are shown in Figure 4.3.  
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Figure 4.3 Illustration of regions that decision boundary of Monotonic NC cannot 

reach 

Alternatives in those regions are out of class assignment initiative of Monotonic NC. 

Therefore, once the class centroids are determined, alternatives in dashed regions of 

Figure 4.3 are redundant for DISWOTH model if the centroids are in monotonic 

order. Until now, the equations and figures are used for exemplifying the rotations, 

redundancy regions and decision boundary characteristics. Theorems 1-3 provide 

formulations of redundancy regions.  

Theorem 1: An alternative 𝐴 with criteria evaluations 
𝜇𝑗

𝑞
+𝜇𝑗

𝑞−1

2
< 𝐴𝑗 <

𝜇𝑗
𝑞

+𝜇𝑗
𝑞+1

2
, ∀𝑗 

is always assigned to class 𝑞 and cannot be assigned to class 𝑟 ≠ 𝑞 by a Monotonic 

NC with non-negative weights and 𝐿𝑝 distance.  
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Assume there are two artificial centroids 𝜇𝑄+1 and 𝜇0 such that 𝜇𝑄+1 = ∞  and 𝜇0 =

−∞. 

Proof: For  𝐴𝑖 ∈ 𝐶𝑞 to be always true, (66) must hold.  

∑ 𝑤𝑗|𝜇𝑗
𝑞 − 𝐴𝑖𝑗|

𝑝
− 𝑤𝑗|𝜇𝑗

𝑟 − 𝐴𝑖𝑗|
𝑝

<𝑗 0 ∀𝑟 ≠ 𝑞             (66) 

Rewrite (66) as (67)-(68): 

∑ 𝑤𝑗|𝜇𝑗
𝑞 − 𝐴𝑖𝑗|

𝑝
− 𝑤𝑗|𝜇𝑗

𝑢 − 𝐴𝑖𝑗|
𝑝

<𝑗 0 ∀𝑞 < 𝑢              (67) 

∑ 𝑤𝑗|𝜇𝑗
𝑞 − 𝐴𝑖𝑗|

𝑝
− 𝑤𝑗|𝜇𝑗

𝑙 − 𝐴𝑖𝑗|
𝑝

<𝑗 0 ∀𝑞 > 𝑙              (68) 

(67) and (68) always hold in the case of  
𝜇𝑗

𝑞
+𝜇𝑗

𝑞−1

2
< 𝐴𝑖𝑗 <

𝜇𝑗
𝑞

+𝜇𝑗
𝑞+1

2
. This is proven 

with (69)-(73). Superscripts 𝑢 and 𝑙 are not used for power operation. They are used 

for indexing. 𝑢 and 𝑙 are integers such that 𝑢, 𝑙 ∈ {0,1,2, … , 𝑄, 𝑄 + 1}. Due to 

constraint (64), 𝐴𝑖𝑗 <
𝜇𝑗

𝑞
+𝜇𝑗

𝑞+1

2
 also satisfies 𝐴𝑖𝑗 <

𝜇𝑗
𝑞

+𝜇𝑗
𝑢

2
, ∀𝑢 > 𝑞 and 𝐴𝑖𝑗 >

𝜇𝑗
𝑞

+𝜇𝑗
𝑞−1

2
 

satisfies 𝐴𝑖𝑗 >
𝜇𝑗

𝑞
+𝜇𝑗

𝑙

2
, ∀𝑙 < 𝑞. 𝜇𝑗

𝑙 < 𝜇𝑗
𝑞 < 𝜇𝑗

𝑢 is clear. Rewrite 𝐴𝑖𝑗 >
𝜇𝑗

𝑞
+𝜇𝑗

𝑙

2
 and 𝐴𝑖𝑗 <

𝜇𝑗
𝑞

+𝜇𝑗
𝑢

2
 as equations (69) and (70), respectively. 𝛽𝑗

𝑢, 𝛽𝑗
𝑙, 𝑥𝑗

𝑢 and 𝑥𝑗
𝑙 are positive values.  

𝐴𝑖𝑗 =
𝜇𝑗

𝑞

2
+

𝜇𝑗
𝑢

2
− 𝛽𝑗

𝑢, 𝛽𝑗
𝑢 > 0.                 (69) 

𝐴𝑖𝑗 =
𝜇𝑗

𝑞

2
+

𝜇𝑗
𝑙

2
+ 𝛽𝑗

𝑙, 𝛽𝑗
𝑙 > 0.                  (70) 

Due to (64), 
𝜇𝑗

𝑞+1

2
>

𝜇𝑗
𝑞

2
. Rewrite (64) as: 

𝜇𝑗
𝑢

2
−

𝜇𝑗
𝑞

2
= 𝑥𝑗

𝑢, ∀𝑢 > 𝑞 , 𝑥𝑗
𝑢 > 0                (71)  

𝜇𝑗
𝑞

2
−

𝜇𝑗
𝑙

2
= 𝑥𝑗

𝑙 , ∀𝑙 < 𝑞 , 𝑥𝑗
𝑙 > 0                (72) 

Inequality (73) is used for proving Theorem 1. 

𝑤𝑗|𝑎𝑗 − 𝑏𝑗|
p

< 𝑤𝑗|−𝑎𝑗 − 𝑏𝑗|
𝑝
 for 𝑎𝑗 , 𝑏𝑗 > 0, 𝑤𝑗 ≥ 0 ∀𝑗, 𝑝 > 0           (73) 
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(67) always holds due to (69) and (71) with the following formulation. 

∑ 𝑤𝑗(|
𝜇𝑗

𝑞

2
−

𝜇𝑗
𝑢

2
+ 𝛽𝑗

𝑢|
𝑝

− |
𝜇𝑗

𝑢

2
−

𝜇𝑗
𝑞

2
+ 𝛽𝑗

𝑢|
𝑝

) = ∑ 𝑤𝑗(|𝑥𝑗
𝑢 + 𝛽𝑗

𝑢|
𝑝

− |−𝑥𝑗
𝑢 +𝑗𝑗

𝛽𝑗
𝑢|

𝑝
) < 0 always holds because  

|−𝑥𝑗
𝑢 + 𝛽𝑗

𝑢|
𝑝

− |−𝑥𝑗
𝑢 − 𝛽𝑗

𝑢|
𝑝

< 0 𝑓𝑜𝑟 𝑥𝑗
𝑢, 𝛽𝑗

𝑢 > 0 ∀𝑗 always holds due to (73). 

(68) always holds due to (70) and (72) with the following formulation. 

∑ 𝑤𝑗(|
𝜇𝑗

𝑞

2
−

𝜇𝑗
𝑙

2
− 𝛽𝑗

𝑙|
𝑝

− |
𝜇𝑗

𝑙

2
−

𝜇𝑗
𝑞

2
− 𝛽𝑗

𝑙|
𝑝

) = ∑ 𝑤𝑗(|𝑥𝑗
𝑙 − 𝛽𝑗

𝑙|
𝑝

− |−𝑥𝑗
𝑙 − 𝛽𝑗

𝑙|
𝑝

) <𝑗𝑗 0 

always holds because |𝑥𝑗
𝑙 − 𝛽𝑗

𝑙|
𝑝

− |−𝑥𝑗
𝑙 − 𝛽𝑗

𝑙|
𝑝

< 0 𝑓𝑜𝑟 𝑥𝑗
𝑙 , 𝛽𝑗

𝑙 > 0 ∀𝑗 always holds 

due to (73).❑  

Due to Theorem 1, by Monotonic NC, 𝐴𝑖
𝑞
 is always accurately classified if 𝐴𝑖

𝑞 ∈ 𝑅𝑞+ 

where 𝑅𝑗
𝑞+ = (

𝜇𝑗
𝑞

+𝜇𝑗
𝑞−1

2
,

𝜇𝑗
𝑞

+𝜇𝑗
𝑞+1

2
) ∀𝑗. As seen from the formulation of 𝑅𝑞+, these 

redundancy regions are in shape of boxes.  

𝑅𝑞+ regions are demonstrated for a three-class example in Figure 4.4.  
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Figure 4.4 A 3-class example of the redundancy regions  

Another redundancy condition occurs depending on 𝐴𝑖
𝑞
 and monotonic centroids as 

follows. 𝐴𝑖
𝑞
 is always misclassified if 𝐴𝑖

𝑞 ∈ 𝑅𝑙
𝑞−

 or 𝐴𝑖
𝑞 ∈ 𝑅𝑢

𝑞−
 where 𝑅𝑙𝑗

𝑞− =

(−∞,
𝜇𝑗

𝑞
+𝜇𝑗

𝑞−1

2
) ∀𝑗 and 𝑅𝑢𝑗

𝑞−
= (

𝜇𝑗
𝑞

+𝜇𝑗
𝑞+1

2
, ∞) ∀𝑗.  

Theorem 2: 𝐴𝑖
𝑞
 cannot be accurately classified if 𝐴𝑖

𝑞 ∈ 𝑅𝑙
𝑞−

 and it is always 

classified to a class less than 𝑞 (𝐶𝑟 , 𝑟 < 𝑞).  

Proof: (67) and (68) never holds for 𝐴𝑖
𝑞 ∈ 𝑅𝑙

𝑞−
 (𝐴𝑖𝑗

𝑞 <
𝜇𝑗

𝑞
+𝜇𝑗

𝑞−1

2
). Rewrite 𝐴𝑖𝑗

𝑞 <

𝜇𝑗
𝑞

+𝜇𝑗
𝑞−1

2
  as follows: 

𝐴𝑖𝑗
𝑞 =

𝜇𝑗
𝑞

2
+

𝜇𝑗
𝑞−1

2
− 𝛽𝑗

𝑞−1, 𝛽𝑗
𝑞−1 > 0                (74) 

Show that 𝜇𝑗
𝑞−1

 is always closer to 𝐴𝑖𝑗
𝑞

 than 𝜇𝑗
𝑞
. 
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∑ 𝑤𝑗(|
𝜇𝑗

𝑞

2
−

𝜇𝑗
𝑞−1

2
+ 𝛽𝑗

𝑞−1|

𝑝

− |
𝜇𝑗

𝑞−1

2
−

𝜇𝑗
𝑞

2
+ 𝛽𝑗

𝑞−1|

𝑝

) = ∑ 𝑤𝑗 (|𝑥𝑗
𝑞−1 + 𝛽𝑗

𝑞−1|
𝑝

−𝑗𝑗

|−𝑥𝑗
𝑞−1 + 𝛽𝑗

𝑞−1|
𝑝

) > 0. |𝑥𝑗
𝑞−1 + 𝛽𝑗

𝑞−1|
𝑝

− |−𝑥𝑗
𝑞−1 + 𝛽𝑗

𝑞−1|
𝑝

> 0, 𝑓𝑜𝑟 𝑥𝑗
𝑞−1, 

𝛽𝑗
𝑞−1 > 0 ∀𝑗  always holds due to (73). ❑ 

Theorem 3: 𝐴𝑖
𝑞
 cannot be accurately classified if 𝐴𝑖

𝑞 ∈ 𝑅𝑢
𝑞−

 and is always classified 

to a class greater than 𝑞.  

Proof: (67) and (68) never holds for 𝐴𝑖
𝑞 ∈ 𝑅𝑢

𝑞−
 (𝐴𝑖𝑗

𝑞 >
𝜇𝑗

𝑞
+𝜇𝑗

𝑞+1

2
). Rewrite 𝐴𝑖𝑗

𝑞 >

𝜇𝑗
𝑞

+𝜇𝑗
𝑞+1

2
  as follows. 

𝐴𝑖𝑗
𝑞 =

𝜇𝑗
𝑞

2
+

𝜇𝑗
𝑞+1

2
+ 𝛽𝑗

𝑞+1, 𝛽𝑗
𝑞+1 > 0                           (75) 

Show that 𝜇𝑗
𝑞+1

 is always closer to 𝐴𝑖𝑗
𝑞

 than 𝜇𝑗
𝑞
. Thus, NC cannot classify 𝐴𝑖𝑗

𝑞
 to class 

𝑞. 

∑ 𝑤𝑗(|
𝜇𝑗

𝑞

2
−

𝜇𝑗
𝑞+1

2
− 𝛽𝑗

𝑞+1
|

𝑝

− |
𝜇𝑗

𝑞+1

2
−

𝜇𝑗
𝑞

2
− 𝛽𝑗

𝑢|

𝑝

) = ∑ 𝑤𝑗 (|−𝑥𝑗
𝑞+1

− 𝑥𝑗
𝑞+1

|
𝑝

−𝑗𝑗

|𝑥𝑗
𝑞+1 − 𝛽𝑗

𝑞+1|
𝑝

) > 0. |−𝑥𝑗
𝑞+1 − 𝛽𝑗

𝑞+1|
𝑝

− |𝑥𝑗
𝑞+1 − 𝛽𝑗

𝑞+1|
𝑝

> 0 𝑓𝑜𝑟 𝑥𝑗
𝑞+1, 𝛣𝑗

𝑞+1 >

0 ∀𝑗 always hold due to (73). ❑ 

Due to Theorems 2 and 3, and alternative 𝐴𝑖 satisfying 𝐴𝑖
𝑞 ∈ 𝑅𝑙

𝑞−
 or 𝐴𝑖

𝑞 ∈ 𝑅𝑢
𝑞−

 cannot 

be accurately classified and is a redundant alternative.  

Let us categorize alternative 𝐴𝑖
𝑞 ∈ 𝑅𝑞+ as Accurately Redundant (AR) and 𝐴𝑖

𝑞 ∈ 𝑅𝑙
𝑞−

 

or 𝐴𝑖
𝑞 ∈ 𝑅𝑢

𝑞−
 as Inaccurately Redundant (IR). An example of 𝑅𝑞+, 𝑅𝑙

𝑞−
and 𝑅𝑢

𝑞−
 

regions is illustrated in Figure 4.5. Intuitively, a proposed method to maximize 

(minimize) the number of AR (IR) alternatives enlarges (diminishes) the 𝑅𝑞+(𝑅𝑞−) 

area(s) in Figure 4.5.  
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Figure 4.5 A representation of AR and IR regions.  

To conclude this section; it is shown that when centroids are in monotonic order, 

there are redundancy regions. Those regions are classified into two as AR and IR 

regions. In the AR region of class 𝑞, any alternative belonging to class 𝑞 (𝐴𝑖
𝑞
) is 

always accurately classified. There is no positive weight set that can violate this 

condition. If an alternative is in the IR region of class 𝑞 (𝑅𝑙
− and 𝑅𝑢

−), it cannot be 

accurately classified and is always classified to some other class. There is no positive 

weight set that can violate this condition too. The formulations of redundancies are 

linear expressions.  

Examples of AR and IR alternatives are illustrated in Figure 4.6. Small shapes are 

alternatives and large shapes are centroids. Triangles are from class one; black circles 

are from class two and white circles are from class three. Examples are illustrated 

for alternatives of class two. Alternative one from class two (𝐴1
2) and alternative four 

from class two (𝐴4
2) are IR alternatives since 𝐴1

2 ∈ 𝑅𝑢
2− and 𝐴4

2 ∈ 𝑅𝑙
2−. Alternative 

three from class two is an AR alternative since 𝐴3
2 ∈ 𝑅2+. Alternative two from class 

two 𝐴2
2 is not an AR or IR alternative. Class assignment of  𝐴2

2 is based on the 
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decision boundary of classification (DBC2). If criterion weights change, then it may 

be assigned to different classes. Therefore, it is not a redundant alternative.  

 

Figure 4.6 An example illustration for alternatives in AR and IR regions 

4.2 Proposed Model 

In this section, using Theorems 1, 2 and 3; an LP model is developed to maximize 

the accurate redundancies and minimize inaccurate redundancies. For formulation of 

𝑅𝑞+, 𝑅𝑙
𝑞−

 and 𝑅𝑢
𝑞−

 in MP, new decision variables 𝜆𝑖𝑗
𝑙  and 𝜆𝑖𝑗

𝑢  are introduced. In the 

following set of constraints, 𝜆𝑖𝑗
𝑙 , 𝜆𝑖𝑗

𝑢 = 0 ∀𝑗 if 𝐴𝑖
𝑞 ∈ 𝑅𝑞+ which is desired to improve 

accuracy. Because 𝐴𝑖
𝑞 ∈ 𝑅𝑞+ cannot be misclassified. New notation is as follows.  

𝜙𝑖 is the weight of alternative 𝑖. This is used in the computation of centroids as a 

weighted sum of alternatives. ϕ𝑚𝑖𝑛 is the minimum weight of alternatives. 𝛿𝑗
𝑞
 

separates the class centroids. ϕ𝑚𝑖𝑛 and 𝛿𝑗
𝑞
 are artificial variables to avoid trivial 

solutions. The explanation of trivial solutions are given and  illustrated in Appendix 

H. Constraint formulation of 𝑅𝑞+, 𝑅𝑙
𝑞−

 and 𝑅𝑢
𝑞−

 is as follows. 

𝐴𝑖𝑗
𝑞 + 𝜆𝑖𝑗

𝑙 ≥
𝜇𝑗

𝑞
+𝜇𝑗

𝑞−1

2
+ 𝜖 ∀𝑗, ∀𝑖, ∀𝑞 > 1               (76) 
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𝐴𝑖𝑗
𝑞 − 𝜆𝑖𝑗

𝑢 ≤
𝜇𝑗

𝑞
+𝜇𝑗

𝑞+1

2
− 𝜖 ∀𝑗, ∀𝑖, ∀𝑞 < 𝑄                (77) 

𝜇𝑗
𝑞+1 ≥ 𝜇𝑗

𝑞 + 𝛿𝑗
𝑞 ∀𝑗, ∀𝑞 < 𝑄                (78) 

𝜇𝑗
𝑞 = ∑ 𝐴𝑖𝑗

𝑞 𝜙𝑖𝑖  ∀𝑞, ∀𝑗                 (79) 

∑ ϕ𝑖𝑖∈𝐶𝑞 = 1 ∀𝑞                            (80) 

ϕ𝑚𝑖𝑛
𝑞 ≤ ϕ𝑖 ∀𝑖, ∀𝑞                  (81) 

𝜆𝑖𝑗
𝑢 , 𝜆𝑖𝑗

𝑙 ≥ 0  ∀𝑖, ∀𝑗                   (82) 

𝜇𝑗
𝑞 ≥ 0 ∀𝑞, ∀𝑗                       (83) 

𝜙𝑖 ≥ 0 ∀𝑖                             (84) 

𝜙𝑚𝑖𝑛
𝑞 ≥ 0                              (85) 

𝛿𝑗
𝑞 ≥ 𝜖 ∀𝑞 ∀𝑗                  (86) 

In constraint (76), it is checked whether 𝜆𝑖𝑗
𝑙 > 0 for any 𝑗. In this case,  𝐴𝑖

𝑞 ∈ 𝑅𝑞+ 

condition is violated. If 𝜆𝑖𝑗
𝑙 > 0 for all 𝑗 then,  𝐴𝑖

𝑞 ∈ 𝑅𝑙
𝑞−

. The same applies to 

constraint (77) such that if 𝜆𝑖𝑗
𝑢 > 0 for any 𝑗 then, 𝐴𝑖

𝑞 ∈ 𝑅𝑞+ condition is violated. If 

𝜆𝑖𝑗
𝑢 > 0 for all 𝑗  then,  𝐴𝑖

𝑞 ∈ 𝑅𝑢
𝑞−

. Constraint (78) orders centroids from the best to 

worst class that provides the monotonic centroids. 𝛿𝑗
𝑞
 in constraint (78) is maximized 

in the objective function to avoid trivial solutions and it is a strictly positive variable. 

Constraints (79)-(80) ensure that the centroid of class 𝑞 is estimated as the convex 

combination of alternatives of class 𝑞. With these constraints it is guaranteed that the 

centroid is an interior point of the class that it represents. Constraint (81) is used to 

find the alternative that contributes the least in the computation of the centroids and 

is maximized in the objective. Constraints (82)-(86) are sign constraints. 𝜆𝑖𝑗
𝑢 + 𝜆𝑖𝑗

𝑙  

are minimized, 𝛿𝑗
𝑞
 and ϕ𝑚𝑖𝑛 are maximized in the objective functions. Maximization 

of 𝛿𝑗
𝑞
 and ϕ𝑚𝑖𝑛 in objective function does not serve the optimization of redundant 

alternatives. They are used to avoid trivial solutions. Therefore, they are 
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regularization variables. These objective functions are formulated as equations (87)-

(89). 𝑧1 objective is to be minimized and 𝑧2 and 𝑧3 objectives are to be maximized. 

All of the objectives are scaled to [0,1] range in the objective function1. 

𝑧1 = ∑ ∑ ∑
𝜆𝑖𝑗

𝑢 +𝜆𝑖𝑗
𝑙

|𝐶𝑞|𝑚𝑗𝑖∈𝐶𝑞𝑞                  (87) 

𝑧2 =
∑ ∑ 𝛿𝑗

𝑞
𝑗𝑞

𝑄𝑚
                            (88) 

𝑧3 =
∑ ϕ𝑚𝑖𝑛

𝑞
∗|𝐶𝑞|𝑞

𝑄
                           (89) 

To obtain efficient solution from constraints (76)-(86) and objective functions (87)-

(89), scalarizing function is used. As scalarizing function formulation, Augmented 

Tchebycheff [31] program is used. Accurate and Inaccurate Redundancies 

Optimization (AIRO) model with three-objectives is as follows.  

(AIRO) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧∞ + 𝜌(𝑧1 − 𝑧1
∗∗ + 𝑧2

∗∗ − 𝑧2 + 𝑧3
∗∗ − 𝑧3)           (90) 

Subject to: 

𝑧∞ ≥ 𝑉1(𝑧1 − 𝑧1
∗∗)                 (91) 

𝑧∞ ≥
(1−𝑉1)

2
(𝑧2

∗∗ − 𝑧2)                (92) 

𝑧∞ ≥
(1−𝑉1)

2
(𝑧3

∗∗ − 𝑧3)                (93) 

Constraints (76)-(86) 

Equations (87)-(89) 

 

 

1 𝑧1 is divided by |𝐶𝑞|𝑚 (class cardinality times number of criteria) to scale this objective to [0,1] range. Because the highest 

value that 𝜆𝑖𝑗
𝑢 + 𝜆𝑖𝑗

𝑙  can take is 1 due to normalization of data. 𝑧1 is divided by 𝑄𝑚 because the largest value 𝛿𝑗
𝑞
 can take is 1. 

