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Abstract

Variable-decoding-time/generalized block-coding schemes are investigated for discrete
memoryless channels (DMC) with perfect feedback (error free, delay free, infinite
capacity) under cost constraints. For a given number of messages and average error
probability, upper and lower bounds are found for expected decoding time. These
coincide with each other up to a proportionality constant which approaches one in a
certain asymtotic sense. A resulting reliability function is found for variable decoding
time DMC’s with perfect feedback under a cost constraint. The results in this work
generalize Burnashev’s results,[2] to the cost constrained case.
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Chapter 1

Introduction

The effect of feedback in communication is a problem that has been studied from the

early days of information theory. We will start with an overview of the results from

these studies in the introduction. Since these results depend highly on the model used

and the constraints imposed on the model, we will state each result with an explicit

statement of the model and constraint. We will use the shorthand ‘DMC’ for finite

input alphabet, finite output alphabet channel with fixed transition probabilities.

‘AWGNC’ will stand for additive white Gaussian noise channel; definitions of these

channels are standard. The feedback is assumed to be perfect: infinite capacity, error

free, delay free. It is evident in many cases that the assumption of infinite capacity

and instantaneous feedback are not necessary for the corresponding results.

All of the results considered here are ‘generalized block coding’ results, i.e., the

channel is used to send ‘information’ about only one message at a time, and the

time intervals used for sending successive messages are disjoint. Disjoint time interval

allocation for successive messages would immediately imply conventional block coding

when there is no feedback. In other words, the transmitter would transmit a fixed

length codeword for each message. In a block-coding scheme with feedback, the

transmitter is allowed to have codewords of fixed length whose elements might depend

on previous channel outputs as well as the message. In the case of ‘generalized block

coding’ the disjointness of the time interval allocated to each message is preserved, but

the duration of this interval is not necessarily constant. In other words the receiver

11



decides when to make a decision about the transmitted message.

When we look at the maximum achievable rate or minimum expected time to send

a ‘large amount of information’ with diminishing error probability, feedback does not

yield an improvement. For block coding with feedback, Shannon [15], showed that

channel capacity does not increase with feedback in DMC. Although it is not stated

specifically in [15], one can generalize this result to the ‘generalized block-coding’

case, using the weak law of large numbers.

However, the story is very different for zero-error capacity. Shannon showed in

[15] that for a set of channels the zero-error capacity can increase with feedback even

if we are using block codes. Also it is shown in [15] that if a DMC does not have a

zero transition probability then, even with feedback, its zero-error capacity should be

zero if we are restricted to use block codes. We will extend this result to generalized

block codes. Furthermore we will show that if any zero transition probabilities exist

then zero-error capacity is equal to the channel capacity for generalized block codes.1

Another widely accepted quality criterion for block codes is the error exponent.

The error exponent is the rate of decrease of the logarithm of error probability with

increasing block length. Dobrushin [5], showed that for symmetric channels2 the

sphere packing exponent is still a valid upper bound for the error exponent for block

codes with feedback. It has been long conjectured but never proved that this is

true for non-symmetric channels also. The best known upper bound for block codes

with feedback is in [7], by Haroutunian, which coincides with the sphere packing

bound for symmetric channels. However there does not exist an achievability proof

for this exponent, except in the symmetric case for rates above the critical rate. A

similar result for AWGNC is given by Pinsker [10]. He showed that the sphere packing

exponent is still an upper bound on error exponent even with feedback. In addition to

a constant decoding time assumption, Pinsker also used a constant power assumption,

i.e., for each message and channel realization, the total amount of energy spent is at

most the average power constraint times the block length.

1This result is due to Burnashev, [2], we will just extend this to the cost constraint case.
2Channels with a transition probability matrix whose columns are permutations of each other,

and whose rows are also permutation of each other.
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A first relaxation would be having a block code with a constraint on the expected

energy. Schalkwijk and Kailath [14], [12], considered the case where the power con-

straint is in the form of expected power.3 They showed that the error probability can

be made to decay as a two-fold exponential. Indeed Kramer [9], proved that error

probability can be made to decay n-fold exponentially. In fact no lower bound to error

probability is known if there is no peak power limit or total energy constraint together

with the average power constraint. Under various conditions one can prove various

performance results, but without a lower bound on error probability we have no clue

about the relative performance of these compared to what is ultimately achievable.

‘Generalized block-coding schemes’ (i.e. schemes with variable decoding time),

allow a corresponding relaxation for DMC. In contrast to the case of channel capacity,

where Shannon’s result in [15] can be extended to variable decoding schemes, the error

exponent of variable decoding time systems with feedback can not be extended from

the ones corresponding to fixed decoding time systems with feedback. Indeed they

are strictly better in almost all non-trivial cases. Although the error exponent for

block coding schemes are not known completely, the error exponent for generalized

block codes are known. Burnashev calculates the reliability function for generalized

block-coding schemes for all values of rate in [2]. He assumed that the feedback has

infinite available capacity, but it is evident that noiseless feedback of ln |Y| nats per

channel use is enough.4 Indeed as shown by Sahai and Şimşek in [11] feedback rate

equal to the capacity of the forward channel is enough.

The main contribution of this work is finding the expression for the reliability

function of generalized block-coding schemes on DMC with cost constraints. The

flow of the argument will be as follows. The next chapter is devoted to the depiction

of the primary model of interest which was initially described by Burnashev in [2].

In the chapters 3, 4 and 5 we will derive the known results about generalized block

codes. In chapter 6 we will review cost constraint capacity and detection exponent

and describe the cost constraint for variable decoding time systems. In chapter 7

3The expected value of the total energy that will be needed to send a message, over possible noise
realizations and over possible messages, divided by block length.