The highest value ϕ𝑚𝑖𝑛
𝑞

 can take is 
1

|𝐶𝑞|
. Therefore, it is multiplied by |𝐶𝑞| and divided by 𝑄. 
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𝑧1
∗∗, 𝑧2

∗∗ and 𝑧3
∗∗ are predetermined parameters, namely utopian points. Utopian point 

is a point that is too good that it is impossible to achieve and formulated as  𝑧1
∗∗ =

𝑧1
∗ − 𝜖, 𝑧2

∗∗ = 𝑧2
∗ + 𝜖 and 𝑧3

∗∗ = 𝑧3
∗ + 𝜖. 𝑧1

∗, 𝑧2
∗ and 𝑧3

∗ denotes optimal values of 𝑧1, 𝑧2 

and 𝑧3. 𝑉1 is used to define the projection direction of the closest efficient solution 

from the utopian point. It is defined by the user. The Augmented Tchebycheff 

program is explained in Chapter 6 (Section 6.1.2). AIRO model is presented for a 

sorting problem with maximization criteria. For minimization criteria, model is 

modified as follows:  

Modify constraint (78) as (94). 

𝜇𝑗
𝑞+1 ≥ 𝜇𝑗

𝑞 + 𝛿𝑗
𝑞 ∀𝑗, ∀𝑞 < 𝑄                (78) 

𝜇𝑗
𝑞+1 ≤ 𝜇𝑗

𝑞 − 𝛿𝑗
𝑞 ∀𝑗, ∀𝑞 < 𝑄                (94) 

Modify constraints (76)-(77) as (95)-(96) 

𝐴𝑖𝑗
𝑞 + 𝜆𝑖𝑗

𝑙 ≥
𝜇𝑗

𝑞
+𝜇𝑗

𝑞−1

2
+ 𝜖 ∀𝑗, ∀𝑖, ∀𝑞 > 1               (76) 

𝐴𝑖𝑗
𝑞 − 𝜆𝑖𝑗

𝑢 ≤
𝜇𝑗

𝑞
+𝜇𝑗

𝑞+1

2
− 𝜖 ∀𝑗, ∀𝑖, ∀𝑞 < 𝑄                (77) 

𝐴𝑖𝑗
𝑞 + 𝜆𝑖𝑗

𝑙 ≥
𝜇𝑗

𝑞
+𝜇𝑗

𝑞+1

2
+ 𝜖 ∀𝑗, ∀𝑖, ∀𝑞 > 1               (95) 

𝐴𝑖𝑗
𝑞 − 𝜆𝑖𝑗

𝑢 ≤
𝜇𝑗

𝑞
+𝜇𝑗

𝑞−1

2
− 𝜖 ∀𝑗, ∀𝑖, ∀𝑞 < 𝑄                (96) 

No matter what criterion weights (as long as positive) and 𝐿𝑝 distances are used, it 

is shown that the redundancy conditions are valid. To perform NC class assignment, 

a distance function and criterion weights are also needed.  

To obtain and evaluate criterion weights, two different approaches are used. The first 

approach is developed based on the weight estimation LP in the study of Korhonen 

et al. [32]. The second approach is the equal weight case. This approach is named, 

AIRO-Equal Criterion Weights (AIRO-ECW) The second approach is applied to 
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analyze whether the weight estimation LP improves the classification accuracy or 

not.  

Instead of linear value function used by Korhonen et al. [32], distance-based criteria 

aggregation function is used to be consistent with NC method that is also the 

distance-based method. A new unrestricted in sign (𝑢. 𝑟. 𝑠), Θ𝑞, is introduced which 

takes negative value if the preference relationship between alternatives of two classes 

are violated. Weight Estimation (WE) LP model is as follows. 

(WE) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ Θ𝑞
𝑞                  (97) 

Subject to: 

∑ 𝑤𝑗|𝐴𝑖𝑗
𝑞 − 𝐼𝑗|

𝑝
𝑗 − ∑ 𝑤𝑗 |𝐴

𝑖′𝑗

𝑞+1
− 𝐼𝑗|

𝑝

𝑗 ≥ Θ𝑞 ∀𝑞 < 𝑄, ∀𝑖 ∈ 𝐶𝑞 , ∀𝑖′ ∈ 𝐶𝑞+1 

(98) 

Θ𝑞𝑢𝑟𝑠                          (99) 

Constraints (22)-(23) 

Referring to the relationship between alternatives and classes, alternatives should be 

consistent with the order of classes that is 𝐴𝑖 ∈ 𝐶𝑞 and 𝐴𝑖′ ∈ 𝐶𝑞+1, then 𝐴𝑖′ ≫ 𝐴𝑖 for 

𝑞 < 𝑄.  

Constraint (98) of WE measures the consistency of alternatives of ordered classes. It 

should be satisfied that the alternatives of a better class are preferrable to the 

alternatives of a worse class. Θ𝑞 is maximized in the objective function (97) to satisfy 

consistency of alternatives of ordered classes. Constraint (99) is the sign constraint. 

When WE weights are applied to AIRO, it is named AIRO-WE. 

Application procedure of the proposed method for monotonically ordered centroids 

is as follows. 

AIRO Method 

Step 1: Solve AIRO model for the training data and obtain monotonic centroids. 
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In solution of AIRO model, Augmented Tchebycheff program is used to avoid 

weakly efficient solutions. The objective weight, 𝑉1 is determined by empirical study 

based on preliminary experiments. More explanation about the experiment setting of 

AIRO model is given in Section 5.3. 

Step 2: Determine p value of 𝐿𝑝 distance, solve WE model for training data and 

obtain the criterion weights.  

Step 3: Using the test data, with the 𝐿𝑝 distance used in Step 2 and the criterion 

weights obtained in step 2 and the centroids obtained in step 1 compute test accuracy 

by computing errors using DISWOTH model. Solving DISWOTH model is not an 

optimization since the criterion weights are inputs to the model.  

Step 4: If more 𝐿𝑝 distances are to be evaluated, change the 𝐿𝑝 distance to be 

evaluated and return to step 2. Otherwise, terminate. 

Step 5: Calculate test accuracy for all 𝑉 values and 𝐿𝑝 distances used in AIRO. 

Choose the best test accuracy among them. 

In step 1 of the solution procedure, the values of objectives do not have any economic 

meaning for the decision maker. Therefore, it may be beneficial that a set of 𝑉1 values 

are used in the step 1. For application of AIRO, different 𝐿𝑝 distances are evaluated 

with step 4. The output of application procedure of AIRO is a single best test 

accuracy of a set of test accuracy outcomes of 𝐿𝑝 distances with different 𝑝 values. 

Since AIRO is an LP model, different solutions for different 𝐿𝑝 distances can be 

explored by solving many computationally inexpensive LP models.  

Proposed methods are listed in Table 4.1. 
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Table 4.1 List of proposed methods 

Proposed 

Method 

Developed 

Based on 

Centroid 

Choice 

Distance 

Function 

Model 

Type 

𝐿𝑝Dis 
DISWOTH and 

𝐿𝑝 −Centroid 

𝐿𝑝 −Centroid 

(𝜇𝐿𝑝∗

𝑞
) 

Weighted 

𝐿𝑝∗ 
NLP 

Bin-Dis DISWOTH 
Arithmetic 

Average 

Weighted 

𝐿𝑝 
MIP 

Bin-𝐿𝑝Dis 
𝐿𝑝Dis and Bin-

Dis 

𝐿𝑝 −Centroid 

(𝜇𝐿𝑝∗

𝑞
) 

Weighted 

𝐿𝑝∗ 
MIP 

Bin-𝐿𝑝Dis 

COM 

Bin-𝐿𝑝Dis and 

Compromise 

Ranking 

𝐿𝑝 −Centroid 

(𝜇𝐿𝑝∗

𝑞
) 

Weighted 

𝐿𝑝∗ 
MIP 

Bin-𝐿𝑝Dis 

ADM 

Bin-𝐿𝑝Dis and 

ADM 

𝐿𝑝 −Centroid 

(𝜇𝐿𝑝∗

𝑞
) 

Weighted 

𝐿𝑝∗ 
MIP 

AIRO DISWOTH 

Monotonic 

centroids based 

on AIRO 

Any 

Weighted 

𝐿𝑝 

LP 
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CHAPTER 5  

5 EXPERIMENTS OF DISWOTH EXTENSIONS AND MONOTONICALLY 

ORDERED CENTROIDS CASE 

5.1 Experiment Settings 

Performance of proposed methods are compared with DISWOTH [6] and UTADIS 

[3]. 5 intervals are used in each criterion of UTADIS. Each data set is partitioned 

into two as training and test data. Training data includes approximately 80 of whole 

data containing 80 of each class. Remaining 20 is taken as test data containing 20 of 

each class. All models are solved for training data, and the optimal criterion weights 

are used for the classification of test data. All the missing information in data sets 

are eliminated before experiments. For all data sets, whole data is normalized to [0,1] 

range using criterion wise Min-Max Feature Scaling. Normalization procedure is 

given below. 𝜖 is chosen as 10−6 in all of the models. In preliminary experiments, it 

is observed that 𝜖 ≥ 10−5 decreases the classification accuracy and values lower 

than 10−6 does not change the classification accuracy.  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐴𝑖𝑗 =
𝐴𝑖𝑗−𝑚𝑖𝑛𝑖{𝐴𝑖𝑗}

𝑚𝑎𝑥𝑖{𝐴𝑖𝑗}−𝑚𝑖𝑛𝑖{𝐴𝑖𝑗}
                        (100) 

The experiments are conducted on 9 data sets from different application areas. They 

are obtained from UCI Machine Learning Repository [33], WEKA [34] and study of 

Amine Lazouni et al. [35]. Details about the data sets are explained in the next 

section.  

5.1.1 Data Sets 

The data sets are chosen from different application areas to show the applicability of 

the proposed methods to different areas. The application areas are automotive 
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industry, health and medical area, employee selection, construction, and hardware 

performance. The data sets are as follows. 

Automotive Industry 

Car  Evaluation Data Set (CAR): This data set consists of 1728 rows (alternatives). 

There six categorical criteria and four ordinal classes. The criteria used for sorting 

and the criterion type are as follows. 

 

Table 5.1 Details about CAR data set 

Criteria Values Type 

Buying Price 
Low (1), Medium (2), 

High (3), Very High (4) 
Minimization 

Maintenance Cost 
Low (1), Medium (2), 

High (3), Very High (4) 
Minimization 

Number of Doors 
2 (1), 3 (2), 4 (3), 5 and 

more (4) 
Maximization 

Number of People 
2 (1), 4 (2), 5 and more 

(3) 
Maximization 

Luggage Boot 
Small (1), Medium (2),  

Big (3) 
Maximization 

Safety Score 
Low (1), Medium (2),  

High (3) 
Maximization 

Car Acceptability* 

(Class labels) 

Unacceptable (1), 

Acceptable (2), Good 

(3), Very good (4) 

- 

 

Automobile Fuel Consumption Miles/Gallon Data Set (AUTOMPG): AUTOMPG 

data set contains fuel consumption data of different automobile models in 

miles/gallon. Data set originally consists of 8 criteria each defining a different spec 

of automobiles. Car name is not predictive and not used in classification. Cylinder, 
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displacement, horsepower, weight, acceleration, model year and origin criteria are 

used for classification. Acceleration, model year and origin are maximization criteria 

and others are minimization. There are 392 rows. MPG column is continuous and 

binarized from median, lower than median being class 1 and remaining being class 

2. (Available at UCI Repository) 

 

Table 5.2 Details about AUTOMPG data set 

Criteria Values Type 

Cylinder 4, 6, 8 Cylinders Minimization 

Displacement 
Integer values varying 

between 68 and 455 
Minimization 

Horsepower 
Integer values varying 

between 46 and 230 
Minimization 

Weight  

Integer values varying 

between 1613 and 

5140 

Minimization 

Acceleration 
Values between 8 and 

24.8 
Maximization 

Model Year 
Years  between 70 

(1970) and 82 (1982) 
Maximization 

Origin 
Integer values varying 

between 1 and 3 
Maximization  

Miles Per Gallon* 

(MPG) 

(Class labels) 

Values between 9 and 

46.6 (Binarized from 

median) 

- 
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Health and Medical Areas 

Breast Cancer Data Set (BC): BC data set contains 286 rows, 9 columns 2 classes. 

Breast and breast-quad columns are non-predictive, and they are excluded. 

Remaining 7 criteria are used for sorting. Age and menopause state criteria are 

minimization criteria and others are maximization. (Available at UCI Repository) 

 

Table 5.3 Details about BC data set 

Criteria Values Type 

Age 

Ordinal categorical data 

10-19 (1), 20-29 (2), 

…, 60-69 (6) 

Minimization 

Menopause  
It40 (0), ge40 (1), 

premeno (2) 
Minimization 

Tumor Size  
Integer values varying 

between 1 and 11 
Maximization 

Inv Node 
Integer values varying 

between 1 and 7 
Maximization 

Node Caps Yes (0), No (1) Maximization 

Deg-Malign 1, 2, 3 Maximization 

Irradiate Yes (0), No (1) Maximization  

Recurrence*  

(Class labels) 
1, 2 - 
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Mammographic Mass Data Set (MMG): MMG data set contains 961 different breast 

cancer screening information. All criteria are used for sorting and all of them are 

maximization type. Severity column is to be predicted.(Available at UCI Repository) 

 

Table 5.4 Details about MMG data set 

Criteria Values Type 

BI-RADS Assessment 
Ordinal categorical data 

between 1 and 5 
Maximization 

Age  
Integer values varying 

between 18 and 96 
Maximization 

Shape  
Integer values varying 

between 1 and 4 
Maximization 

Margin 
Integer values varying 

between 1 and 5 
Maximization 

Density 
Integer values varying 

between 1 and 4 
Maximization 

Severity*  

(Class Label) 
1, 2 - 

 

American Society of Anesthesiologists Scores Data Set (ASA): ASA data set [35] 

has 16 criteria and 898 rows divided into 2 classes. All 16 criteria are used for sorting. 

Bradycardia, cardiac steadiness, spo2 and hypoglycemia are maximization criteria 

and others are minimization criteria.  
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Table 5.5 Details about ASA data set 

Criteria Values Type 

Age 
2 months to 105 years 

old 
Minimization 

Hypertension No (0), Yes (1) Minimization 

Diabetes No (0), Yes (1) Minimization 

Respiratory Failure No (0), Yes (1) Minimization 

Hearth Failure No (0), Yes (1) Minimization 

Brady Cardia (Hearth 

Rate in bpm) 

Integer values between 

58 and 70 
Maximization 

Tachycardia (Hearth 

Rate in bpm) 

Integer values between 

58 and 70 
Minimization 

Steadiness of Heart rate No (0), Yes (1) Maximization 

Pacemaker No (0), Yes (1) Minimization 

Atrioventricular Block No (0), Yes (1) Minimization 

Left Ventricular 

Hypertrophy 
No (0), Yes (1) Minimization 

Oxygen Saturation 
Integer values between 

43 and 100 
Maximization 
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Table 5.5 Continued 

Hypoglycemia (Glucose 

level as lower) 

Values between 0.7 and 

0.92 
Maximization 

Hyperglycemia (Glucose 

level as upper) 

Values between 0.92  and 

3.8 
Minimization 

Systole 
Values between 9  and 

20.5 
Minimization 

Diastole Values between 5  and 13 Minimization 

ASA Class* 

(Class Label) 
1, 2 - 

 

Employee Selection and Performance Evaluation  

Employee Selection Data Set (ESL): ESL data set contains evaluations of expert 

psychologists about 488 applicants. Data set consists of 488 rows and 4 ordinal 

criteria. All criteria are maximization. Name of the criteria are not given by the 

donator of the data set. Applicants are evaluated by psychologists of a recruiting 

company in an ordinal scale from 1 to 9 points based on psychometric test results. 

Evaluations are binarized by dividing from 6, employees with larger than 6 points 

being class 2 and others 1. (Available at WEKA) 
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Table 5.6 Details about ESL data set 

Criteria Values Type 

Criteria 1 
Ordinal categorical data 

between 1 and 9  
Maximization 

Criteria 2 
Ordinal categorical data 

between 1 and 9 
Maximization 

Criteria 3 
Ordinal categorical data 

between 1 and 8 
Maximization 

Criteria 4 
Ordinal categorical data 

between 1 and 8 
Maximization 

Class Labels* 

1, 2, …, 9 (Binarized 

by cutting from 6 

points. 1-6 (1) and 7-9 

(2)) 

- 

 

Lecturer Evaluation Data Set (LEV): LEV data set contains evaluations of students 

about lecturers. LEV data set consists of 1000 rows and 4 criteria. All criteria are 

maximization. Name of the criteria are not provided by the donator. Each criterion 

is evaluated with categorical ordinal scores between 1 and 4. Outcome column is to 

be predicted having 5 ordinal integer values between 1 and 5. Values 4 and 5 are 

assumed to be class 2 while others are class 1. (Available at WEKA) 
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Table 5.7 Details about LEV data set 

Criteria Values Type 

Criteria 1 
Ordinal categorical data 

between 1 and 4  
Maximization 

Criteria 2 
Ordinal categorical data 

between 1 and 4 
Maximization 

Criteria 3 
Ordinal categorical data 

between 1 and 4 
Maximization 

Criteria 4 
Ordinal categorical data 

between 1 and 4 
Maximization 

Class Labels* 

1, 2, …, 5 (Binarized 

by cutting from 3 

points. 1-3 (1) and 4-5 

(2)) 

- 

 

Material Science and Construction  

Concrete Compressive Strength Data Set (CCS): CCS data set contains information 

about different types of concrete where concrete compressive strength is the 

outcome. CCS data consists of 1030 rows and 8 predictive criteria. All 8 criteria are 

used for sorting. Fly ash, water, coarse aggregate, and fine aggregate are 

minimization criteria and others are maximization. Concrete Compressive Strength 

(in MPa) column is to be predicted. CCS column is binarized from median as classes 

1 and 2. (Available at UCI Repository)  
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Table 5.8 Details about CCS data set 

Criteria Values Type 

Cement (component 

1)(kg in a 𝑚3 mixture) 

Values between 102 

and 540  
Maximization 

Blast Furnace Slag 

(component 2)(kg in a 

𝑚3  mixture) 

Values between 0 and 

359.4 
Maximization 

Fly Ash (component 

3)(kg in a 𝑚3 mixture) 

Values between 0 and 

200.1 
Minimization 

Water  (component 

4)(kg in a 𝑚3 mixture) 

Values between 121.8 

and 247 
Minimization 

Superplasticizer 

(component 5)(kg in a 

𝑚3 mixture) 

Values between 0 and 

32.2 
Maximization 

Coarse Aggregate  

(component 6)(kg in a 

𝑚3 mixture) 

Values between 801 

and 1145 
Minimization 

Fine Aggregate 

(component 7)(kg in a 

𝑚3 mixture) 

Values between 594 

and 992.6 
Minimization 

Age (day) 
Integer values between 

1 and 365 
Maximization 

Concrete Compressive 

Strength (CCS: MPa, 

megapascals)* 

(Class Label) 

Values between 2.3 and 

82.6 (Binarized from 

median) 

- 
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Hardware Performance  

Computer Hardware Data Set (CPU): CPU data set contains information about 

different computer hardware and their estimated relative performance. CPU data 

originally consists of 209 rows, 9 criteria and 6 of which are predictive while other 

three criteria are non-predictive. Cycle time, min memory, max memory, cache 

memory, minimum channels and maximum channels criteria are used for sorting. 

Cycle time is minimization criterion and others are maximization. Estimated 

Relative Performance (ERP) attribute is to be predicted. ERP column is binarized 

from median as classes 1 and 2. (Available at UCI Repository) 

Table 5.9 Details about CPU data set 

Criteria Values Type 

Machine Cycle Time in 

Nanoseconds 

Integer values between 

17 and 1500 
Minimization 

Minimum Main 

Memory in Kilobytes 

Integer values between 

64 and 32000 
Maximization 

Maximum Main 

Memory in Kilobytes 

Integer values between 

64 and 32000 
Maximization 

Cache Memory in 

Kilobytes 

Integer values between 

0 and 256 
Maximization 

Minimum Channels in 

Units 

Integer values between 

0 and 52 
Maximization 

Maximum Channels in 

Units 

Integer values between 

0 and 176 
Maximization 

Relative Performance 

(published) 

Integer values between 

6 and 1150 
Minimization 

Relative Performance 

(estimated)* 

(Class Label) 

Integer values between 

15 and 1238 (Binarized 

from median) 

- 
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Discretization of continuous class columns are performed similar to [4], [36]. A 

summary related to data sets and their 𝑝∗ values are given in Table 5.10.    

Table 5.10 Brief information about data sets 

Application 

Area 
Data Sets 

No. Of 

Alternatives 

No. Of 

Criteria 

No. Of 

Classes 

𝒑∗ 

value1 

Automotive 

Industry 

CAR 1728 6 4 4.3 

AUTOMPG 392 7 2 0.2 

Health and 

Medical 

BC 286 7 2 1.4 

MMG 961 5 2 2.1 

ASA 898 16 2 2.6 

HR 
ESL 488 4 2 4.2 

LEV 1000 4 2 1.2 

Construction CCS 1030 8 2 1.5 

Hardware 

Performance 
CPU 209 6 2 0.7 

1𝑝∗ values are obtained with DC algorithm. 

 

Evaluations of criteria as maximization and minimization is an assumption. This 

assumption is based on Pearson Correlation Coefficient. The correlation coefficient 

between each criteria and the class label column is computed. If the resulting 

coefficient is positive, then the criteria is assumed to be a maximization type. 

Otherwise, it is assumed to be minimization type.  

5.1.2 Hardware Setting and Performance Measures 

To model the proposed methods, (General Algebraic Modeling System release 23.9. 

5.) GAMS modeling language  is used. To solve MIP and LP models, IBM ILOG 

CPLEX (version 12.4.0.1) is used, to solve NLP models, BARON Solver (version 

11.5.2) is used. Solver settings are as follows: Nodetable limit (Nodlim=1E+9), time 
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limit (Reslim=14400, 4 hours), optimality gap (Optcr=1E-9), integer tolerance 

(Epint=1E-9). The hardware setting is 8 GB RAM, Intel(R) Core (TM) i7-8550U 

@1.80GHz, Windows 10 PC. 

Performance of models is evaluated using three performance measures, namely 

training accuracy, test accuracy and solution time. Training and test accuracies are 

the percentages of correct class assignments in training and test data, respectively. 

Solution time is the elapsed time of the solver. Further analyses on solution time and 

accuracy are conducted to determine the best method. A time versus test accuracy 

trade-off matrix is constructed to compare the methods in terms of both accuracy and 

time as a single measure. Also, TOPSIS [37] is used to rank the methods from best 

to worst based on time and test accuracy performance. Performance of the models 

are compared with UTADIS [3] and DISWOTH [6] with 𝐿1, 𝐿2, 𝐿3, 𝐿𝑝∗ distances. 

Different from 𝐿𝑝Dis, DISWOTH with 𝐿𝑝∗  denotes the DISWOTH model with 𝐿𝑝∗ 

distance as distance function and arithmetic average as centroid. DISWOTH with 

𝐿𝑝∗ distance is compared with 𝐿𝑝Dis to examine the effect of using 𝐿𝑝-Centroid, 

𝜇𝐿𝑝∗

𝑞
. Total accuracy (𝐴𝑐(. )) is calculated for different models with equations (101)-

(103). 𝛿(. ) is an indicator function which returns 1 if the condition in the parentheses 

is true and 0 if false. 𝛿(. ) is used for counting 0/1 loss for UTADIS, DISWOTH and 

𝐿𝑝Dis. 𝑛𝑟 (𝑛𝑠) represents number of alternatives in training (test) data. 𝑖𝑟 (𝑖𝑠) 

represent the alternatives in the training (test) data. 𝑖𝑟 ∈ {1,2, … , 𝑛𝑟} and 𝑖𝑠 ∈

{1,2, … , 𝑛𝑠}. 

For Bin-Dis, Bin-𝐿𝑝Dis, Bin-𝐿𝑝Dis COM and Bin-𝐿𝑝Dis ADM: 

𝐴𝑐(. ) =(1 − ∑
𝑒𝑖𝑟

𝑛𝑟
) ∗ 100𝑖𝑟

              (101) 

For DISWOTH and 𝐿𝑝Dis: 

𝐴𝑐(. ) = (1 − ∑
𝛿(𝑒𝑖𝑟>0 )

𝑛𝑟
) ∗ 100𝑖𝑟

                                    (102) 

For UTADIS: 
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𝐴𝑐(. ) = (1 − ∑
𝛿(𝑒𝑖𝑟

+  >0 𝑜𝑟 𝑒𝑖𝑟
−  >0 )

𝑛𝑟
) ∗ 100𝑖𝑟

                   (103) 

Computation of 𝑒𝑖 and total accuracy is the same for both training and test data. For 

test accuracy calculations, replace 𝑖𝑟 and 𝑛𝑟 with 𝑖𝑠 and 𝑛𝑠 in equations (101)-(103). 

To compute the test accuracy same mathematical models are used with test data input 

and optimal criterion weights (and class thresholds for UTADIS). Accuracy is a 

larger-the-better type of performance measure.  

Δ(𝑚1, 𝑚2) =
𝑇𝑖𝑚𝑒(𝑚1)−𝑇𝑖𝑚𝑒(𝑚2)

𝐴𝑐(𝑚1)−𝐴𝑐(𝑚2)
               (104) 

Δ(𝑚1, 𝑚2)calculates average amount of seconds required to improve 1 accuracy 

given that accuracy of 𝑚1 is larger than that of 𝑚2. Δ(𝑚1, 𝑚2) ∈  (−∞, ∞) is a 

smaller-the-better type of performance measure. If Δ(𝑚1, 𝑚2) ≤ 0, then 𝑚1 

dominates 𝑚2 according to the specific experiments. The time vs. test accuracy 

trade-off is evaluated with the average time and average test accuracy. Average 

accuracy and the time are calculated using experimental results of 9 data sets for 

each method.  

Solution time is the elapsed time. A time limit of 14400 seconds (4 hours) is 

established to solve each model. Time efficiency of the models is compared based 

on the time vs. test accuracy trade-off matrix using a trade-off variable Δ(𝑚1, 𝑚2). 

𝑚1 and 𝑚2 are the two models to be compared such that 𝐴𝑐(𝑚1) > 𝐴𝑐(𝑚2). 

Δ(𝑚1, 𝑚2) is calculated as follows. 

Δ(𝑚1, 𝑚2) =
𝑇𝑖𝑚𝑒(𝑚1)−𝑇𝑖𝑚𝑒(𝑚2)

𝐴𝑐(𝑚1)−𝐴𝑐(𝑚2)
               (105) 

Δ(𝑚1, 𝑚2)calculates average amount of seconds required to improve 1 accuracy 

given that accuracy of 𝑚1 is larger than that of 𝑚2. Δ(𝑚1, 𝑚2) ∈  (−∞, ∞) is a 

smaller-the-better type of performance measure. If Δ(𝑚1, 𝑚2) ≤ 0, then 𝑚1 

dominates 𝑚2 according to the specific experiments. The time vs. test accuracy 

trade-off is evaluated with the average time and average test accuracy. Average 

accuracy and the time are calculated using experimental results of 9 data sets for 

each method.  
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5.2 Experiments of DISWOTH Extensions 

Training and test accuracy (in percentages) and solution time (in seconds) results of 

the experiments for 9 data sets and 5 methods (13 methods with different model 

inputs) are presented in Tables 5.11-5.14. 𝐿𝑝Dis, Bin-Dis, Bin-𝐿𝑝Dis, Bin-𝐿𝑝Dis 

Com and Bin-𝐿𝑝Dis ADM are compared with UTADIS and DISWOTH. In Table 

5.12, Mean Absolute Deviation (MAD) row is used to examine the tendency of the 

models to overfit to the given training data set. MAD between test and training 

accuracy is computed for each method as follows. 

𝑀𝐴𝐷(𝑚𝑒𝑡ℎ𝑜𝑑) =
1

9
∑ |𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑚𝑒𝑡ℎ𝑜𝑑, 𝑡) −9

𝑡=1

𝑇𝑒𝑠𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑚𝑒𝑡ℎ𝑜𝑑, 𝑡)|              (106) 

where 𝑡 represents each data set. 

DISWOTH with 𝐿𝑝∗ improves the average training accuracy DISWOTH with 𝐿1, 𝐿2 

and 𝐿3 by 2.65 , 1.57 and 2.35, respectively (see Table 5.11). Moreover, 𝐿𝑝Dis 

improves the average training accuracy of DISWOTH with 𝐿𝑝∗ by 0.33. The 

improvement provided by 𝜇𝐿𝑝∗
𝑞

 is not significant in the training accuracy. 

Bin-Dis increases the training accuracy of DISWOTH for each data set as reported 

in Table 5.11. Bin-Dis improves the average training accuracy of the DISWOTH 

with 𝐿1, 𝐿2,  𝐿3 and 𝐿𝑝∗ by 3.88, 3.51, 4.33 and 3.37, respectively. Bin-Dis improves 

the average training accuracy of the DISWOTH more than DISWOTH with 𝐿𝑝∗ and 

𝐿𝑝Dis. Bin-𝐿𝑝Dis and the two extensions give better training accuracy compared to 

UTADIS, DISWOTH and 𝐿𝑝Dis methods. Bin-𝐿𝑝Dis improves training accuracy of 

𝐿𝑝Dis by 3.76. Bin-𝐿𝑝Dis method results in higher average training accuracy than 

other methods. In 4 out of 9 experiments, training accuracies of Bin-Dis with 𝐿𝑝∗ are 

the best among all methods. Bin-𝐿𝑝Dis method provides the best results in 5 out of 

9 experiments. Note that the monotonicity restriction does not reduce the training 

accuracy since the models are primarily designed for seeking the alternative solution 

with the best accuracy.  
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Test results are reported in Table 5.12. DISWOTH with 𝐿𝑝∗ model improves the 

average test accuracy of DISWOTH with 𝐿1,  𝐿2 and 𝐿3 by 3.15, 4.76 and 2.47, 

respectively. 𝐿𝑝Dis improves the average test accuracy of DISWOTH with 𝐿1,  𝐿2, 

𝐿2 and 𝐿𝑝∗ by 9.37, 10.99, 8.70 and 6.23, respectively. But it improves training 

accuracy of DISWOTH with 𝐿𝑝∗ only by 0.33. 𝐿𝑝∗ with 𝜇𝐿𝑝∗ 
𝑞

 yields a significant 

improvement on the average test accuracy compared to DISWOTH with 𝐿𝑝∗.  

Bin-Dis extension increases test accuracy of DISWOTH in 31 out of 36 experiments 

as given in Table 5.12. The remaining 5 exceptions are observed in the experiments 

of ESL, BC, and LEV data sets. Test accuracy of ESL data set decreases for  Bin-

Dis with 𝐿1 and 𝐿2 compared to DISWOTH with 𝐿1 and 𝐿2. Test accuracy of LEV 

data set decreases for  Bin-Dis with 𝐿2 and 𝐿𝑝∗ compared to DISWOTH with 𝐿2 and 

𝐿𝑝∗. Test accuracy of BC data set decreases for Bin-Dis with  𝐿3 compared to 

DISWOTH with 𝐿3. Bin-Dis improves the average test accuracy of the DISWOTH 

with 𝐿1, 𝐿2,  𝐿3 and 𝐿𝑝∗ by 10.09, 11.50, 8.37 and 8.39, respectively. Using binary 

variable instead of continuous error variable constitutes a significant improvement 

similar to using 𝐿𝑝-Centroid. Bin-𝐿𝑝Dis and its extensions gives better test 

accuracies than UTADIS and DISWOTH methods. Bin-Dis provides a better test 

accuracy only for CCS and CAR data sets compared to Bin-𝐿𝑝Dis.  

Bin-𝐿𝑝Dis method improves average test accuracy of 𝐿𝑝Dis by 4.19. It provides 

higher average test accuracy than other methods. In 5 out of 9 experiments, test 

accuracies of Bin-𝐿𝑝Dis method are the best among all methods. For all Bin-Dis 

methods, 8 out of 36 test accuracy results are the best among all. The best average 

test accuracy result is obtained with ADM extension. However, the average test 

accuracy improvement is only 0.12 when compared with Bin-𝐿𝑝Dis method that 

does not consider monotonicity.  
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Generalization of the models are measured with MAD given in Table 5.12. For all 

DISWOTH models, MAD measure is above 11. MAD significantly decreases to the 

range between 6.134-8.14 for Bin-Dis and 𝐿𝑝Dis methods. MAD is decreased to 5.39 

for Bin-𝐿𝑝Dis. Compromise ranking extension increases MAD whereas ADM 

extension improves MAD by only 0.12. The monotonicity extensions do not provide 

a significant improvement on MAD for Bin-𝐿𝑝Dis model. 

Robustness of the proposed models w.r.t different 𝐿𝑝 distances can be examined in 

Tables 5.11 and 5.12. In training results of Bin-Dis, the worst average accuracy is 

observed with 𝐿1 as 85.72 and best average accuracy is observed with 𝐿𝑝∗ as 87.76. 

In test results, the worst average accuracy is observed with  𝐿3 as 78.67 and the best 

average accuracy is observed with  𝐿𝑝∗ as 81.16. The range of average accuracy for 

Bin-Dis is less than 2.5 for different 𝐿𝑝 distances in both training and test results. 

These results show that Bin-Dis is a robust method on accuracy performance 

measure w.r.t different 𝐿𝑝 distances. Similarly for Bin-𝐿𝑝Dis and its extensions, the 

range of test accuracy (between 83.07 and 83.31) is less than 0.25 although different 

monotonicity constraints are used.  
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Solution times are reported in Table 5.13. Bin-Dis models improve the average 

solution time of DISWOTH with 𝐿2, 𝐿3 and 𝐿𝑝∗ distances by 2494.61 seconds 

(43.57), 5010.20 seconds (59.92) and 5746.41 seconds (77.15), respectively. The 

improvement on 𝐿𝑝Dis model provided with linearization (Bin-𝐿𝑝Dis) is 4890.31 

seconds (60.39). Bin-Dis with 𝐿1 performs worse than DISWOTH with 𝐿1 by 

686.381 seconds. The result is expected since Bin-Dis with 𝐿1 is an MIP model while 

DISWOTH with 𝐿1 is an LP model.  

CCS data set solutions are not solved within time limit. Thus, they are not proven 

optimal for both NLP and MIP models except for Bin-Dis with 𝐿1. CAR data set is 

solved with proven optimal solution with all NLP and LP models whereas a proven 

optimal solution is provided by only Bin-Dis with 𝐿1 and 𝐿𝑝∗ among the MIP models. 

Solution time of Bin-Dis with 𝐿1 is the shortest of all NLP and MIP models on 

average.  

UTADIS and DISWOTH with 𝐿1 are LP models. These LP models are solved within 

the shortest solution times when compared with MIP (Bin-Dis and Bin-𝐿𝑝Dis and its 

extensions) and NLP (DISWOTH with 𝐿2, 𝐿3 and 𝐿𝑝∗) models as expected.  

Solution times of Bin-Dis models are at least as short as their NLP versions for 23 

out of 27 experiments. The remaining four exceptions are observed in the 

experiments of MMG and CAR data sets. The solution times of DISWOTH with 𝐿2 

and 𝐿𝑝∗ increase with binary variable adjustment for the MMG data set. The solution 

times of DISWOTH with 𝐿2 and 𝐿3 increase with binary variable adjustment for the 

CAR data set. Respecting the monotonicity of centroids improves the solution time 

less than 1 second on the average for both ADM and compromise ranking extensions. 

There are 11 experiments that are not solved within time limit for NLP DISWOTH 

models while there are 5 such experiments for Bin-Dis. For instance, DISWOTH 

with 𝐿2, 𝐿3 and 𝐿𝑝∗ are not optimally solved on ASA data set while Bin-Dis is solved. 

There are 5 experiments for 𝐿𝑝Dis that are not optimally solved in time limit while 

there are only two for Bin-𝐿𝑝Dis, Bin-𝐿𝑝Dis COM and Bin-𝐿𝑝Dis ADM. Although 
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time improvement is not guaranteed in conversion of NLP to MIP models, solution 

times significantly improve on average. 

The solution time improvements in the proven optimal experiments of NLP models 

are more significant. Bin-Dis models improve the APO solution times of DISWOTH 

with 𝐿2, 𝐿3 and 𝐿𝑝∗distances by 1349.52 seconds (96.73), 3335.97 seconds (94.50) 

and 1772.12 seconds (93.94), respectively. The improvement for proven optimal 

solutions of Bin-𝐿𝑝Dis on 𝐿𝑝Dis model provided with linearization is 95.66 with 

210.36 seconds. On the proven optimal solutions, linearization with binary variables 

gives a better average solution time performance with improvement larger than 90.  

 

 



74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
ab

le
 5

.1
3
 S

o
lu

ti
o
n
 t

im
e 

re
su

lt
s 

in
 s

ec
o
n
d
s 

S
O

L
U

T
IO

N
 T

IM
E

 

B
in

-𝐿
𝑝

D
is

 

C
O

M
 

L
p
*
, 

µ
L

p
*
 

 
1

.0
0
 

0
.2

4
 

3
.0

9
 

0
.2

2
 

- - 

0
.9

0
 

1
3

.2
4
 

3
9

.9
0
 

3
2

0
6

.5
1
 

8
.3

7
 

6
3

4
6

.1
3
 

6
 d

as
h
 (

-)
 s

ig
n
s 

re
p
re

se
n
t 

th
e 

so
lu

ti
o
n
s 

th
at

 a
re

 n
o
t 

p
ro

v
en

 o
p
ti

m
al

 w
it

h
in

 1
4
4
0
0
 s

ec
s.

 s
o
lu

ti
o
n
 t

im
e 

li
m

it
. 

B
in

-

𝐿
𝑝

D
is

 

A
D

M
 

1
.0

9
 

0
.3

5
 

2
.2

1
 

0
.3

3
 

- - 

0
.8

4
 

1
4

.4
1
 

4
1

.4
9
 

3
2

0
6

.7
5
 

8
.6

7
 

6
3

4
5

.9
9
 

B
in

-

𝐿
𝑝

D
is

 

1
.0

9
 

0
.2

4
 

3
.7

5
 

0
.3

3
 

- - 

0
.8

9
 

9
.0

1
 

5
2

.4
6
 

3
2

0
7

.4
2
 

9
.5

4
 

6
3

4
5

.6
2
 

𝐿
𝑝
D

is
 

- 

1
2

.4
7
 

8
5

8
.1

3
 

6
.6

7
 

- - 

2
.3

3
 

- - 

8
0

9
7

.7
3
 

2
1

9
.9

0
 

7
4

7
8

.1
1
 

B
in

-D
is

 

L
p
*
 

1
.4

5
 

0
.2

7
 

1
6

.4
6
 

0
.2

1
 

6
0

6
.8

6
 

- 

1
.1

0
 

3
.6

7
 

2
8

4
.5

0
 

1
7

0
1

.6
1
 

1
1

4
.3

1
 

4
7

6
6

.4
2
 

L
3
 

1
.1

2
 

0
.2

6
 

6
5

.7
5
 

0
.3

2
 

- - 

0
.5

6
 

4
.5

5
 

1
2

8
5

.5
6
 

3
3

5
0

.9
0
 

1
9

4
.0

2
 

6
2

7
8

.1
4
 

L
2
 

0
.5

4
 

0
.3

7
 

2
5
.4

2
 

0
.3

2
 

- - 

0
.8

0
 

3
.9

3
 

2
8
7
.6

7
 

3
2
3
5
.4

5
 

4
5
.5

8
 

6
3
3
0
.3

9
 

L
1
 

1
.0

7
 

0
.2

7
 

0
.5

3
 

0
.3

1
 

4
3
7
8
.2

7
 

1
3
0
2
.1

1
 

0
.6

1
 

4
9
4
.5

5
 

0
.6

7
 

6
8
6
.4

9
 

6
8
6
.4

9
 

1
4
5
2
.0

6
 

D
IS

W
O

T
H

 

L
p

*
 

- 

3
9
.5

5
 

- 

5
.0

9
 

9
3
5
0
.8

5
 

- 

6
.9

8
 

- 

2
9
.7

0
 

7
4
4
8
.0

2
 

1
8
8
6
.4

3
 

7
2
2
5
.1

7
 

L
3
 

-6
 

1
9
7
.6

5
 

1
0
7
5
9
.2

8
 

9
.1

0
 

6
6
4
0
.9

7
 

- 

4
2
.9

3
 

- - 

8
3
6
1
.1

0
 

3
5
2
9
.9

8
 

6
7
0
9
.8

2
 

L
2
 

2
4
7
8
.5

6
 

5
9
.6

1
 

- 

5
.1

9
 

5
7
6
7
.6

1
 

- 

3
8
.6

0
 

- 

2
0
.9

9
 

5
7
3
0
.0

6
 

1
3
9
5
.0

9
 

6
7
6
3
.8

0
 

L
1
 

0
.1

0
 

0
.0

7
 

0
.0

8
 

0
.0

9
 

0
.1

9
 

0
.1

0
 

0
.0

9
 

0
.1

3
 

0
.1

2
 

0
.1

1
 

0
.1

1
 

0
.0

4
 

U
T

A
D

IS
 

0
.1

2
 

0
.1

1
 

0
.1

0
 

0
.1

7
 

0
.6

1
 

0
.8

7
 

0
.2

1
 

0
.5

3
 

0
.1

9
 

0
.3

2
 

0
.3

2
 

0
.2

8
 

  

A
U

T
O

M
P

G
 

C
P

U
 

B
C

 

E
S

L
 

C
A

R
 

C
C

S
 

L
E

V
 

A
S

A
 

M
M

G
 

A
v

er
ag

e 

A
P

O
 

S
D

 



75 

 

To compare the methods based on the solution time and accuracy together, a trade-

off matrix is used. Trade-off matrix results are reported in Table 5.14. If accuracy of 

method in column is larger than that of the method in row, the time (in secs.) required 

to get 1 more test accuracy on average is given in Table 5.14. Bin-Dis with 𝐿1and 

𝐿𝑝∗, Bin-𝐿𝑝Dis and Bin-𝐿𝑝Dis COM dominate six of the methods according to the 

average results of these specific experiments. DISWOTH and Bin-Dis with 𝐿1, Bin-

Dis with 𝐿𝑝∗ and Bin-𝐿𝑝Dis ADM are not dominated. Bin-𝐿𝑝Dis ADM is non-

dominated and dominates eight of the methods. Other positive entries indicate that 

there is a time-accuracy trade-off between the methods according to the average 

results of the experiments.  

To rank the methods, TOPSIS [37] is used. TOPSIS is a multi-criteria ranking 

method used for ranking alternatives from best to worst. All methods are ranked for 

each data set considering time and test accuracy criteria. Then average ranks for 9 

data sets are evaluated. 𝑊𝐴𝑐 and 𝑊𝑇𝑖𝑚𝑒 denote the weights of test accuracy and 

model solution time, respectively. TOPSIS is applied with 7 different TOPSIS 

distances (𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, 𝐿100, 𝐿∞) and three different performance measure 

weights such that 𝑊𝑇𝑖𝑚𝑒 ∈  {0.1, 0.5, 0.9} and 𝑊𝐴𝑐 = 1 − 𝑊𝑇𝑖𝑚𝑒. Since TOPSIS is 

a distance-based ranking method, to avoid scaling effect, performance measures are 

scaled to [0,1] range. To analyze whether a solution time favoring or a test accuracy 

favoring method is ranked better, 𝐿∞ distance is included in the analyses since as 𝑝 

of 𝐿𝑝 distance increases, larger weighted differences become more dominant [6]. The 

analysis provides intuitions about methods such that when 𝐿∞ distance is used and 

weight of time is higher (𝑊𝑇𝑖𝑚𝑒 = 0.9 and 𝑊𝐴𝑐 = 0.1), a time effective method 

should be ranked better. When the weight of test accuracy is higher (𝑊𝑇𝑖𝑚𝑒 = 0.1 

and 𝑊𝐴𝑐 = 0.9 ), an accuracy effective method should be ranked better. Ranks of the 

methods for different TOPSIS distance functions and weights are reported in Table 

5.15. For all TOPSIS distances and criterion weights, the Bin-𝐿𝑝Dis, Bin-𝐿𝑝Dis 

COM and Bin-𝐿𝑝Dis ADM are in the best three methods. Bin-Dis with 𝐿𝑝∗ is ranked 

as the fourth best method. DISWOTH with 𝐿3 is ranked the fifth based on average 
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ranks of 7 distance functions. To summarize, Bin-𝐿𝑝Dis is shown to be both time 

and accuracy favoring method among all methods. 
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5.3 Experiments of Monotonically Ordered Centroids Case 

The data sets, training-test partitioning and the hardware setting used for AIRO, and 

WE models are the same as in the experiments of UTADIS, DISWOTH in Section 

5.1. The assumptions on the criteria, normalization and the ICV are also the same.  

The objective weights of AIRO model are determined by empirical study. To 

examine the change in the test accuracy w.r.t changing 𝑉1 values, 5 different values 

are used such that 𝑉1 ∈ {0.5, 0.6, 0.7, 0.8, 0.9} based on preeliminary experiments. 

To evaluate whether WE model estimates weights that improve classification 

accuracy or not, the equal criterion weights (AIRO-ECW) case is also evaluated. The 

distance functions used in the experiments are the same as in experiments of 

DISWOTH.  

Accuracy calculation of AIRO model is the same as in DISWOTH. To ease the 

comparison, best test accuracy obtained by the AIRO and DISWOTH models are 

reported in Table 5.16. Also, UTADIS results are presented in the table. Detailed 

results are reported in Appendix B. Test accuracy of AIRO-WE and AIRO-ECW are 

reported in Appendix B, Tables 10.1-10.9.  

 

Table 5.16 Comparison of AIRO with DISWOTH and UTADIS 

 UTADIS 
Best of 

DISWOTH 
AIRO-WE AIRO-ECW 

AUTOMPG 77.78 80.25 91.36 92.59 

CPU 76.74 81.40 90.70 93.02 

BC 50.00 62.07 62.07 67.24 

ESL 79.17 90.63 84.38 87.50 

CAR 57.39 82.61 46.38 60.00 

CCS 37.44 61.08 66.01 59.11 

LEV 68.69 79.80 80.30 72.73 

ASA 93.85 94.97 71.51 81.01 

MMG 76.25 38.75 76.88 82.50 

Average 68.59 74.62 74.40 77.30 

SD 17.32 17.56 14.62 13.12 
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In Table 5.16, AIRO-ECW results are better than UTADIS in 8 out of 9 experiments. 

When it is compared with DISWOTH, 4 out of 9 experiments are better than 

DISWOTH. AIRO-WE results are better than UTADIS in 7 out of 9 experiments. 

When it is compared with DISWOTH, 6 out of 9 results are better than DISWOTH. 

In comparison of number of better/worse accuracy results, there is not advantage of 

AIRO-WE over AIRO-ECW. Both are advantageous when compared with UTADIS 

as the majority of experiment results are better. 

The average test accuracy does not improve significantly when DISWOTH results 

are compared with AIRO-WE. This result can be interpreted as that criterion weights 

obtained by WE model do not improve the classification accuracy. This is consistent 

with findings of [38] which makes the results intuitive. Average test accuracy of 

AIRO-WE is 0.22 worse than DISWOTH and 5.81 better than UTADIS. Average 

test accuracy of AIRO-ECW is 2.68 better than DISWOTH and 8.82 better than 

UTADIS. The improvement obtained by considering the monotonicity does not 

bring a significant improvement of accuracy which is an intuitive result that is also 

reported by [21].  

Solution time results are reported in Table 5.17. The time performance in this section 

is the total time to solve all models for all selected distance measures. For 

DISWOTH, it is the sum of solution times of DISWOTH with four distance functions 

𝑝 ∈ {1, 2, 3, 𝑝∗}. For AIRO, it is the sum of solution times of four distance functions 

and the solution time of WE model. With 5 different 𝑉1 values and  four distance 

functions, solution time reported for AIRO is the sum of 20 solution times. Solution 

time reported for AIRO-ECW is the solution time of AIRO-WE minus solution time 

of WE model. 
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Table 5.17 Total solution time comparison 

 UTADIS 

Total 

solution 

time of 

DISWOTH 

AIRO-WE AIRO-ECW 

AUTOMPG 0.12 30478.66 5.65 1.27 

CPU 0.11 296.88 2.06 0.94 

BC 0.10 38759.35 2.92 0.87 

ESL 0.17 19.47 3.89 0.98 

CAR 0.61 21759.61 122.53 1.66 

CCS 0.87 42000.10 426.03 2.05 

LEV 0.21 88.60 16.00 0.70 

ASA 0.53 42000.13 193.90 4.50 

MMG 0.19 14050.81 16.56 0.91 

Average 0.32 21050.40 87.73 1.54 

SD 0.28 18173.41 143.80 1.19 

 

UTADIS solution time is the shortest among all. In Table 5.17, it can be observed 

that addition of WE model to the AIRO significantly increases the solution time. 

Instead, simply using equal criterion weights is more efficient than adding the WE 

model to classification. As a result of comparison with DISWOTH, solving a limited 

set of  LP models (twenty models for AIRO-ECW and twenty four models for AIRO-

WE) take shorter time than solving NLP models with the same data size. The same 

comment is also valid for solution time comparison of UTADIS (solving one LP 

model) and AIRO. 

Trade-off matrix used in Section 5.1 is also constructed and evaluated in this section. 

Trade-off matrix is tabulated and reported in Table 5.18. According to trade-off 

matrix, AIRO-ECW dominate DISWOTH and AIRO-WE. Although AIRO-ECW 

dominate UTADIS, only 0.14 seconds are required to obtain 1 more accuracy with 

AIRO-ECW. 0.14 seconds can be considered as a negligible difference for 1 test 

accuracy. According to trade-off matrix, there is a significant gain of using AIRO-

ECW instead of DISWOTH.  
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Table 5.18 The trade-off matrix 

  UTADIS DISWOTH 
AIRO-

WE 

AIRO-

ECW 

Nr. of 

Negatives 

UTADIS - - - - 0 

DISWOTH 3490.89 - 95284.86 - 0 

AIRO-WE 15.04 - - - 0 

AIRO-

ECW 
0.14 -7854.05 -29.72 - 2 

Nr. of 

negatives 
0 1 1 0  

Footnotes for Table 5.14 are also valid for this table.  

 

 

TOPSIS ranking method is also used to compare the methods with the same 

parameters as in Section 5.1. Results are reported in Table 5.19. According to 

TOPSIS rankings, AIRO is the best method for all TOPSIS distance parameters and 

performance measure weights we used. 

 

Table 5.19 Average TOPSIS ranks 

  UTADIS 
Best of 

DISWOTH  
AIRO-WE AIRO-ECW 

WTime=0.1 WAc=0.9 

L1 3.00 3.33 2.11 1.56 

L2 3.00 3.33 2.11 1.56 

L3 3.00 3.33 2.11 1.56 

L4 3.00 3.33 2.11 1.56 

L5 3.00 3.33 2.11 1.56 

L100 3.00 3.22 2.22 1.56 

L∞ 3.00 3.33 2.11 1.56 

Average 3.00 3.32 2.13 1.56 

SD 0.00 0.04 0.04 0.00 

RANK 3 4 2 1 
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Table 5.19 Continued 

WTime=0.5 WAc=0.5 

L1 3.00 3.22 2.22 1.56 

L2 3.11 3.11 2.22 1.56 

L3 3.11 3.11 2.22 1.56 

L4 3.11 3.11 2.22 1.56 

L5 3.11 3.11 2.22 1.56 

L100 3.00 3.22 2.22 1.56 

L∞ 3.00 3.22 2.22 1.56 

Average 3.06 3.16 2.22 1.56 

SD 0.06 0.06 0.00 0.00 

RANK 3 4 2 1 

WTime=0.9 WAc=0.1 

L1 3.33 2.56 2.33 1.78 

L2 3.33 2.67 2.33 1.67 

L3 3.33 2.67 2.33 1.67 

L4 3.22 2.78 2.33 1.67 

L5 3.11 3.00 2.22 1.67 

L100 3.11 3.11 2.22 1.56 

L∞ 2.74 2.66 1.97 1.39 

Average 3.17 2.78 2.25 1.63 

SD 0.21 0.20 0.13 0.12 

RANK 4 3 2 1 
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CHAPTER 6  

6 LINEAR APPROXIMATION OF 𝑳𝒑 DISTANCE BASED ON AUGMENTED 

TCHEBYCHEFF PROGRAM 

This chapter presents the third study conducted in this thesis. In this chapter, a new 

linear approximation to the 𝐿𝑝 distance function is presented. To approximate all 𝐿𝑝 

distances, a single formulation is developed based on the formulations of Augmented 

Tchebycheff program [31] and Chaudhuri et al. [39]. The new formulation is affine 

combination of 𝐿1 and 𝐿∞ distances. Metricity conditions of the new formulation is 

analyzed and shown that it is consistent with 𝐿𝑝 distances. Important characteristics 

of the new formulation are analyzed and a complete guideline for MP usage is 

presented. It is shown that by employing formulations of Charnes et al. [40] and 

Kelley [41], it can be adapted to LP which is computationally inexpensive. An 

algorithm is developed for approximating a set of 𝐿𝑝 distances progressively, to solve 

the problem of determining a proper 𝐿𝑝 distance. The LP formulation and the 

algorithm are combined as a method and applied to the distance-based multicriteria 

sorting methods (that are NLP models) to improve the solution time. Based on the 

new method, three alternative courses of actions are developed for implementation. 

Organization of this chapter is as follows. In Section 6.1, related work of linear 𝐿𝑝 

distance approximation and 𝐿𝑝 distance formulations for MP are explained. The base 

of new approximation, Augmented Tchebycheff Program is explained. In Section 

6.2, the new approximation formulation is presented. Empirical and theoretical 

foundations about the new approximation is reported. Those foundations are also 

used as a guideline for usage of the new approximation method. The MP formulation 

of the new approximation method is formulated in Section 6.3, and it is applied to 

two distance-based sorting methods that use NLP model. These NLP models are 

linearized with the new approximation. To solve the new LP approximation an 
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algorithm is introduced. A heuristic algorithm is developed for appropriate 

implementation of approximation. In Section 6.4, to fully benefit from the new 

approximation method, alternative courses of actions are presented. In Chapter 7, 

experiments are conducted on two distance-based sorting methods. The results of 

approximations are compared with the original methods. Results and improvements 

are reported and discussed.  

6.1 Related Work 

In this section, theoretical background is presented with literature review. 

Augmented Tchebycheff program is explained. A research question is asked in this 

section and answered in the next section.  

6.1.1 Theoretical Background on Distance Functions 

Consider two variables 𝑥𝑗 and 𝑦𝑗 where 𝑗 ∈ {1,2, … , 𝑚}, 1 < 𝑚 < ∞  and 𝑎𝑗 =

|𝑥𝑗 − 𝑦𝑗|. The 𝐿𝑝 distance of vector 𝑎 is formulated as ||𝑎||
𝑝

= √∑ 𝑎𝑗
𝑝

𝑗

𝑝
 for 0 < 𝑝 <

∞. A specific case of 𝐿𝑝 distance is 𝐿∞ distance. It is formulated as ||𝑎||
∞

=

√∑ 𝑎𝑗
∞

𝑗
∞

= 𝑚𝑎𝑥
𝑗

{𝑎𝑗} and called Tchebycheff distance. Contours of 𝐿𝑝 distances for 

𝑝 ∈ {0.5, 1, 2, 4, 10, ∞} are illustrated in Figure 6.1. A distance measure, denoted 

with ||𝑎||, is a norm (metric) if it satisfies three properties below. These three 

properties are also presented in Chapter 2. But in this chapter, second property is 

renamed as homogeneity to be consistent with the studies presented in the literature 

review [39], [42]–[45]. 

1. Nonnegativity and definiteness: ||𝑎|| > 0 and ||𝑎|| = 0 iff 𝑎 = 0. 

2. Homogeneity: ||𝑘𝑎|| = |𝑘| ||𝑎||. 

3. Triangular inequality: ||𝑎 + 𝑏|| ≤ ||𝑎|| + ||𝑏||. 
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To ease the usage of formulation and conveying ideas, 𝐿𝑝 distance is denoted as 𝑎𝑝 

in this chapter. It satisfies all of three properties of metricity for 𝑝 ≥ 1 and does not 

satisfy triangular inequality if 0 < 𝑝 < 1. Therefore, 𝑎𝑝 is a metric for 𝑝 ≥ 1 and 

not a metric for 𝑝 < 1 due to violation of triangular inequality. 

 

Figure 6.1 𝐿𝑝 distance contour examples for 𝑝 ∈ {0.5, 1, 2, 4, 10, ∞} 

In MP setting, various 𝐿𝑝 distance models are studied. 𝐿1 distance model is first 

studied by Charnes et al. [40] on an LP model as a goal programming approach to 

estimate executive compensation as in MP1. 

(MP1) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑢𝑗 + 𝑣𝑗𝑗               (105) 

Subject to: 

𝑥𝑗 − 𝑦𝑗 + 𝑢𝑗 − 𝑣𝑗 = 0 ∀𝑗              (106) 

 𝑢𝑗 , 𝑣𝑗 ≥ 0 ∀𝑗                (107) 
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𝑢𝑗  and 𝑣𝑗  are nonnegative variables and they are used to formulate the absolute 

deviation. 𝐿∞ distance formulation in MP setting is studied by Kelley [41]. Kelley 

[41] formulates 𝐿∞ distance as an LP model as in MP2.  

(MP2) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑢                (108) 

Subject to: 

𝑢 ≥ 𝑥𝑗 − 𝑦𝑗  ∀𝑗               (109) 

𝑢 ≥ 𝑦𝑗 − 𝑥𝑗  ∀𝑗               (110) 

The general 𝐿𝑝 distance modelling problem is formulated in [46] as an NLP model 

for 𝑝 ∉ {1, ∞}. In [47] an NLP model is formulated for 𝑝𝑡ℎ power 𝐿𝑝 distance 

approximation. Various other NLP formulations are proposed in the literature. 

Interested readers may refer to [48] and [49] and Chapter 1 of Gonin & Arthur [50] 

(for a review). 

A linear approximation for the nonlinear 𝐿2 distance (Euclidean distance) is first 

studied by Chaudhuri et al. [39] by using the convex combination of 𝐿1 and 𝐿∞ 

distances as in (109). Rhodes [42], [43] and [45] improve the approximation error of 

Chaudhuri et al.’ s [39] formulation. In those studies, formulation is rewritten as 

(110). A positive weight 𝑉 ∈ (0,0.5) is defined to approximate 𝐿2 distance. [43] 

states that any 𝐿𝑝 distance can be approximated by linear combinations of other 𝐿𝑝 

distances. Distance approximation formulations in (111)-(112) form an octagonal 

contour as in Augmented Tchebycheff program (explained in Section 6.1.2). 

However, the presented formulation is not extended for any MP and other 𝐿𝑝 

distances. To our knowledge, there is no study in the literature that formulates the 

general 𝐿𝑝 distance approximation for LP model for 𝑝 ∉ {1, ∞}. For the following 

formulation assume 𝑎𝑗+ = 𝑎∞ = 𝑚𝑎𝑥
𝑗

{|𝑎𝑗|}. 𝑎2̂ denotes the approximation function 

of the Euclidean distance.  
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𝑎2̂ = 𝑎𝑗+ +
1

𝑚−⌊
𝑚−2

2
⌋
∑ 𝑎𝑗𝑗≠𝑗+                                      (111) 

𝑎2̂ = (1 − 𝑉)𝑎𝑗+ + 𝑉𝑎1, 𝑉 ∈ [0.5,1)                          (112) 

It is worth noting that 𝐿𝑝 distance approximation makes the MP a multi-objective 

optimization problem when used with other constraints and objective functions in 

the model that depend on the distance functions. For such an example, see 𝐿∞ 

distance approximation of Karasakal & Civelek [6]. However, to make this study 

self-explanatory, an example can be given with MP3 by employing formulation in 

MP2 of Kelley [41]. Objective function (113) is a   multi-objective formulation. 𝑋 is 

a nonempty feasible region that is constructed by a set of known constraints. In such 

models, choice of coefficient 𝐶∞ is important since a large 𝐶∞value may cause a 

trade-off between objective function 𝑧(𝑥, 𝑦) and 𝑢. On the other hand, a small 𝐶∞ 

may result with an incorrect 𝐿∞ approximation resulting in 𝑢 > max
𝑗

{|𝑥𝑗 − 𝑦𝑗|}. 

Choosing a suitable 𝐶∞ value is handled by empirical study in the study of Karasakal 

& Civelek [6]. 

(MP3) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝑥, 𝑦) + 𝐶∞𝑢              (113) 

Subject to: 

Constraints (109)-(110) and 𝑥, 𝑦 ∈ 𝑋  

6.1.2 Augmented Tchebycheff Program 

Optimizing multiple conflicting objectives is handled with   multi-objective 

optimization. Many methods are employed to optimize multiple conflicting 

objectives. Several examples to these methods can be weighted sum method, e-

constraint method, goal programming method and other scalarizing functions etc. 

For scalarizing functions, Tchebycheff Program and Augmented Tchebycheff 
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Program  are frequently used [31]. [31] also shows how 𝐿𝑝 distances can be used in   

multi-objective Optimization.  

In general, the aim is to find a non-dominated (efficient) outcome (and the solution) 

that is preferable for the DM between possibly infinitely many outcomes. Such 

efficient solutions are sought on the non-dominated frontier of the objective space. 

Finding a non-dominated solution is also problematic because a non-dominated 

solution can be a weakly efficient solution. To clarify the concept of weakly efficient 

solutions, the objective space and non-dominated solutions consider MP4 with 𝑘 

conflicting maximization objectives, 𝑧𝑘(𝑥). A two-objective example of MP4 with 

𝑧1(𝑥) and 𝑧2(𝑥) is illustrated in Figure 6.2. 𝑍 is the objective space that is the 

objective function outcomes of all feasible solutions. The thick black line is the 

efficient frontier that is non-dominated, and the dashed line is the weakly efficient 

outcomes that are weakly dominated by the outcome 𝑧′ on the objective 𝑧1.  

(MP4) 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧𝑘(𝑥) ∀𝑘               (114) 

𝑥 ∈ 𝑋  

 

Figure 6.2 An example illustration of objective space 
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Different solutions from the efficient frontier can be found by many different 

methods but this study is interested in Tchebycheff program and the Augmented 

Tchebycheff program. Tchebycheff program projects a given reference point (𝑧∗∗ in 

Figure 6.2) to the non-dominated solutions by minimizing the Tchebycheff distance 

(𝐿∞ distance) between the reference point and 𝑧1 and 𝑧2. Geometrically, Tchebycheff 

program form a rectangular contour (Figure 6.3a and Figure 6.3b) around the 

reference point to reach an efficient solution. The reached efficient solution is the 

one with minimum 𝐿∞ distance from the reference point. Tchebycheff program for 

MP4 is formulated as in MP5. 

(MP5) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛼∞               (115) 

Subject to: 

𝛼∞ ≥ 𝜆𝑘(𝑧∗∗ − 𝑧𝑘(𝑥)) ∀𝑘 ∈ {1,2}             (116) 

𝑥 ∈ 𝑋  

However, Tchebycheff program may result in a weakly efficient solution. To 

overcome this problem, Augmented Tchebycheff program is introduced. A small 

augmentation is provided to the 𝐿∞ contour with the addition of 𝐿1 distance with a 

small positive coefficient 𝜌. Augmented Tchebycheff program form an octagonal 

contour around the reference point to reach the efficient frontier. Augmented 

Tchebycheff program can be formulated as MP6. To illustrate how the efficient 

frontier is found by the two methods, Figure 6.3 is presented.  

(MP6) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛼∞ + 𝜌 ∑ (𝑧∗∗ − 𝑧𝑘(𝑥))𝑘∈{1,2}             (117) 

Constraint (116) and 𝑥 ∈ 𝑋  

In Figure 6.3a, an efficient solution from efficient frontier is obtained with the 

Tchebycheff program. In Figure 6.3b, the problem of obtaining a weakly efficient 

solution with Tchebycheff program is illustrated. In Figure 6.3c, an efficient solution 
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found by the Augmented Tchebycheff program is illustrated. In Figure 6.3a, 𝑧′′ is 

reached by the rectangular contour of Tchebycheff program and not dominated by 

any outcome in objective space. In Figure 6.3b, 𝑧′′ is reached by the rectangular 

contour and it is weakly dominated by the outcome 𝑧′. In Figure 6.3c, 𝑧′′is reached 

by the octagonal contour of the Augmented Tchebycheff program and it is not 

dominated by any other outcome. 

 

Figure 6.3 An example illustration of how the efficient frontier is reached by 

Tchebycheff and Augmented Tchebycheff program 

It should be noted that, both formulation of Chaudhuri et al. [39] in (111)-(112) and 

Augmented Tchebycheff formulation (117) in MP6 form octagonal contours. In 

Augmented Tchebycheff, the shape of contour depends on the parameter 𝜌. In 

formulation of Chaudhuri et al., the shape of the octagon depends on the coefficient 

that is multiplied with  ∑ 𝑎𝑗𝑗≠𝑗+ .  

Here we question “Can the 𝐿𝑝 distance contours illustrated in Section 6.1 (Figure 

6.1) be approximated by the octagonal contour provided by Augmented Tchebycheff 

program (Figure 6.3c) by working on the formulation given in objective function 

(116) and equations (111)-(112)?”. In the next section, this question is answered 

with empirical and theoretical foundations.  

6.2 Proposed Approximation Method 

In this section, first, new notation for discrete MCDM problem setting and the 

proposed formulation is presented. Empirical foundations are illustrated with figures 

in Section 6.2.1. Then, a suitable error function is set up for the new approximator 

in Section 6.2.2. The proposed formulation is examined w.r.t approximation error 
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and approximation parameters. According to the theoretical foundations in Section 

6.2.2, important characteristics of the approximation method is presented. The 

characteristics presented in Section 6.2.2 are also a complete guideline for the usage 

of the approximator. Relevant notation used in the previous chapters are revisited 

and the new notation is presented as follows. 

Notation: 

 𝑗 ∈ {1,2, … , 𝑚} denotes the criteria where 𝑚 ∈ {2, … } and 𝑤𝑗 denotes the criterion 

weights. Formulation of 𝑎𝑝 is presented as weighted 𝐿𝑝 distance as in equation (117). 

𝑉 denotes the weight for the affine combination of 𝐿1 and 𝐿∞. The approximator, 

Augmented Tchebycheff 𝐿𝑝 distance Approximation method (ATLA), is denoted 

with 𝑎𝑝̂(𝑉) and formulated as the affine combination of Tchebycheff (𝐿∞) and 

Rectilinear (𝐿1) distances in (118). Criterion weights are normalized in (119)-(120).  

𝑎𝑝 = √∑ 𝑤𝑗
𝑝𝑎𝑝

𝑗

𝑝
                                                  (117) 

 𝑎𝑝̂(𝑉) = 𝑉𝑎∞ + (1 − 𝑉)𝑎1, −∞ < 𝑉 ≤ 1                                  (118) 

∑ 𝑤𝑗𝑗 = 1                                                  (119) 

𝑤𝑗 ≥ 0 ∀𝑗                                                  (120) 

It should be noted that equation (120) is a modified version of equation (111) and 

objective function (116). Equation (111) is not able to approximate all 𝐿𝑝 distances 

for the assumed range of 𝑉, especially when 𝑝 ≤ 1. This formulation enables 

approximator to approximate all 𝐿𝑝 distances with different 𝑉 values. This 

formulation is similar to (112), but it is not necessarily a positive linear combination 

as in [43]. To present the capabilities and characteristics of  𝑎𝑝̂(𝑉), empirical 

foundations about the 𝑎𝑝̂(𝑉) contour and theoretical foundations related to 

properties of  𝑎𝑝̂(𝑉) are reported in Sections 6.2.1 and 6.2.2, respectively.  
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6.2.1 Empirical Foundations 

In this section, examples of contours that are obtained with the ATLA and 𝑎𝑝 are 

illustrated and compared. First, let us examine the four of example illustrations given 

in Figure 6.4 for different 𝑝 and 𝑉 values. As it is illustrated in Section 6.1, 𝑎𝑝 

contours can be closely approximated by piecewise linear octagonal contours of new 

approximator in equation (118). Criterion weights are equal in this illustration.  

 

Figure 6.4 Example illustration of 𝑎𝑝̂(𝑉) (dashed lines) and 𝑎𝑝 (solid curves) 

contours 

From Figure 6.4, it is observed that negative 𝑉 values can approximate 𝑎𝑝 contours 

for 𝑝 < 1 and positive 𝑉 values can approximate 𝑎𝑝 contours for 𝑝 > 1. And as it is 
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clear from equation (118), 𝑉 = 0 gives 𝑎1 distance and 𝑉 = 1 gives 𝑎∞ distance. In 

Figure 6.4, 𝑉 and 𝑝 increase together, which forms a close approximation.  

Studying 𝑉 > 1 is out of scope since ATLA formulation will return a negative value 

in this case. A negative output cannot be returned by a distance function. As 𝑉 

increases, the value returned by ATLA decreases which is a consistent finding of 

previous presumption (𝑉 and 𝑝 increase together) since it is known that 𝑎∞ < 𝑎𝑝 <

𝑎1 for 𝑝 ≥ 1. The relationship between 𝑉 and 𝑝 are analyzed in Section 6.2.2. 𝐿𝑝 

and 𝑎𝑝̂(𝑉) are also illustrated in Figure 6.5.  

 

Figure 6.5 Illustration of 𝑎𝑝̂(𝑉) (on the left) and 𝑎𝑝 (on the right) with different 𝑉 

and 𝑝 values, respectively. 

Response of contours to changing criterion weights is illustrated in Figure 6.6. The 

change in the contours of both ATLA and 𝑎𝑝 is similar to the same criterion weights. 

This is expected since ATLA itself is a function of two 𝐿𝑝 distances that are 𝐿1 and 

𝐿∞ and response of 𝐿𝑝 distances to criterion weights are the same. The response of 

𝐿𝑝 contours to criterion weights is as follows. The contour extends on along the axis 

of lower criterion weights and squeezed along the axis of higher criterion weights.   
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Figure 6.6 An example of the response given by ATLA (dashed lines) and 𝑎𝑝 

(solid curves) contours to criterion weights 

6.2.2 Theoretical Foundations 

In this section, ATLA is analyzed for its theoretical properties. The analyses in this 

section are as follows. 

• Approximation error 

• Optimal approximation parameter and specific cases 

• Verification and approximation conditions 

• Characteristics of the approximator 

• Consistency of metricity conditions 
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 To analyze the approximator, let us define an error function 𝑒𝑟𝑟𝑜𝑟(𝑉). Find the least 

square error (LSE) between  𝑎𝑝 and 𝑎𝑝̂(𝑉) with (121)-(122). 

(LSE) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑒𝑟𝑟𝑜𝑟(𝑉)2                                              (121) 

Subject to: 

𝑒𝑟𝑟𝑜𝑟(𝑉) = 𝑎𝑝̂(𝑉) − 𝑎𝑝                                    (122) 

LSE is a convex programming model as shown in inequality (123). Therefore, 

equation (124) is applied to find the optimal approximation parameter 𝑉∗ with 

𝛿𝑒𝑟𝑟𝑜𝑟(𝑉)

𝛿𝑉
= 0.  

𝛿2𝑒𝑟𝑟𝑜𝑟(𝑉)

𝛿𝑉2 = 2 (𝑎∞2 − 2𝑎1𝑎∞ + 𝑎12
) = 2(𝑎1 − 𝑎∞)2 > 0                             (123) 

𝑉∗ =
(𝑎∞−𝑎1)(𝑎𝑝−𝑎1)

(𝑎∞−𝑎1)2 =
𝑎1−𝑎𝑝

𝑎1−𝑎∞                                      (124) 

Undefined Case a1 = a∞ 

𝑉∗ is undefined for 𝑎1 = 𝑎∞ due to 𝑎1 − 𝑎∞ in denominator of equation (124). There 

are two cases of 𝑎 where 𝑎1 = 𝑎∞.  

Case 1: 𝑎 = 0̅. In this case, 𝑎𝑝 = 0 ∀𝑝 and the approximation can be performed with 

𝑒𝑟𝑟𝑜𝑟(𝑉∗) = 0. 

Case 2:  𝑎 has only one non-zero entry. In this case, 𝑎𝑝 = 𝑎𝑞 = 𝑎∞ = 𝑎1 ∀𝑞 ≠ 𝑝. 

Again, the approximation can be performed with 𝑒(𝑉∗) = 0.  

To sum up, the undefined cases result with zero error (𝑒(𝑉∗) = 0). As a result, it can 

be said that 𝑒(𝑉∗) = 0 if there are at most one non-zero entry in 𝑎 and choice of 𝑉 

is irrelevant. 

Error of Approximation of Parameter V∗ 

To find the level of error, use 𝑉∗ in 𝑒𝑟𝑟𝑜𝑟(𝑉) as follows.  
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𝑒𝑟𝑟𝑜𝑟(𝑉∗) = [
𝑎1−𝑎𝑝

𝑎1−𝑎∞
𝑎∞ +

𝑎𝑝−𝑎∞

𝑎1−𝑎∞
𝑎1] − 𝑎𝑝 =

𝑎1𝑎∞−𝑎𝑝𝑎∞+𝑎1𝑎𝑝−𝑎1𝑎∞

𝑎1−𝑎∞
− 𝑎𝑝 = 𝑎𝑝 −

𝑎𝑝 = 0                 (125) 

Theoretically, the ATLA can approximate any 𝐿𝑝 distance with zero error for a given 

𝑎. Note that this does not mean an octagon can approximate an oval shape with zero 

error. Because the contour of 𝑎𝑝 distance is formed by infinitely many different 𝑎 

vectors.  

Verification 

For 𝑝 = 1, function returns 𝑉∗ = 0 (𝑎1). For 𝑝 = ∞, function returns 𝑉∗ = 1 (𝑎∞) 

as expected. From (118), it is clear that 𝑎𝑝̂(𝑉′) ≤ 𝑎𝑝̂(𝑉) for  𝑉′ ≥ 𝑉, since 𝑎1 ≥ 𝑎∞. 

Condition 1: For 𝑝 ≥ 1, 𝑎𝑝 ≤ 𝑎1. Thus, the range 0 ≤ 𝑉∗ ≤ 1 can be applied since 

𝑎∞ ≤ 𝑎𝑝̂(𝑉) ≤ 𝑎1 ∀𝑉 ∈ [0,1] . 

Condition 2: For 𝑝 < 1, 𝑎𝑝 ≥ 𝑎1. Thus, the range −∞ < 𝑉∗ < 0 can be applied as 

𝑎𝑝̂(𝑉) ≥ 𝑎1 ∀𝑉 ∈ (−∞, 0) 

Conditions 1 and 2 are also proven in Theorem 4 in this section. The range of 

parameter 𝑉 is established with the verification based on Conditions 1 and 2 as 𝑉 ∈

(−∞, 1] which is supported with Theorem 4. 

From equations (124)-(125), Conditions 1 and 2, for a given 𝑎, it can be inferred that 

all 𝐿𝑝 distances can be found using equation (118) with 𝑉 ∈ (−∞, 1]. In practice, 𝑉∗ 

is not used since it is a function of 𝑎𝑝 and if 𝑎𝑝 is calculated then 𝑉∗ is not needed. 

Characteristics of V∗  

Equations (124)-(125) show that there is a 𝑉∗ value for each 𝑝 for a given 𝑎. 

Therefore, we can denote 𝑉∗ as 𝑉(𝑝|𝑎). 𝑉(𝑝|𝑎) is linear w.r.t 𝑎𝑝 as shown below. 

𝛿𝑉(𝑝|𝑎)

𝛿𝑎𝑝 =
1

𝑎∞−𝑎1 < 0 𝑤ℎ𝑒𝑟𝑒 𝑎∞ ≠ 𝑎1                                                         (126) 

 
𝛿2𝑉(𝑝|𝑎)

𝛿𝑎𝑝2 = 0                                       (127) 
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Since 𝑎𝑝 is decreasing in 𝑝, 𝑉(𝑝|𝑎) is increasing in 𝑝 due to (126)-(127). This 

validates the intuitions stated in empirical foundations. 

Theorem 4: 𝑉(𝑝|𝑎) is a concave and asymptotic function of 𝑝. 

Proof: Since monotonicity of 𝑉(𝑝|𝑎) w.r.t. 𝑝 is shown, if (128) holds then it is 

concave. (128) is simplified to (129) and then (130) after elementary operations. 

 𝑉(ℎ𝑝1 + (1 − ℎ)𝑝2) ≥ ℎ𝑉(𝑝1) + (1 − ℎ)𝑉(𝑝2) ℎ ∈ [0,1]                      (128) 

𝑎1−𝑎ℎ𝑝1+(1−ℎ)𝑝2

𝑎1−𝑎∞ ≥ ℎ
𝑎1−𝑎𝑝1

𝑎1−𝑎∞ + (1 − ℎ)
𝑎1−𝑎𝑝2

𝑎1−𝑎∞                                    (129) 

𝑎ℎ𝑝1+(1−ℎ)𝑝2 = 𝑎𝑝1ℎ𝑎𝑝2(1−ℎ) ≤ ℎ𝑎𝑝1 + (1 − ℎ)𝑎𝑝2                                 (130) 

Using logarithm to relax the exponents ℎ and (1 − ℎ), we can obtain (129).  

ℎ𝑙𝑜𝑔(𝑎𝑝1) + (1 − ℎ) 𝑙𝑜𝑔(𝑎𝑝2) ≤ 𝑙𝑜𝑔(ℎ𝑎𝑝1 + (1 − ℎ)𝑎𝑝2)                               (131) 

(131) always holds since the logarithm is a concave function. Moreover, 𝑉(𝑝|𝑎) is 

asymptotic when 𝑝 → ∞ and 𝑝 → 0+ as shown below.  

lim
𝑝→∞

𝑎𝑝 = 𝑎∞ and 𝑉(𝑝|𝑎) =
𝑎1−𝑎𝑝

𝑎1−𝑎∞ → 1                                     (132)  

lim
p→0+

𝑎𝑝 = ∞ and 𝑉(𝑝|𝑎) =
𝑎1−𝑎𝑝

𝑎1−𝑎∞ → −∞                                   (133) 

(132) is a trivial result. (133) can be proven by using exp of ln(.) (𝑥 = 𝑒ln 𝑥): 

lim
p→0+

𝑎𝑝 = 𝑒
lim

p→0+
ln (𝑎𝑝)

= 𝑒
lim

p→0+
 
1

p
ln (𝑎1

𝑝
+⋯+𝑎𝑚

𝑝
)

= 𝑒
lim

p→0+
 
1

p
 ( lim

p→0+
ln(𝑎1

𝑝
+⋯+𝑎𝑚

𝑝
))

=

𝑒ln (𝑚)∞ = ∞, since ∞ > 𝑚 ≥ 2 and ln(𝑚) > 0. ❑ 

Plot of 𝑉(𝑝|𝑎) w.r.t. 𝑝 for a given 𝑎 is shown in Figure 6.7. Due to (121)-(133), 𝑎𝑝 

function with 0 < 𝑝 ≤ ∞ can be approximated with 𝑉 ∈ (−∞, 1].  
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Figure 6.7 Plot of V versus p 

Metricity Conditions of ap̂(V) 

As a reminder, 𝐿𝑝 (or 𝑎𝑝) distance function is a metric when 𝑝 ≥ 1 and is not a 

metric when 𝑝 < 1 due to the violation of triangular inequality.  

Theorem 5: ap̂(𝑉) is a metric for V ≥ 0 which approximates Lp distance with p ≥ 1 

which is also a metric.  

Proof: (134)-(135) are used when showing the triangular inequality.  

 (a + b)1 = a1 + b1                (134) 

  (a + b)∞ ≤ a∞ + b∞, since max
j

{aj + bj} ≤ max
j

{aj} + max
j

{bj}                  (135) 

1.   𝑉𝑎∞ + (1 − 𝑉)𝑎1 > 0 always hold for since the formulation is a convex 

combination of two positive numbers for 𝑉 ≥ 0. Also, 𝑉𝑎∞ + (1 − 𝑉)𝑎1 =

0 𝑖𝑓𝑓   𝑎 = 0. 

2.  𝑉 𝑚𝑎𝑥
𝑗

{ |𝑘|𝑎𝑗} + (1 − 𝑉) ∑ |𝑘|𝑎𝑗𝑗 = 𝑉|𝑘| 𝑚𝑎𝑥
𝑗

{𝑎𝑗} + (1 − 𝑉)|𝑘| ∑ 𝑎𝑗𝑗  

holds due to absolute function in 𝑎1 and 𝑎∞ distances.  
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3.  V(a + b)∞ + (1 − V)(a + b)1 ≤ V(a∞ + b∞) + (1 − V)(a1 + b1 ). This 

inequality is simplified to V(a + b)∞ ≤  V(a∞ + b∞) due to (134). 

𝑉(a + b)∞ ≤  V(a∞ + b∞) always hold due to (135). ❑ 

In [45], it is stated that when V < 0, ap̂(V) formulation may not satisfy the metricity 

conditions, but it is not proven. In this study, it is proven by Theorem 6.  

Theorem 6: ap̂(V) is not a metric for V < 0 which approximates 𝐿𝑝 distance function 

with 0 < p < 1 which is also not metric . Metricity is violated by triangular 

inequality as in 𝐿𝑝 with 0 < p < 1.  

Proof: 

1.   𝑉𝑎∞ + (1 − 𝑉)𝑎1 > 0 always holds for since 𝑎1 > 𝑎∞. 𝑉𝑎∞ + (1 −

V)𝑎1 = 0 iff 𝑎 = 0. 

2.  𝑉 𝑚𝑎𝑥
𝑗

{ |𝑘|𝑎𝑗} + (1 − 𝑉) ∑ |𝑘|𝑎𝑗𝑗 = 𝑉 |𝑘|𝑚𝑎𝑥
𝑗

{𝑎𝑗} + (1 − 𝑉)|𝑘| ∑ 𝑎𝑗𝑗  

holds due to absolute function.  

3.  V(a + b)∞ + (1 − V)(a + b)1 ≤ V(a∞ + b∞) + (1 − V)(a1 + b1 ).  This 

expression is simplified to 𝑉(a + b)∞ ≤  𝑉(a∞ + b∞) due to (134) and the 

result does not hold due to (135) and since V < 0, except for the equality 

case. The equality case occurs when the a∞ = aj′ and b∞ = bj′′ and j′ = j′′. 

❑ 

In Theorems 4-6, it is shown that the approximator ap̂(V) is not only consistent with 

𝐿𝑝 due to Conditions 1 and 2 but also consistent due to metricity conditions. Four 

corollaries are presented as follows.  

Corollary 1: There is a V value for each p of Lp distance. All Lp distances can be 

calculated with ap̂(V) for a given a. 

Corollary 2: 𝑉 ∈ [0,1] approximates the 𝐿𝑝 distance with 𝑝 ≥ 1 and 𝑉 ∈ (−∞, 0) 

approximates the 𝐿𝑝 distance with 0 < 𝑝 < 1. 
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Corollary 3: ap̂(V) is a metric when Lp distance is a metric (p ≥ 1 and 1 ≥ V ≥ 0) 

and ap̂(V) is not a metric when Lp distance is not a metric (1 > p > 0 and 0 > V >

−∞). 

Corollary 4: ap̂(V) is concave, monotonically increasing, and asymptotic w.r.t p 

such that V → −∞ when p → 0+ and V → 1 when p → ∞. 

It may not be precisely known which 𝑉 approximates which 𝐿𝑝 distance. However, 

a set of 𝑉 values can be supplied to ATLA to approximate a set of 𝐿𝑝 distances. 

ATLA is illustrated with two different distance-based multicriteria sorting methods 

in the next section. 

6.3 Application of ATLA in MP: ATLAS Algorithm for Multicriteria 

Sorting 

Consider following nonlinear mathematical program, NLP1 where 𝑧(𝑥, 𝑦) is a linear 

objective function and 𝑓(. ) is a linear function. The nonlinearity is caused by the  

𝑎𝑝 = √∑ 𝑤𝑗
𝑝|𝑥𝑗 − 𝑦𝑗|

𝑝
𝑗

𝑝

 in the constraint (137). 𝑅𝐻𝑆 is a known parameter. 

(NLP1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝑥, 𝑦)                            (136) 

Subject to: 

𝑓(𝑎𝑝) = 𝑅𝐻𝑆               (137) 

𝑥, 𝑦 ∈ 𝑋  

Constraints (119)-(120) 

where 𝑎𝑝 contains decision variables 𝑤, 𝑥 and 𝑦 and it is an NLP formulation for 

𝑝 ∉ {1, ∞}. NLP1 can be approximated as LP1 by employing formulations of 

Charnes et al. [40], Kelley [41] in objective function (138) and constraints (139)-

(142).  
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(LP1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝑥, 𝑦) + 𝐶1 ∑ 𝑎𝑗𝑗 + 𝐶∞𝑎∞                                   (138) 

Subject to: 

𝑓(𝑉𝑎∞ + (1 − 𝑉) ∑ 𝑎𝑗𝑗 ) = 𝑅𝐻𝑆, 𝑉 ∈ (−∞, 1]                                  (139) 

𝑎𝑗 ≥ 𝑥𝑗 − 𝑦𝑗  ∀𝑗                                     (140) 

𝑎𝑗 ≥ 𝑦𝑗 − 𝑥𝑗  ∀𝑗                                                 (141) 

𝑎∞ ≥ 𝑎𝑗  ∀𝑗                                       (142) 

Formulations of Charnes et al. [40] and Kelly [41] are minimization of distances. 

Therefore, in their problem environment they are exact models. In multicriteria 

sorting, the objective is to minimize error. In our case, those formulations are 

approximation. Because in this study, aim is not to minimize the distance of an 

alternative to a reference point. The aim is to find the exact values of the 𝐿1 and 𝐿∞ 

distance functions in an MP that are formulated with greater and equal to constraints. 

In LP1, nonlinearity due to the 𝐿𝑝 distance is eliminated with ATLA as an 

approximation of the original NLP1. Choice of coefficients 𝐶1 and 𝐶∞ are important 

since the small coefficients may not properly approximate the distance functions and 

large coefficients may cause a significant trade-off between the objective function 

𝑧(𝑥, 𝑦) and distance function approximations 𝐶1 ∑ 𝑎𝑗𝑗 + 𝐶∞𝑎∞. 𝐶1 and 𝐶∞ can be 

decided via empirical study as in [6]. But to construct a well-defined approximation 

method, in the next section, a heuristic algorithm is developed to find small 

coefficients and it is applied to two distance-based sorting models as an example.  

6.3.1 Application to Distance-based Sorting Method 

In this section, a new approximation is applied to distance-based multicriteria 

sorting. A distance-based multicriteria sorting formulation is constructed based on 

[7] and [5]. The sorting model is named Distance-based Sorting (DS).  



106 

 

Let us briefly revisit the notation and present the new relevant notation for DS. 𝑖 ∈

{1,2, … 𝑛} stands for the alternatives. Ordinal classes are denoted by 𝑞 ∈ {1,2, … 𝑄} 

where class 𝑄 is the best class and class 1 is the worst class. 𝐶𝑞 is the group of 

alternatives in class 𝑞. 𝐴𝑖𝑗
𝑞

 stands for the criterion evaluation of alternative 𝑖 from 

class 𝑞 on criterion 𝑗. 𝐼 denotes ICV and 𝐼𝑗 denotes the 𝑗𝑡ℎ element of 𝐼. Class 

thresholds are denoted by 𝑇𝑞. The 𝐿𝑝 distance, ||𝐴𝑖
𝑞 − 𝐼||

𝑝
, is the distance-based 

criteria aggregation function. Class assignment errors are determined by comparing 

the criteria aggregation with the class thresholds of adjacent classes. 𝑒𝑖
+ and 𝑒𝑖

− 

represents the error of class assignment due to comparison of criteria aggregation to  

worse class and better class thresholds, respectively.  

DS model assigns the alternatives to the ordinal classes based on a criteria 

aggregation function and class thresholds. Criteria aggregation of alternatives are 

performed based on their distances to the ICV. The class thresholds are in monotonic 

order increasing from most preferred (𝑄) to the least preferred class (1).  

DS for a predetermined 𝐿𝑝 distance is as follows. 

(DS) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = ∑
∑ 𝑒𝑖

++𝑒𝑖
−

𝑖∈𝐶𝑞

|𝐶𝑞|𝑞                                    (143) 

Subject to: 

||𝐴𝑖
𝑞 − 𝐼||

𝑝
− 𝑒𝑖

+ ≤ 𝑇𝑞−1  ∀𝑞 > 1                                   (144) 

||𝐴𝑖
𝑞 − 𝐼||

𝑝
+ 𝑒𝑖

− ≥ 𝑇𝑞 ∀𝑞 < 𝑄                                   (145) 

||𝐴𝑖
𝑞 − 𝐼||

𝑝
= √∑ 𝑤𝑗

𝑝 |𝐴𝑖𝑗
𝑞 − 𝐼𝑗|

𝑝

𝑗

𝑝

 ∀𝑖, ∀𝑞                                   (146) 

𝑇𝑞−1 ≥ 𝑇𝑞 , 1 < 𝑞 < ∞              (147)                         

 ∑ 𝑤𝑗𝑗 = 1                (148)                  
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𝑤𝑗 ≥ 0 ∀𝑗               (149)                   

𝑇𝑞 ≥ 0 ∀𝑞 < 𝑄              (150)                   

𝑒𝑖𝑟

+, 𝑒𝑖𝑟

− ≥ 0 ∀𝑖              (151)                   

The criteria aggregation is as in equation (146). Class assignments are performed, 

and assignment errors are computed in constraints (144)-(145). Class thresholds are 

ordered in constraint (147) and criterion weights are normalized in constraint (148). 

Class weighted total error is minimized in the objective function (143). 

𝐿𝑝 distance is used as criteria aggregation function in DS. Therefore, ATLA method 

can be applied to the criteria aggregation function ||𝐴𝑖
𝑞 − 𝐼||

𝑝
. 

To approximate the criteria aggregation function, the formulation is updated as 

follows. (146) is replaced by (152) and ||𝐴𝑖
𝑞 − 𝐼||

𝑝
 in (144)-(145) is replaced by the 

right hand side of equation (152). A new constraint (153) is added to approximate 

the 𝑎∞ distance. Objective function is updated as (154). This version of the DS is 

named Approximated DS. 

||𝐴𝑖
𝑞 − 𝐼||

𝑝
=̃ 𝑉𝑎𝑖

∞ + (1 − 𝑉) ∑ 𝑤𝑗|𝐴𝑖𝑗
𝑞 − 𝐼𝑗|𝑗             (152)                   

𝑎𝑖
∞ ≥ 𝑤𝑗|𝐴𝑖𝑗 − 𝐼𝑗| ∀𝑗, ∀𝑖                 (153)                                  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = ∑
∑ 𝑒𝑖

++𝑒𝑖
−+𝐶∞,𝑉𝑎𝑖

∞
𝑖∈𝐶𝑞

|𝐶𝑞|𝑞              (154)                  

Since |𝐴𝑖𝑗
𝑞 − 𝐼𝑗| term is a parameter, rectilinear distance is not approximated in this 

model. 𝐶∞,𝑉 in the objective function (154) should be decided properly. If it is a high 

coefficient there may exist a trade-off that decreases the accuracy by increasing the 

error. If it is low, then an 𝑎𝑖
∞value may be determined erroneously, that is 𝑎𝑖

∞ >

𝑤𝑗|𝐴𝑖𝑗 − 𝐼𝑗|. Therefore 𝐶∞,𝑉 must be low to maximize accuracy and sufficiently high 

to correctly approximate the 𝐿∞ (𝑎𝑖
∞) distance. To approximate a set of 𝐿𝑝 distances 
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and determine a proper 𝐶∞,𝑉 coefficient, ATLA Sorting (ATLAS) algorithm is 

developed.  

New notation for ATLAS is as follows. 𝑇𝑟𝐴(𝑉), 𝑇𝑠𝐴(𝑉), 𝑤∗(𝑉) and  𝑇∗(𝑉) denote 

the training accuracy, test accuracy, optimal weights and thresholds that are obtained 

for a predetermined 𝑉, respectively. Feasibility Condition (𝐹𝐶) is developed for 

checking if the 𝑎𝑖
∞ approximations are correct. 𝐹𝐶 is formulated as follows: 

 𝐹𝐶 = ∑ |𝑎𝑖
∞ − 𝑚𝑎𝑥

𝑗
{𝑤𝑗|𝐴𝑖𝑗 − 𝐼𝑗|}|𝑖              (155)                     

𝐹𝐶 = 0 means that all 𝑎𝑖
∞ approximation are correct and 𝐹𝑆 > 0 means that  𝑎𝑖

∞ 

approximations are incorrect for at least one 𝑖. The accuracy (for both training and 

test) is computed as follows. 𝑛𝑟 and 𝑛𝑠 denote the size of training and test data 

respectively, 𝑖𝑟 ∈ {1,2, … , 𝑛𝑟} and 𝑖𝑠 ∈ {1,2, … , 𝑛𝑠}. 𝛿(. ) is an indicator function, 

returns 1 if the expression in the parenthesis is true and returns 0 if it is false.  

𝑇𝑟𝐴(𝑉) =
1

𝑛𝑟
∑ 𝛿(𝑒𝑖𝑟

+ + 𝑒𝑖𝑟

− = 0)𝑖𝑟
                                    (156) 

𝑇𝑠𝐴(𝑉) =
1

𝑛𝑠
∑ 𝛿(𝑒𝑖𝑟

+ + 𝑒𝑖𝑟

− = 0)𝑖𝑠
                                    (157) 

To compute 𝑇𝑠𝐴(𝑉), find the error variables of the test data by supplying parameters 

𝑉, 𝑤∗(𝑉), 𝑇∗(𝑉) to TestCalculationModel-ApproximatedDS in Appendix E. 𝑤∗(𝑉) 

and 𝑇∗(𝑉)  pair is the optimal solution of ApproximatedDS model for a 

predetermined 𝑉. TestCalculationModel-ApproximatedDS is not an optimization 

problem, since 𝑉, 𝑤∗(𝑉), 𝑇∗(𝑉) are known parameters except for 𝑒𝑖𝑆

+  and 𝑒𝑖𝑆

− . It is 

only used to calculate 𝑒𝑖𝑆

+  and 𝑒𝑖𝑆

− . 𝐶𝑙𝑜𝑜𝑝 and 𝑉𝑙𝑜𝑜𝑝 are indexes used for looping 

through a set of 𝐶∞,𝑉 and 𝑉 values. 

ATLAS algorithm supplies a set of 𝑉 values to the approximated sorting model, 

sequentially. For each 𝑉 value an LP is solved, and feasibility check is done for the 

approximation of 𝑎∞ with 𝐹𝐶 formulation. The LP that is solved is the 

ApproximatedDS. 𝐶∞,𝑉 values are systematically increased from a small value to a 
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higher value until 𝐹𝐶 = 0 is satisfied to find a small coefficient to approximate 𝑎∞ 

distance in formulation of ATLA. 

ATLAS Algorithm: 

Step 1: Determine a set of V values, 𝑉̅ = [… ]  ordered in ascending order of |𝑉|. 

Set 𝑉𝑙𝑜𝑜𝑝 = 1,  𝐶𝑙𝑜𝑜𝑝 = 1, 𝐶∞,𝑉−1 = 0.  

Step 2: Solve "Approximated DS"  for training data with:   

𝑉 = 𝑉̅[𝑉𝑙𝑜𝑜𝑝], Determine 𝐶∞,𝑉̅[𝑉𝑙𝑜𝑜𝑝](𝐶𝑙𝑜𝑜𝑝) such that 𝐶∞,𝑉̅[𝑉𝑙𝑜𝑜𝑝](𝐶𝑙𝑜𝑜𝑝) >

𝐶∞,𝑉̅[𝑉𝑙𝑜𝑜𝑝−1](𝐶𝑙𝑜𝑜𝑝), go to Step 3.  

Step 3: Check feasibility of 𝑎∞:  

 If 𝐹𝐶 = 0, Feasible 𝑎𝑖
∞:     

  Reset 𝐶𝑙𝑜𝑜𝑝 = 1,  record 𝑇𝑟𝐴(𝑉), 𝑤∗(𝑉) and 𝑇∗(𝑉). Go to Step 4.  

  Else, Infeasible 𝑎𝑖
∞: 

  Update 𝐶𝑙𝑜𝑜𝑝 = 𝐶𝑙𝑜𝑜𝑝 + 1. Go to step 2.  

Step 4: Check termination condition:  

If 𝑉𝑙𝑜𝑜𝑝 < |𝑉|, 𝑉𝑙𝑜𝑜𝑝 = 𝑉𝑙𝑜𝑜𝑝 + 1,  go to step 2. 

Else Terminate.  

Outputs: 𝑇𝑟𝐴(𝑉), 𝑤∗(𝑉) 𝑎𝑛𝑑 𝑇∗(𝑉)  

In the first step of the algorithm, the sets for performing two loops are initialized. 

The first loop is for supplying a set of 𝑉 values and the second loop is for finding a 

small 𝐶∞,𝑉 threshold. |𝑉| is the cardinality of 𝑉. 𝐶𝑙𝑜𝑜𝑝 is used to find a small 

coefficient of approximation to avoid trade-off between the original objective 

function of the model (minimizing total error) and distance approximation. In the 

second step, the sorting model is solved with the 𝑉 and 𝐶∞ (𝐶∞,𝑉) values. 𝐶∞ is 

recorded as 𝐶∞,𝑉 and aggressively increased to speed up the algorithm as in equation 

(158). In empirical studies, it is observed that this kind of aggressive increase in 𝐶∞ 
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do not decrease the solution quality but improves the solution time significantly. In 

this study, 𝐶∞,𝑉 is determined such that: 

 𝐶∞,𝑉(𝐶𝑙𝑜𝑜𝑝) =
𝐶∞,𝑉−1+𝐶𝑙𝑜𝑜𝑝∗|𝑉̅[𝑉𝑙𝑜𝑜𝑝]|∗100

102               (158) 

This formulation is determined by empirical study. In step 3, the feasibility of 𝐿∞ 

distance is checked. If 𝐹𝐶 = 0 condition is true, then with a small 𝐶∞,𝑉 coefficient 

the correct 𝑎𝑖
∞ values are found, and the algorithm can iterate to the next 𝑉 value. If 

the feasibility condition is false, then the 𝐶∞,𝑉 value is increased as in step 2 until a 

sufficiently large 𝐶∞,𝑉 is found. However, different 𝐶∞,𝑉 formulations can be used 

based on the choice of analyst or DM. In this way, a set of different 𝐿𝑝 distances are 

approximated and solutions for those 𝐿𝑝 distances are explored.  

ATLAS Algorithm solves two important problems addressed in Chapter 1. Firstly, it 

explores a set of 𝐿𝑝 distances iteratively by solving a number of computationally 

inexpensive LP models instead of computationally expensive NLP models. This is 

done by looping through a set of 𝑉 values. By looping through the  𝐶∞,𝑉 coefficients 

from low to high values, it finds a small coefficient of weighted Tchebycheff distance 

that is sufficiently large to satisfy 𝑎𝑖
∞ = 𝑚𝑎𝑥

𝑗
{𝑤𝑗|𝐴𝑖𝑗 − 𝐼𝑗|} ∀𝑖. Computationally 

expensive NLP models are approximated as LP models and this can reduce the 

solution time, significantly. ATLAS explores solutions of a set of 𝐿𝑝 distance  

approximations. Therefore, obtaining the solutions of different approximated  𝐿𝑝 

distances in a short time is a solution to the problem of determining which 𝐿𝑝 

distance to use. Still, which 𝑉 value approximates which 𝐿𝑝 distance is not known. 

This problem is handled with one of alternative courses of actions, namely BALA in 

Section 6.4. 

6.3.2 Application to DISWOTH 

ATLAS is also applied to DISWOTH [6] that is a nearest centroid-based classifier. 

Nearest centroid-based classifiers also require the usage of distance functions. In 
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DISWOTH, class centroids are employed to represent the classes. Class assignment 

of DISWOTH method is performed based comparison of alternatives to the class 

centroids. An alternative is assigned to class 𝑞 if the centroid of class 𝑞 is the closest 

centroid to the alternative.  

Let us briefly recall the notation related to DISWOTH method. 𝜇𝑗
𝑞
 represents the 𝑗𝑡ℎ 

element of centroid of class 𝑞. 𝜇𝑗
𝑞
 is estimated with arithmetic average as in equation 

(159). 𝜖𝑖 is the error of class assignment. 𝑒𝑖 returns zero if the closest centroid to 𝐴𝑖
𝑞
 

is 𝜇𝑗
𝑞
 and otherwise it returns a positive value. 𝑜 is an infinitesimal positive scalar. 

𝜇𝑗
𝑞 =

1

|𝐶𝑞|
∑ 𝐴𝑖𝑗

𝑞
𝑖∈𝐶𝑞  ∀𝑗, ∀𝑞                                     (159) 

DISWOTH model for a predetermined 𝐿𝑝 distance is as follows.  

(DISWOTH) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = ∑
∑ 𝑒𝑖𝑖∈𝐶𝑞

|𝐶𝑞|𝑞                          (160)                            

Subject to: 

𝑒𝑖 − 𝜖 ≥ ||𝐴𝑖
𝑞 − 𝜇𝑞||

𝑝
− ||𝐴𝑖

𝑞 − 𝜇𝑟||
𝑝

∀𝑞 ≠ 𝑟, ∀𝑖           (161)                   

||𝐴𝑖
𝑞 − 𝜇𝑟||

𝑝
= √∑ 𝑤𝑗

𝑝 |𝐴𝑖𝑗
𝑞 − 𝜇𝑗

𝑟|
𝑝

𝑗

𝑝

 ∀𝑖, ∀𝑟                      (162)                     

Constraints (148)-(149) 

𝑒𝑖 ≥ 0 ∀𝑖                 (163)                        

Objective function (160) minimizes the class weighted classification error. 

Constraint (161) performs the class assignment and constraint (163) is the sign 

constraint of 𝑒𝑖. ||𝐴𝑖
𝑞 − 𝜇𝑞||

𝑝
and ||𝐴𝑖

𝑞 − 𝜇𝑟||
𝑝
 in constraint (161) can be 

approximated with equation (164). Equation (162) is replaced with equation (164). 

𝑎𝑖
∞ can be approximated with constraint (165) and objective function is updated as 

(166). This version of the DISWOTH is named ApproximatedDISWOTH. 
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||𝐴𝑖
𝑞 − 𝜇𝑞||

𝑝
=̃ 𝑉𝑎𝑖

∞ + (1 − 𝑉) ∑ 𝑤𝑗|𝐴𝑖𝑗
𝑞 − 𝜇𝑗

𝑞|𝑗  ∀𝑞, ∀𝑖            (164)                   

𝑎𝑖
∞ ≥ 𝑤𝑗|𝐴𝑖𝑗

𝑞 − 𝜇𝑗
𝑟| ∀𝑗, ∀𝑟, ∀𝑖             (165)         

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = ∑
∑ 𝑒𝑖+𝐶∞,𝑉𝑎𝑖

∞
𝑖∈𝐶𝑞

|𝐶𝑞|𝑞                                     (166) 

Approximation of DISWOTH method with ATLAS is the same as in DS. 

"ApproximatedDS" expression in step  2 of ATLAS is replaced by 

"ApproximatedDISWOTH". Every explanation on the ATLAS algorithm for DS is 

also valid for DISWOTH. There is no 𝑇∗(𝑉) in ATLAS for DISWOTH. For 

computation of 𝑇𝑟𝐴(𝑉) and 𝑇𝑠𝐴(𝑉), 𝑒𝑖𝑟

+, 𝑒𝑖𝑟

− and 𝑒𝑖𝑠

+, 𝑒𝑖𝑠

− expressions of DS are 

replaced by 𝑒𝑖𝑟
 and 𝑒𝑖𝑠

, respectively. To compute 𝑇𝑠𝐴(𝑉), find the error variables of 

the test data by supplying parameters 𝑉 and 𝑤∗(𝑉) to TestCalculationModel-

ApproximatedDISWOTH in Appendix E for ApproximatedDISWOTH model. 

Solving TestCalculationModel-ApproximatedDISWOTH is not an optimization 

problem, since 𝑉, 𝑤∗(𝑉) are known parameters except for 𝑒𝑖𝑠
. It is only used for 

computation of 𝑒𝑖𝑠
. 

6.4 Alternative Courses of Actions and Implementation Plan 

To present a full guideline on the efficient usage of ATLAS, three alternative courses 

of actions related to implementation are presented. The alternative courses of actions 

are also used to avoid from overfitting. The actions are solely based on training 

accuracy of the ATLAS outputs. The test accuracy is computed based on the 

alternative courses of actions.  

To be able to clearly explain the application of alternative courses of actions, a 

numerical example is given. Consider the following example solution of ATLAS 

algorithm that is for DS model for a hypothetical data set in Table 6.1.  ATLAS 

algorithm is run for 𝑉 ∈ {0.1,0.5,0.9}. The hypothetical data set has two classes and 

three criteria. Numerical examples are given using this example for alternative 
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courses of actions. Computations in the alternative courses of actions are performed 

after ATLAS is applied. 

 

Table 6.1 A numerical example for the alternative courses of actions 

𝑉 Value 
𝑤∗(𝑉) for 3 

criteria 

𝑇∗(𝑉) for 

2 classes 
𝑇𝑟𝐴(𝑉) 

0.1 0.2, 0.1, 0.7 3 78 

0.5 0.4, 0.2, 0.4 2 79 

0.9 0.2, 0.3, 0.5 5 72 

 

Best of All Action (BA) 

The first action is the Best of all Action (BA). In BA, the output of the ATLAS 

algorithm is the best training accuracy giving 𝑉 value. Therefore, in implementation 

for DS to determine which 𝑤∗(𝑉)𝑎𝑛𝑑 𝑇∗(𝑉) are to be used (only 𝑤∗(𝑉) for 

DISWOTH), 𝑇𝑟𝐴(𝑉) is used. BA action is applied as follows. First, 𝑉′ value that 

satisfies 𝑉′ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑉

{𝑇𝑟𝐴(𝑉)} is chosen. Then, 𝑤∗(𝑉′) and  𝑇∗(𝑉′) are used in 

test accuracy calculation and 𝑇𝑠𝐴(𝑉′) is reported to DM. This action can be a greedy 

approach and may result in a poor test accuracy (𝑇𝑠𝐴(𝑉′)). For BA, on the numerical 

example, 𝑇𝑠𝐴(𝑉) is computed using 𝑉′ = 0.5, 𝑤∗(𝑉′) = [0.4, 0.2, 0.4] and 𝑇∗(𝑉′) =

2. 

Smoothing Action (SA) 

The second action is the Smoothing Action (SA). In SA, the output of the ATLAS 

algorithm is the training accuracy weighted 𝑉′ value. It results in aggregated weight 

(𝑤) and threshold (𝑇) instead of the best 𝑉, 𝑤∗(𝑉) and 𝑇∗(𝑉) in BA. 

𝑇𝑠𝐴(𝑉′) is computed with 𝑉′, 𝑤 and 𝑇. This action is developed to smooth out 

overfitting results. To find training accuracy weighted 𝑉′ value, training accuracy 
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output of each 𝑉 value is normalized. 𝜑(𝑉′) denotes the normalized 𝑇𝑟𝐴(𝑉′) and 

formulated as 𝜑(𝑉′) =
𝑇𝑟𝐴(𝑉′)

∑ 𝑇𝑟𝐴(𝑉)𝑉
.  

The criterion weights and thresholds are computed as 𝑤 = ∑ 𝜑(𝑉)𝑤∗(𝑉)𝑉  and 𝑇 =

 ∑ 𝜑(𝑉)𝑇∗(𝑉)𝑉  and 𝑉′ = ∑ 𝜑(𝑉)𝑉𝑉 . Then, by using 𝑤, 𝑇 and 𝑉′, compute the test 

accuracy to be reported to DM (𝑇𝑠𝐴(𝑉′)). For DISWOTH, to compute the 𝑇𝑠𝐴(𝑉′), 

𝑇 is not needed. On the numerical example, 𝜑(0.1) =
78

78+79+72
= 0.3406, 𝜑(0.5) =

79

78+79+72
= 0.345, 𝜑(0.9) =

72

78+79+72
= 0.3144.  

For SA, parameters that are used to compute the 𝑇𝑠𝐴(𝑉′) are computed as follows.  

Update 𝑉′ value as 𝑉′ = 0.3406 ∗ 0.1 + 0.345 ∗ 0.5 + 0.3144 ∗ 0.9 = 0.489. 

Update Criterion weights as 𝑤 = 0.3406 ∗ [0.2, 0.1, 0.7]  + 0.345 ∗

[0.4, 0.2, 0.4]  + 0.3144 ∗ [0.2, 0.3, 0.5]  = [0.269, 0.229, 0.532]. 

Update Class threshold as 𝑇 = 0.3406 ∗ 3 + 0.345 ∗ 2 + 0.3144 ∗ 5 = 3.2838. 

Best Accuracy Lp Approximation Action (BALA) 

The third action is Best Accuracy 𝐿𝑝 approximation Action (BALA). In BALA, the 

outputs of the ATLAS algorithm are used with the original NLP sorting models. 

𝑤∗(𝑉) and 𝑇∗(𝑉) are supplied as parameters into DS (or DISWOTH) models 

(originals models, not approximated ones) with different 𝐿𝑝 distances. 𝑒𝑖𝑟

+   and 𝑒𝑖𝑟

−  

are computed for given 𝑤∗(𝑉) and 𝑇∗(𝑉) for 𝐿𝑝. Training accuracy for each 𝑉, 

𝑤∗(𝑉) and 𝑇∗(𝑉) and 𝐿𝑝 distance is computed with (156). Not that this step does 

not solve computationally expensive NLP models because the decision variables of 

those NLP models are given as parameters to compute error variables. 

𝑤∗(𝑉) and 𝑇∗(𝑉) outputs of each 𝑉 value may result in different training accuracy 

with each 𝐿𝑝 distance. The training accuracy table 𝑇𝑟𝐴(𝑉, 𝑝) is obtained. For each 

𝐿𝑝 distance, the highest training accuracy giving 𝑉′ is obtained as (𝑉′, 𝑝) =

𝑎𝑟𝑔𝑚𝑎𝑥
𝑉

{𝑇𝑟𝐴(𝑉, 𝑝)}. 
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After obtaining (𝑉′, 𝑝) pair for all 𝑝, 𝑤∗(𝑉′) and 𝑇∗(𝑉′) are used for computing the 

test accuracy for the 𝐿𝑝 distance. The result is 𝑇𝑠𝐴(𝑝) table BALA can be 

recommended when 𝐿𝑝 distance has a meaning for DM or the analyst conducting the 

study. BALA is explained as follows for DS model. 

BALA Action: 

Step 1: Apply ATLAS algorithm to obtain 𝑤∗(𝑉̅) and 𝑇∗(𝑉̅). 

Step 2: For all 𝑝 and 𝑉, supply 𝑤∗(𝑉), 𝑇∗(𝑉) to 𝐿𝑝 distance-based sorting model 

and solve for 𝑒𝑖𝑟

+   and 𝑒𝑖𝑟

− (error of training data). It should be noted that this step is 

not an optimization since all decision variables of the DS model are supplied as 

parameters except for errors. This step is just computation of errors w.r.t given 

𝑝, 𝑤∗(𝑉′) and 𝑇∗(𝑉′). Obtain 𝑇𝑟𝐴(𝑉, 𝑝) table. 

Step 3: To obtain (𝑉′, 𝑝) pairs, apply (𝑉′, 𝑝) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑉

{𝑇𝑟𝐴(𝑉, 𝑝)} for all 𝑝. Use 

𝑤∗(𝑉′) and 𝑇∗(𝑉′) in test accuracy computation to obtain 𝑒𝑖𝑠

+   and 𝑒𝑖𝑠

− (error of test 

data). Calculate the test accuracy of 𝐿𝑝 distance-based original NLP model using 

(157).  

Step 4: Construct 𝑇𝑠𝑆, 𝐴(𝑝) table to present to DM.  

After constructing 𝑇𝑠𝐴(𝑝) table, the best test accuracies for different 𝐿𝑝 distances 

can be obtained. The accuracy values in this table can also be interpreted as test 

accuracy of heuristic solutions to the original model.  

A new numerical example for BALA method is as follows. On the numerical 

example, assume 𝑝 ∈ {1, 2, 3} are to be used. Supply 𝑤∗(0.1), 𝑤∗(0.5), 𝑤∗(0.9) and 

𝑇∗(0.1), 𝑇∗(0.5), 𝑇∗(0.9) to DS model with 𝑝 ∈ {1, 2, 3}. Solve DS model with 

these weights for each 𝑝 value to calculate 𝑒𝑖𝑟

+ and 𝑒𝑖𝑟

−. Obtain 3x3 𝑇𝑟𝐴(𝑉, 𝑝) matrix 

as in Table 6.2.  
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Table 6.2 An example 𝑇𝑟𝐴(𝑉, 𝑝) table 

Inputs\𝑝 values 𝑝 = 1 𝑝 = 2 𝑝 = 3 

𝑉 = 0.1, 𝑤∗(0.1), 𝑇∗(0.1) 𝟖𝟐 71 70 

𝑉 = 0.5, 𝑤∗(0.5), 𝑇∗(0.5) 70 𝟖𝟏 75 

𝑉 = 0.7, 𝑤∗(0.7), 𝑇∗(0.7) 68 72 𝟕𝟑 

 

Based on Table 6.2, the (𝑉′, 𝑝) pair can be found as in Table 6.3 as follows. 

Table 6.3 Example of  (𝑉′, 𝑝) pairs based on the example 𝑇𝑟𝐴(𝑉, 𝑝) 

𝑉′ 𝑝 
𝑇𝑠𝐴(𝑝) is found 

with 

0.1 1 𝑤∗(0.1), 𝑇∗(0.1) 

0.5 2 𝑤∗(0.5), 𝑇∗(0.5) 

0.9 3 𝑤∗(0.7), 𝑇∗(0.7) 

 

From  𝑇𝑟𝐴(𝑉, 𝑝) table (Table 6.2), (𝑉′, 𝑝)  is obtained as in Table 6.3. To compute 

𝑇𝑠𝐴(𝑝), use 𝑤∗(0.1) and 𝑇∗(0.1) for 𝑝 = 1, use 𝑤∗(0.5) and 𝑇∗(0.5) for 𝑝 = 2, use 

𝑤∗(0.9) and 𝑇∗(0.9) for 𝑝 = 3.   

Implementation of ATLAS algorithm is based on those three alternative courses of 

actions. One can apply one of them. All of them can be applied and between the test 

results of three alternative courses of actions, the method with the best test accuracy 

can be chosen. 
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CHAPTER 7  

7 EXPERIMENTS OF ATLAS METHOD 

In this chapter, DS and DISWOTH model are solved for 10 different 𝐿𝑝 distances 

for 𝑝 ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. To approximate these distances, twenty-

four different 𝑉 values are used as 𝑉̅ = [0, 0.05, 0.1, 0.15, … , 0.95, 1, −3, −6, −9] 

based on the empirical and theoretical foundations in Section 6.2.1. The original NLP 

DS and DISWOTH results are compared with the ATLAS results based on the test 

accuracy and the solution time performance measures.  

Software and Hardware Setting  

The software and the hardware setting are the same as in Chapter 5. Due to constraint 

tolerance of the software, feasibility check step of ATLAS (step 3) is performed 

using 𝐹𝐶 < 10−9 instead of 𝐹𝐶 = 0. 

Datasets 

The data sets used to evaluate the performance of methods in this study and 

assumptions for maximization and minimization criteria are the same as in Section 

5.1.1.  

7.1 Experiments of DS Model  

Test accuracy for each 𝑝 and total training time for all selected 𝑝 values are reported 

in Table 7.1. Also, average test accuracy of all 𝑝 values for each data set and average 

training time are calculated. On average, it takes 23794.03 seconds to train DS model 

for a data set for 10 different 𝑝 values. Training time of each data set for each 𝑝 value 

for DS model is reported in Table 10.10 in Appendix C.  
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ATLAS results for BA and SA  

Experimental results of ATLAS method are reported in Table 7.2. On average, it 

takes 6.2 seconds to train ApproximatedDS model with ATLAS for a data set for  24 

different 𝑉 values. Maximum total training time of ATLAS for DS is 11.48 seconds 

(CAR data set) while minimum total training time for DS is 210.34 seconds (ESL 

data set). Training time of ATLAS for all 𝑉 values and number of iterations to satisfy 

FC condition are reported in Table 10.12 in Appendix D. A significant improvement 

in training time is observed. 

The average test accuracy for DS is 84.13 as reported in Table 7.1. In Table 7.2, BA 

and SA approaches result in 85.60 and 80.45 average test accuracy, respectively. 

Average test accuracy is better than original DS for BA action and worse than 

original DS for SA action. SA approach may decrease the test accuracy in some cases 

(e.g., BC data set test accuracy result). It is specifically designed for overfitting issue. 

As an example, test accuracy and BA result of MMG data set can be seen. Test 

accuracy of MMG significantly increase when SA is applied instead of BA. For the 

results similar to MMG, SA may be used instead of BA. More than 99.9 average 

time improvement is observed with 1.47 (3.68) improvement (loss) in average test 

accuracy for BA (SA). In 5 (two) out of 9 experiments, BA (SA) results are better 

than the best test accuracy obtained by DS.  
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Table 7.2 ATLAS algorithm results for Approximated DS 

Approximated DS BA SA 

Total 

Training 

Time12 

AUTOMPG 86.4213 90.12*14 6.95 

BC 100.00* 62.07 4.64 

CAR 96.23* 83.48 11.48 

CCS 79.31 72.41 4.95 

CPU 86.05* 86.05* 4.35 

ESL 97.92* 87.50 4.63 

LEV 88.89* 83.84 5.83 

ASA 97.77 96.65 1.88 

MMG 50.00 78.13 6.77 

Average 85.60* 80.45 5.72 

12 Training Time column is the total time to solve all LP models for 24 𝑉 values. 

13 Red colored entries are better than average DS results for each data set.  

14 Entries with “*” are greater than highest test accuracy observed with DS model.   

 

ATLAS results for BALA 

BALA results are reported in Table 7.3. Table 7.3 is a 𝑇𝑠𝐴∗(𝑝) table for DS. In the 

experiments of AUTOMPG and BC data sets, BALA results with better accuracy 9 

out of 10 experiments. Except for CAR data set, BALA results in better test accuracy 

for at least one distance function.  24 out of 90 experiments (the ones with the * 

sign), BALA accuracies are better than the highest accuracy obtained by DS. On the 

average test accuracy, for all 𝑝 values (Average row), BALA results with better 

accuracies for six different 𝑝 values. On the average test accuracy of data sets 

(Average column), BALA results with better average accuracy for four out of 9 data 

sets. On average, BALA test accuracy is 83.50 while DS test accuracy is 84.13. Less 

than 1 loss is observed in average test accuracy. This is a promising result since the 

time improvement is more than 99.9. 
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7.2 Experiments of DISWOTH Model  

DISWOTH model is also solved for 9 data sets and 10 different 𝑝 values as DS. Test 

accuracy for each 𝑝 and total training time for all selected 𝑝 values are reported in 

Table 7.4. Also, average test accuracy of all 𝑝 values for each data set and average 

training time are calculated to compare ATLAS with average accuracy value and 

average time. On average, it takes 77605.08 seconds to train DISWOTH model for 

a data set for 10 different 𝑝 values. Training time of each data set for each 𝑝 value 

for DISWOTH model is reported in Table 10.11 Appendix C. 
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ATLAS results for BA and SA  

Experimental results of ATLAS method are reported in Table 7.5. On average, it 

takes 50.99 seconds to train Approximated DISWOTH model with ATLAS for a 

data set for  24 different 𝑉 values. Number of iterations to satisfy FC condition are 

reported in Table 10.13 in Appendix D. The average test accuracy for DISWOTH is 

72.18 as reported in Table 7.5. BA and SA approach result in 74.8 and 78.12 test 

accuracy, respectively. Average test accuracy is better than DISWOTH for both BA 

and SA actions. More than 99.9 improvement in average solution time is observed 

with 2.62 (5.94) improvement is observed with BA (SA) action. In DISWOTH 

experiments, accuracy loss is not observed in average test accuracy results. 

Table 7.5 ATLAS algorithm results for Approximated DISWOTH 

Approximated  

DISWOTH 
BA SA 

Total 

Training 

Time18 

AUTOMPG 83.95*19, 20 86.42* 8.16 

BC 70.69* 79.31* 7.82 

CAR 68.99 60.58 378.1 

CCS 72.91* 75.86* 14.05 

CPU 81.40 83.72* 3.36 

ESL 89.58 85.42 3.39 

LEV 78.79 82.32* 11.51 

ASA 94.97* 73.18 28.6 

MMG 31.88 76.25 3.93 

Average 74.80 78.12 50.99 

18 Training Time column is the total time to solve all LP models for 24 𝑉 values. 

19 Red colored entries are better than average DISWOTH results for each data set. 

20 Entries with “*” are higher than highest test accuracy observed with DISWOTH model   
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ATLAS results for BALA 

BALA results are reported in Table 7.6. Table 7.6 is a 𝑇𝑠𝐴∗(𝑝) table for DISWOTH. 

For BC data set, BALA always results better test accuracy than DISWOTH. In the 

experiments of CCS and MMG data sets, BALA results with better accuracies 9 out 

of 10 𝑝 values. Except for CAR and ASA data sets, BALA results in better test 

accuracy for at least 5 out of 10 𝑝 values. 52 out of 90 experiments (the ones with 

the * sign), BALA accuracies are better than the highest accuracy obtained by 

DISWOTH. On the average test accuracy, for all 𝑝 values (Average row), BALA 

always results with better accuracies. 9 out of 10 results, average BALA accuracies 

are better than the best average result obtained by DISWOTH. On the average test 

accuracy of data sets (Average column), BALA results with better average accuracy 

for six out of 9 data sets. On average, BALA test accuracy is 77.27 while DISWOTH 

test accuracy is 72.18. More than 99.9 average time improvement is observed with 

more than 5 gain in average test accuracy. 
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7.3 Comparison of ATLAS with UTADIS 

The UTADIS results in Chapter 5 are also used in this section. ATLAS for DS and 

DISWOTH are compared with UTADIS. To compare BALA with UTADIS, average 

test accuracy of each data set is used (Average column in Tables 7.3 and 7.6). Test 

accuracy and training time of UTADIS are reported in Table 7.7. To ease the 

comparison, BA, SA, and BALA (average column) results are added to Table 7.7. 

There are only six test accuracy results in three data sets that are worse than 

UTADIS. The training time is worse than UTADIS for all data sets. This is expected 

since only a single LP model is solved for UTADIS while  24 of LP models are 

solved for ATLAS. Although the solutions that are obtained with ATLAS are results 

of approximations, the test accuracy is significantly higher than UTADIS.  
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CHAPTER 8  

8 DISCUSSION 

In this chapter, the proposed methods and the results are discussed. Three different 

topics are studied in this thesis. Comments and discussion on the topics studied are 

as follows. 

8.1 Discussions on Linearization of DISWOTH and 𝑳𝒑-Centroid 

The first  study is the linearization of DISWOTH with MINLP approximation and 

improving accuracy with 𝐿𝑝-Centroid. It is proven that it can also be converted to 

MIP. The MIP model is named Bin-Dis. Bin-Dis is advantageous in terms of both 

time and training accuracy. The time improvement is intuitive due to linearization. 

The accuracy improvement is also an intuitive result. Because the error formulation 

of DISWOTH is continuous (a nonnegative continuous variable). However, the 

definition of an erroneous class assignment is binary. In Bin-Dis, the error variable 

is defined as a binary variable as accurate and inaccurate. It can be inferred from the 

formulations of DISWOTH and Bin-Dis that minimizing the error with a continuous 

variable is an indirect way to minimize the number of errors. Bin-Dis minimizes the 

number of errors directly. This can be interpreted in terms of means and ends 

objective.  

The maximum accuracy is formulated as the minimum the number of errors in 

Chapter 5 equations (101)-(103). Minimizing the continuous error variables in 

DISWOTH is a means objective to reach maximum accuracy. Minimizing the 

number of errors in Bin-Dis is ends objective to maximize accuracy and also the 

fundamental objective.   
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𝐿𝑝-Centroid [25] is employed as a centroid formulation. The problem of choosing an 

appropriate centroid-distance pair is also solved with a heuristic algorithm (DC 

algorithm). Employing the 𝐿𝑝-Centroid, improved the test accuracy. This is also an 

intuitive result based on the observations of Tian et al. [25]. The method is designed 

to regularize the centroid-based learning methods (regularization is done by 

improving the test accuracy). It improves the test accuracy of DISWOTH as it is 

intended.  

When 𝐿𝑝-Centroid and Bin-Dis are used together, namely, Bin-𝐿𝑝Dis, the results are 

the best on average. Considering ordering of classes provides an insignificant benefit 

to the accuracy. This result is also intuitive based on the study of Ben-David et al. 

[21].  

8.2 Discussions on Monotonically Ordered Centroids Case 

For the DISWOTH method, when the centroids are monotonically ordered, it is 

proven that there are redundant alternatives. It is shown that these redundancy 

relations can be formulated with linear expressions. These linear expressions are 

functions of centroids, and they work for all 𝐿𝑝 distances. With a reverse 

engineering, a new LP model (AIRO) is developed to find monotonically ordered 

centroids that works for all  𝐿𝑝 distances.  

If the centroids were decision variables in DISWOTH, it would be highly nonlinear. 

Solving such model is computationally expensive. The AIRO model is an LP model 

that results in monotonic centroids for the DISWOTH (or NC) method. The fact that 

the formulation is an LP allows the analyst or DM to analyze the method for different 

𝐿𝑝 distances in very short amount of time.  

The economic interpretation of the monotonic order is related to the preference-

order. Since the classes are in ordinal scale and preference ordered, ordering the class 

representatives that are so-called class centroids is a strong assumption. The 

monotonic order is an indication of strict dominance. In any type of preference 
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function, a strictly monotonic relationship is a direct indication of the preference. If 

the  alternative A strictly dominates another alternative B, on any occasion, A is 

preferred to B.  

The economic interpretation of monotonic centroids is intuitive. The classification 

accuracy is not as high as other methods that are proposed in this thesis (e.g., Bin-

𝐿𝑝Dis). The weight estimation model (WE) may not be a good or correct way of 

estimating criterion weights. However, the benefit of linearization of DISWOTH is 

observed in the experiments. According to trade-off table, AIRO-ECW results in 

better accuracy and solution time compared with DISWOTH. Results of AIRO-WE 

is worse than the AIRO-ECW. This means that there may be a better way of 

estimating the criterion weights that maximizes the classification accuracy. 

8.3 Discussions on the ATLAS method 

The third topic studied in this thesis is the linearization of all 𝐿𝑝 distances with a 

single formula that is an  approximation. ATLAS is an octagonal LP approximation 

to NLP distance-based MP approaches. Although examples and experiments are 

restricted with MP-based multicriteria sorting models, it can be used in any kind of 

distance-based method that requires the usage of 𝐿𝑝 distance. 

The analyses on the new approximation are conducted with empirical and theoretical 

studies. An analysis is conducted to examine the characteristics of the approximation 

method. The Augmented Tchebycheff formulation can be converted to 𝐿𝑝 distance 

approximation with little effort due to its simplicity. Although the formulation is 

quite simple, the benefits are noticeable. Besides, the characteristics of the 

approximation used in the ATLAS method is consistent with 𝐿𝑝 distances. A set of 

ATLAS parameters can be supplied to the method and a set of 𝐿𝑝 distances can be 

approximated in a noticeably short time.  
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As the benefit of linearization, solution time decreases significantly. This is an 

intuitive result. Besides the time improvement, test accuracy of the new 

approximation is also higher than the original methods in most cases.  

The outputs of the ATLAS method can be interpreted in different ways. In the 

experiments, three different interpretations of outputs are introduced as alternative 

courses of actions. Based on the interpretation, purposeful actions or formulations 

can be studied. In our example, we have developed a greedy approach (BA), a 

conservative aggregated approach (SA) and another approach that can be interpreted 

as a heuristic approach to distance-based models (BALA).  

As an example, to many possible extensions, a voting mechanism can be developed 

based on the outputs of the ATLAS method. In our experiments, since 24 different 

𝑉 values are used, there are 24 outputs of the ATLAS method. One output (i.e., say 

the outcome of 𝑉 = 0.1) can classify an alternative into class 1 and another output 

can classify the same alternative into class 2 (i.e., say the outcome of 𝑉 = 0.3). This 

class assignments can be considered as votes. Out of 24 outputs, the number of times 

that a specific alternative is voted for a specific class can be counted. This is the same 

as counting the number of votes for the class assignment of the alternative. DM can 

be informed about the possible class assignments (number of votes for each class) 

for that alternative. Informing DM about the possible outcomes provides a clear 

perspective on the valuation of the alternative.  

Other than being an approximation method, ATLAS can also be considered as the 

first Augmented Tchebycheff program based multicriteria sorting method in the 

literature. The unique property of this method is that it can draw an octagonal 

classification decision boundary around a reference point. The classification decision 

boundary of ATLAS is illustrated in criterion space in Figure 8.1 for a two criteria 

problem and three-class problem. 
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Figure 8.1 Decision boundary of classification of ATLAS 
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CHAPTER 9  

9 CONCLUSION 

In this thesis, three studies are conducted for distance-based multicriteria sorting. 

Based on the studies, new methods are proposed. Experiments are conducted on 

different application areas to examine the applicability of the new methods in 

different areas.  

The first study is based on DISWOTH which is a nearest centroid type of sorting 

method. In this study, three new nearest centroid-based multi-criteria sorting 

methods are developed as extensions of DISWOTH. The proposed methods are 

linearized to improve solution time and classification accuracy. Linearization is 

based on the MINLP formulation of the existing NLP DISWOTH model. 𝐿𝑝-

Centroid is employed to improve the classification accuracy. Compromise Ranking 

and Additive Difference Model constraints are also added to assure monotonicity of 

class centroids. The models are regularized with monotonicity constraints that seek 

monotonic alternative solutions. The models are solved for training data and 

alternatives of test data are assigned to the class of the closest predetermined class 

centroid by using optimal criterion weights of training data. 

Model performance is evaluated over the solution time and test accuracy results. 

Experiments are conducted on 9 data sets from different application areas. Additional 

tests and evaluations are performed to rank the methods from best to worst. Bin-Dis, 

𝐿𝑝Dis and Bin-𝐿𝑝Dis methods are compared with UTADIS and DISWOTH with 𝐿1, 

𝐿2, 𝐿3 and 𝐿𝑝∗. 

Results indicate that the solution times of NLP models significantly decrease after 

linearization with binary variables in addition to improvement in all of training 

accuracies and average test accuracies. Bin-𝐿𝑝Dis and its extensions have the highest 

average training accuracy and test accuracy. Experiments show that the Bin-𝐿𝑝Dis 
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method is both time and accuracy effective method when compared with UTADIS 

and DISWOTH methods. TOPSIS ranked Bin-𝐿𝑝Dis as the best method based on 

average rankings considering both classification accuracy and solution time 

performance criterion. 

For future work, linearization of DISWOTH with a binary variable can be extended 

to all p norms, and similar nearest centroid-based NLP models can be considered 

with binary variables to benefit from linearization. Bin-𝐿𝑝Dis can be studied further 

for different data sets with different sampling techniques and training sizes and can 

be applied to real life problems. 

The second study focuses on the monotonically ordered centroids case of the first 

study. It is proven that there are conditions that a limited set of alternatives can be 

redundant when the centroids are monotonically ordered. The redundancy 

formulation is linear. A linear programming model is developed based on the 

redundancy formulation. The new method is compared with DISWOTH and 

UTADIS as in the first study. In the experiments and discussion, it is reported that 

considering monotonicity (strict dominance) does not improve the classification 

accuracy. The weight estimation method results in worse test accuracy than the equal 

weights case. However, linearization benefits the solution time. The effect of this 

benefit is observed with the accuracy-time trade-off and multicriteria ranking. Also, 

economic interpretation of the monotonic order is given. This study can be extended 

by applying different mathematical programs based on AIRO and different weight 

estimation techniques.  

In the third study, a new linear 𝐿𝑝 distance approximation method is developed based 

on Augmented Tchebycheff program and Chaudhuri et al.’ s formulation. The 

proposed method is analyzed to explain the characteristics. Metricity conditions are 

presented and shown that they are consistent with 𝐿𝑝 distance. The analyses provide 

a full guideline for the user. It is shown that the new method can be adapted to 

mathematical programming. The proposed method is adapted to distance-based 

multicriteria sorting via an algorithm, namely ATLAS. ATLAS algorithm is 
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developed for application of the new approximator to Multicriteria Sorting problems 

that are based on mathematical programming and distance functions. Although it is 

applied to multicriteria sorting as an example, it can also be applied to other 

mathematical programming and multicriteria decision making settings. Examples 

can be distance-based ranking methods,   multi-objective optimization, and data 

mining methods. ATLAS provides a linear approximation for the distance-based 

nonlinear programming models. Three alternative courses of actions are developed 

to fully benefit from outputs of the method. One of the actions (SA) are specifically 

designed to protect decision maker from overfitting issue.  

Experiments are conducted to compare the original distance-based sorting methods 

with their approximations based on test accuracy and training time performance 

measures. When compared with the first two studies, more distance functions are 

used in experiments. Experimental results show that ATLAS is a time effective 

method as it is computationally inexpensive. On average, test accuracy results of the 

ATLAS method are better than the results of original distance-based NLP sorting 

models. To sum up, the new linear approximation and ATLAS significantly decrease 

the training time of distance-based nonlinear programming and increase the average 

test accuracy. Based on the outputs of the ATLAS, new alternative courses of actions 

can be developed. Test accuracy results of new alternative courses of actions can be 

examined. The parameter of approximation (𝑉 value) can be further analyzed. 

To sum up, in all of three studies, improvements in computation times are obtained 

as a result of linearization according to the experimental results.  
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10 APPENDICES 

A. Proof of Ordered Alternative Solutions 

To illustrate the alternative ordered solutions in Com and ADM extensions, let 𝑧∗ =

∑ 𝛼𝑖
∗

𝑖  where 𝛼𝑖 ∈ {0,1} as in Bin-𝐿𝑝Dis and the two extensions. 𝑧∗ denotes optimal 

total classification error and 𝛼𝑖
∗ denotes the optimal class assignment error of 𝐴𝑖

𝑞
. Let 

𝑧𝐴, 𝑧𝐵, 𝑧𝐶 ∈ 𝑁+ in Figure 10.1, denote three alternative solutions of minimum 

number of incorrect assignments that is 𝑧𝐴 = 𝑧𝐵 = 𝑧𝐶 = 𝑧∗. Let 𝜆𝐴, 𝜆𝐵∗ and 𝜆𝐶 be 

the 𝜆 values obtained in nodes A, B and C, respectively. Variable 𝜆 is the alternative 

solution seeking variables in constraints (53) and (57). Assume 𝜆𝐴 > 𝜆𝐵 > 𝜆𝐶 in 

Figure 10.1. Then, 𝑧𝐴 − 𝜆𝐴 < 𝑧𝐵 − 𝜆𝐵 < 𝑧𝐶 − 𝜆𝐶 (objective function (51)) holds 

and 𝑧𝐴 − 𝜆𝐴 is chosen as the optimal solution. Since 𝜆𝐴, 𝜆𝐵, 𝜆𝐶 ∈ (−1, 𝜖] and 𝑧𝐴 −

𝜆𝐴 < 𝑧∗ + 1, 𝑧𝐵 − 𝜆𝐵 < 𝑧∗ + 1, 𝑧𝐶 − 𝜆𝐶 < 𝑧∗ + 1, ordering of classes extensions 

do not decrease classification accuracy.  

 

Figure 10.1 Example illustration of alternative solution of best accuracy outcomes 
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Without decreasing accuracy, alternative solution in Node A is selected which satisfy 

ordering the most for Bin-𝐿𝑝Dis Com extension as follows.  

• 𝑑𝑝
𝑤𝐴 (𝜇𝑞 , 𝐼) − 𝑑𝑝

𝑤𝐴 (𝜇𝑞+1, 𝐼) > 𝑑𝑝
𝑤𝐵 (𝜇𝑞, 𝐼) − 𝑑𝑝

𝑤𝐵 (𝜇𝑞+1, 𝐼)  

• 𝑑𝑝
𝑤𝐴 (𝜇𝑞 , 𝐼) − 𝑑𝑝

𝑤𝐴 (𝜇𝑞+1, 𝐼) > 𝑑𝑝
𝑤𝐶 (𝜇𝑞 , 𝐼) − 𝑑𝑝

𝑤𝐶 (𝜇𝑞+1, 𝐼)  

Same applies to Bin-𝐿𝑝Dis ADM extension as follows. 

• 𝑈𝑤𝐴(𝜇𝑞 − 𝜇𝑞−1) > 𝑈𝑤𝐵(𝜇𝑞 − 𝜇𝑞−1)  

• 𝑈𝑤𝐴(𝜇𝑞 − 𝜇𝑞−1) > 𝑈𝑤𝐶(𝜇𝑞 − 𝜇𝑞−1)  
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B. AIRO Experiments 

Table 10.1 AIRO test accuracy results of AUTOMPG data set 

AIRO-WE 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 81.48 91.36 91.36 81.48 

0.6 62.96 91.36 91.36 54.32 

0.7 62.96 91.36 91.36 54.32 

0.8 62.96 91.36 91.36 54.32 

0.9 77.78 91.36 91.36 51.85 

AIRO-ECW 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 48.15 70.37 69.14 80.25 

0.6 48.15 69.14 92.59 60.49 

0.7 48.15 69.14 92.59 60.49 

0.8 48.15 69.14 92.59 60.49 

0.9 48.15 82.72 75.31 71.60 

 

Table 10.2 AIRO test accuracy results of CPU data set 

AIRO-WE 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 86.05 81.40 88.37 86.05 

0.6 88.37 90.70 88.37 83.72 

0.7 88.37 90.70 88.37 83.72 

0.8 88.37 90.70 88.37 83.72 

0.9 81.40 81.40 90.70 83.72 

AIRO-ECW 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 74.42 72.09 72.09 74.42 

0.6 90.70 93.02 93.02 93.02 

0.7 90.70 93.02 93.02 93.02 

0.8 90.70 93.02 93.02 93.02 

0.9 90.70 90.70 93.02 90.70 
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Table 10.3 AIRO test accuracy results of BC data set 

AIRO-WE 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 62.07 62.07 62.07 62.07 

0.6 62.07 62.07 62.07 62.07 

0.7 62.07 62.07 62.07 62.07 

0.8 62.07 62.07 62.07 62.07 

0.9 62.07 62.07 62.07 62.07 

AIRO-ECW 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 67.24 62.07 58.62 62.07 

0.6 53.45 27.59 27.59 27.59 

0.7 27.59 27.59 27.59 27.59 

0.8 27.59 27.59 27.59 27.59 

0.9 27.59 27.59 27.59 27.59 

 

Table 10.4 AIRO test accuracy results of ESL data set 

AIRO-WE 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 68.75 75.00 84.38 62.50 

0.6 55.21 70.83 56.25 52.08 

0.7 55.21 70.83 56.25 52.08 

0.8 55.21 70.83 56.25 52.08 

0.9 75.00 70.83 84.38 75.00 

AIRO-ECW 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 87.50 85.42 82.29 82.29 

0.6 87.50 73.96 73.96 75.00 

0.7 87.50 73.96 73.96 75.00 

0.8 87.50 73.96 73.96 75.00 

0.9 84.38 73.96 73.96 75.00 
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Table 10.5 AIRO test accuracy results of CAR data set 

AIRO-WE 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 24.06 28.99 46.38 28.99 

0.6 35.94 16.81 42.90 29.28 

0.7 35.36 27.25 39.42 10.43 

0.8 19.71 28.99 46.38 16.23 

0.9 43.19 29.28 34.49 12.46 

AIRO-ECW 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 37.97 28.12 27.25 25.22 

0.6 47.54 56.52 58.84 60.00 

0.7 46.38 56.52 58.84 60.00 

0.8 46.38 56.52 58.84 60.00 

0.9 46.38 56.52 58.84 60.00 

 

Table 10.6 AIRO test accuracy results of CCS data set 

AIRO-WE 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 59.11 42.36 58.62 50.25 

0.6 54.19 61.58 66.01 45.81 

0.7 54.19 61.58 66.01 45.81 

0.8 56.65 39.41 58.62 51.23 

0.9 56.16 42.36 60.10 50.74 

AIRO-ECW 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 52.71 58.13 59.11 54.19 

0.6 52.71 54.19 54.68 51.72 

0.7 52.71 54.19 54.68 51.72 

0.8 52.71 54.19 54.68 51.72 

0.9 52.71 54.19 54.68 51.72 
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Table 10.7 AIRO test accuracy results of LEV data set 

AIRO-WE 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 79.80 79.80 79.80 69.19 

0.6 79.80 79.80 79.80 79.80 

0.7 79.80 79.80 79.80 79.80 

0.8 79.80 79.80 61.62 53.54 

0.9 79.80 57.58 61.62 80.30 

AIRO-ECW 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 71.72 71.21 70.20 65.66 

0.6 69.19 66.16 65.15 65.66 

0.7 69.70 68.18 67.17 67.17 

0.8 69.70 68.18 67.17 64.14 

0.9 72.73 71.21 68.18 71.21 

 

Table 10.8 AIRO test accuracy results of ASA data set 

AIRO-WE 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 69.27 69.27 71.51 69.27 

0.6 67.60 57.54 57.54 45.25 

0.7 67.60 57.54 57.54 45.25 

0.8 69.27 69.27 69.27 69.27 

0.9 69.83 40.78 27.93 36.31 

AIRO-ECW 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 78.77 78.21 81.01 80.45 

0.6 78.21 77.09 78.77 78.77 

0.7 78.21 77.09 78.77 78.77 

0.8 78.21 77.09 78.77 78.77 

0.9 78.21 77.09 78.77 78.77 
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Table 10.9 AIRO test accuracy results of MMG data set 

AIRO-WE  

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 46.88 5.00 4.38 46.88 

0.6 46.88 46.88 76.88 46.88 

0.7 46.88 46.88 76.88 46.88 

0.8 46.88 46.88 46.88 46.88 

0.9 46.88 46.88 46.88 46.88 

AIRO-ECW 

V\p 𝐿1 𝐿2 𝐿3 𝐿𝑝∗ 

0.5 82.50 81.88 80.63 81.25 

0.6 82.50 81.88 80.63 81.25 

0.7 82.50 81.88 80.63 81.25 

0.8 82.50 81.88 80.63 81.25 

0.9 82.50 82.50 81.88 81.88 
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C. Training Time of DS and DISWOTH models for 10 different 𝒑 values 
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D. Number of Iterations to Satisfy the FC Condition 

 

Table 10.12 Number of iterations it takes to satisfy the FC condition for ATLAS 

with DS 

V 

Values 
AUTOMPG BC CAR CCS CPU ESL LEV ASA MMG 

-9 3 3 3 14 3 3 3 3 3 

-6 2 3 2 10 2 2 2 2 2 

-3 2 2 2 6 2 2 2 2 2 

0 1 1 1 1 1 1 1 1 1 

0.05 3 3 3 3 3 4 3 1 3 

0.1 2 2 2 2 2 1 2 1 2 

0.15 3 3 3 3 3 4 3 1 3 

0.2 2 3 2 2 2 1 2 1 2 

0.25 4 5 4 4 4 5 4 1 4 

0.3 2 2 2 2 2 1 2 1 4 

0.35 4 4 4 4 4 5 4 1 2 

0.4 2 3 2 2 2 1 2 1 4 

0.45 4 3 4 4 4 5 4 1 2 

0.5 2 3 2 2 2 1 2 1 4 

0.55 4 3 4 4 4 5 4 1 2 

0.6 2 3 2 2 2 1 2 1 4 

0.65 4 3 4 4 4 5 4 1 2 

0.7 2 3 2 2 2 1 2 1 4 

0.75 4 3 4 4 4 5 4 1 2 

0.8 2 3 2 2 2 1 2 1 4 

0.85 4 3 4 4 4 5 4 1 2 

0.9 2 3 2 2 2 1 2 1 4 

0.95 4 3 4 4 4 5 4 1 2 

1 2 1 2 2 2 1 2 1 4 

Total 66 68 66 89 66 66 66 28 68 
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Table 10.13 Number of iterations it takes to satisfy the FC condition for ATLAS 

with DISWOTH 

V 

Values 
AUTOMPG BC CAR CCS CPU ESL LEV ASA MMG 

-9 2 2 1 2 2 2 2 3 2 

-6 2 2 2 2 2 2 2 2 2 

-3 3 3 3 3 3 3 3 2 3 

0 1 1 1 1 1 1 1 1 1 

0.05 3 6 15 3 3 4 9 6 3 

0.1 2 3 6 2 2 2 4 2 2 

0.15 3 7 18 3 4 4 10 7 4 

0.2 3 3 7 3 2 2 5 3 2 

0.25 3 8 19 3 4 5 11 7 4 

0.3 3 3 8 3 2 2 5 3 2 

0.35 3 8 19 3 4 5 12 8 4 

0.4 3 3 9 3 2 2 5 3 2 

0.45 3 9 19 3 4 5 12 8 4 

0.5 3 3 9 3 2 2 5 3 2 

0.55 3 9 20 3 4 5 12 8 4 

0.6 3 3 9 3 2 2 5 3 2 

0.65 3 9 20 3 4 5 13 8 4 

0.7 3 3 9 3 3 2 5 3 3 

0.75 3 9 20 3 4 5 13 8 4 

0.8 3 3 63 3 3 2 5 3 3 

0.85 3 9 26 3 4 5 13 8 4 

0.9 3 3 64 3 3 2 5 3 3 

0.95 3 9 26 3 4 5 13 8 4 

1 3 3 64 3 3 2 5 3 3 

Total 67 121 457 67 71 76 175 113 71 
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E. Error Calculation Models of ATLAS 

(TestCalculationModel-ApproximatedDS) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝜖𝑖𝑆

+ + 𝜖𝑖𝑆

−
𝑖𝑠

                                               (E.1) 

Subject to: 

𝑉𝑎𝑖𝑠

∞ + (1 − 𝑉) ∑ 𝑤∗(𝑉) |𝐴𝑖𝑆𝑗 − 𝐼𝑗|𝑗 − 𝑒𝑖𝑆

+ ≤ 𝑇∗(𝑉)  ∀𝑞 > 1 ∀𝑖𝑆 ∈ 𝐶𝑞    

(E.2) 

𝑉𝑎𝑖𝑠

∞ + (1 − 𝑉) ∑ 𝑤∗(𝑉) |𝐴𝑖𝑠𝑗 − 𝐼𝑗|𝑗 + 𝑒𝑖𝑆

− ≥ 𝑇∗(𝑉)  ∀𝑞 < 𝑄 ∀𝑖𝑆 ∈ 𝐶𝑞            

(E.3) 

𝑎𝑖𝑠

∞ = 𝑚𝑎𝑥
𝑗

{𝑤𝑗
∗(𝑉)|𝐴𝑖𝑠𝑗 − 𝐼𝑗|} ∀𝑖𝑆                           (E.4) 

𝑒𝑖𝑆

+ , 𝑒𝑖𝑆

− ≥ 0 ∀𝑖𝑠                           (E.5) 

(TestCalculationModel-ApproximatedDISWOTH) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑒𝑖𝑠𝑖𝑠
                                                (E.6) 

Subject to: 

𝑒𝑖𝑠
− 𝜖 ≥ 𝑉𝑎𝑖𝑠,𝑞

∞ + (1 − 𝑉) ∑ 𝑤∗(𝑉)|𝐴𝑖𝑠𝑗 − 𝜇𝑗
𝑞|𝑗 − 𝑉𝑎𝑖𝑠,𝑟

∞ − (1 −

𝑉) ∑ 𝑤∗(𝑉)|𝐴𝑖𝑠𝑗 − 𝜇𝑗
𝑟|𝑗 ∀𝑞 ≠ 𝑟, ∀𝑖𝑠            (E.7) 

𝑎𝑖𝑠,𝑞
∞ = 𝑚𝑎𝑥

𝑗
{𝑤𝑗

∗(𝑉)|𝐴𝑖𝑠𝑗 − 𝜇𝑗
𝑞|} ∀𝑖𝑆, ∀𝑞                      (E.8) 

𝑒𝑖𝑠
≥ 0 ∀𝑖𝑠                           (E.9) 
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F. Decision Boundaries of Classification for Distance-based Sorting Method 

 

Figure 10.2 Decision boundaries of classification when distance-based sorting 

method is used.  

In Figure 10.2, black circles are from class one and white circles are from class two. 

Star shape is the ICV. Interior of 𝐿𝑝 distance contours (𝐿1, 𝐿2, 𝐿∞) is the region of 

class one and exterior is the region of class two. 
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G. Numerical Example of Weight Linearization 

Consider simple example with two criteria, two classes (two centroids) and 

Euclidean distance is used. Assume that the model is solved and  𝑤1
∗ = 0.3, 𝑤2

∗ =

0.7 are obtained (𝑤1
2∗ = 0.09, 𝑤2

2∗ = 0.49 in the distance calculation). The exact 

same decision boundary can be obtained with 𝑣1
∗ =

0.32

0.72+0.32
= 0.155 and 𝑣2

∗ =

0.72

0.72+0.32 = 0.845. If it is further examined, 
0.155

0.09
=

0.845

0.49
≈ 1.724 (It is 

approximately 1.724 due to rounding). It is clear that Ω = 1.724 and 0.3 + 0.7 =

0.155 + 0.845 = 1. The resulting decision boundaries are 0.09|𝜇1 − 𝐸1|2 −

0.49|𝜇1 − 𝐸1|2 = 0 and 0.155|𝜇1 − 𝐸1|2 − 0.845|𝜇1 − 𝐸1|2 = 0 which are the 

same decision boundaries. Because if the second one is divided by 1.724, 

0.09|𝜇1 − 𝐸1|2 − 0.49|𝜇1 − 𝐸1|2 = 0 is obtained. Due to zero in RHS, 

multiplications and divisions by constants results in the same equation.  

Instead of Euclidean distance if 𝐿5 distance is used, again assuming the 𝑤1
∗ = 0.3, 

𝑤2
∗ = 0.7 are the same (𝑤1

5∗ = 0.00243, 𝑤2
5∗ = 0.16807 are used in distance 

calculation). In linearized form, 𝑣1
∗ =

0.35

0.75+0.35 = 0.0143 and 𝑣2
∗ =

0.75

0.75+0.35 =

0.9857. If it is further examined, 
0.0143

0.00243
=

0.9857

0.16807
≈ 5.88 = Ω (It is approximately 

5.88 due to rounding). 

H. The Trivial Solution Examples of Monotonically Ordered Centroids Case 

Minimizing only 𝜆𝑖𝑗
𝑢  and 𝜆𝑖𝑗

𝑙  variables maximize AR alternatives and minimize IR 

alternatives. However, a single DBC may be formed by infinitely many different 

class centroids. Those class centroids may not be interior to the convex hull formed 

by the alternatives of each class. This case is illustrated in Figure 10.3 below.  

In Figure 10.3, there are alternatives of two classes that are illustrated with red and 

yellow regions.  The decision boundary of classification is illustrated with a solid 

line. There are three examples of centroids that result in a single decision boundary 
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of classification. When the term “centroid” is used, points similar to triangles are 

considered. But if only 𝜆𝑖𝑗
𝑢  and 𝜆𝑖𝑗

𝑙  are minimized without any regularization, large 

black and red circles denoted by 𝜇1 and 𝜇2 can also be obtained at monotonic class 

centroids. Those centroids are not even interior to the  alternatives of each class. 

These are the trivial solutions of the AIRO model, regularized with additional 

objective functions. 

 

Figure 10.3 Examples of trivial solutions 

 

 

 

 

 

 