4|Y| is the size of the channel output set.
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we will prove lemmas that establish bounds on the change of entropy together with

costs. Chapter 8 and 9 contain derivations of lower and upper bounds to the minimum

expected decoding time under a cost constraint, in terms of size of message set and

probability of error. Using these two bounds we will find the reliability function for

generalized block-coding schemes under a cost constraint.5 Finally in chapter 10 we

discuss DMC which have one or more zero transition probabilities and extend the

result of Burnashev in [2] to the cost constraint case i.e., prove that the zero error

capacity under cost constraints is equal to the cost constraint capacity for generalized

block codes.

5For DMC which does not have any zero transition probability.
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Chapter 2

Model And Notation

A communication problem can be posed by defining the probabilistic nature of the

forward and feedback channels and the constraints that the receiver and the transmit-

ter are subject to. Coding and decoding schemes are ways of using the channel under

those constraints to reach specific reliability measures. We will start by describing

the channel models and feedback to be considered here, and then continue with the

depiction of possible coding and decoding algorithms, finally we will explain how we

will define equivalent macroscopic performance measures and constraints in variable

decoding time systems. We will be considering discrete time systems only.

2.1 Forward Channel

The forward channel is described by the stochastic input/output relation that the

transmitter and the receiver are operating under. We will assume that the channel

is stationary and memoryless, which means that this relation is independent of time,

and of previous uses of the channel. We will denote the channel input and output at

time n, by Xn and Yn.

Our forwards channel will be a finite input finite output discrete memoryless

channel, i.e., Xn will take values from an input alphabet X = {1, . . . , K} and Yn will

take values from an output alphabet Y = {1, . . . , L}. The channel is described by the

conditional probabilities of the output letters given the input letter; these are called
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transition probabilities.

Pi,j = P [Yn = j|Xn = i] ∀i = 1 . . .K ∀j = 1 . . . L ∀n (2.1)

It is assumed that there are no rows that are replicas of others and no columns that are

all zero. Also till the chapter 10 we will assume that all of the transition probabilities

are non zero.

We will also discuss cases where an additive cost constraint exists on the code-

words. We will denote the cost associated with the ith element of X as ρi for each i.

We will denote the average cost constraint by P.

2.2 Feedback Channel

We will denote the input and output of the feedback channel at time n by Zn and Z
′

n,

where Zn is a random variable generated at the receiver, and Z
′

n is a random variable

observed at the transmitter. We will only deal with the case of error free feedback.

P [Z ′
n = φ|Zn = φ] = 1 ∀n, φ

Thus we will use Zn to describe both the feedback symbol send and the feedback

symbol received.

We will assume that the feedback channel is perfect, namely instantaneous and

infinite1 in capacity in addition to being error-free.

2.3 Coding Algorithm

All of the schemes that will be considered here are generalized block-coding schemes.

This means that the transmitter is given one of M equiprobable2 messages, and until

1We are allowed to send an n-tuple of letters from a size r alphabet, where r can be as large as
required.

2This assumption is by no means vital or necessary. It will be evident how to generalize to the
case where messages are not equiprobable when we finish the proof.
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transmission of that specific message is done, it is not given a new message; when it is

given a new message, it can not send any further information about the previous one.3

Let θ be the message that is to be sent; it takes values from the set M = {1, . . . ,M}.

A coding scheme is an assignment of messages to the input letters, at each time

depending on feedback. In other words a coding scheme is a sequence of M functions.

The kth function, 1 ≤ k ≤M , is given as4

Xn(k) = Cn(k, Z
n−1) ∀Zn−1 (2.2)

where Zn−1 = {Z1, Z2, . . . , Zn−1}.

Then the transmitted code sequence, given the message, will be

Xn = Cn(θ, Z
n−1) ∀Zn−1, ∀θ (2.3)

The knowledge of the receiver at time n is the σ-field generated by all the random

variables observed at the receiver, Fn.

Fn = Minimum σ-algebra generated the random variable Y n, Zn and Γn

where Γn is the vector of random variables that are generated at the receiver but not

send back to the transmitter via Zn. When we have perfect feedback we can include

all of these random variables in Zn. Thus

Fn = Minimum σ-algebra generated the random variable Zn

The sequence of Fn’s forms a filtration, F , in the sense that they are nested, F0 ⊂

F1 ⊂ F3 ⊂ · · ·

3The only work that considers non-block algorithms with feedback is by Horstein, [8]. That case
seems to be harder to analyze systematically than generalized block coding.

4The dependences on Zn−1 should be replaced by a dependence in Z ′n−1
in the case where

feedback is noisy. Also there might be a dependence on some other variables that are generated at
the transmitter, like the assignments of the other messages till time n etc., if the feedback capacity
is not infinite.
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In order to find a bound on best possible performance, it is necessary to find the

bound on a comprehensive set which includes randomized coding schemes also. In

that respect it is worth mentioning that we are not restricted to deterministic coding

schemes as a result of the above description. We will assume perfect feedback in all

of the proofs that find a performance bound. Thus any random assignment done

using the feedback at the transmitter at time n can also be done at the receiver5 at

time n−1 and sent to the transmitter through the feedback channel via6 Zn−1. Since

disregarding that knowledge at the receiver can only degrade the performance, our

performance bound will be valid for randomized algorithms also.

At each time n the receiver observes an element of the corresponding σ-field,

which will be denoted by fn. Note that even the overall σ-field generated by all

Fn’s, F∞ = ∪∞
n=0Fn, is not equal to the σ-field that governs the overall probabilistic

structure of the system, since it does not include the random selection of message,

θ. However if we consider the σ-field Gn generated by Fn and θ, it will summarize

everything7 up to and including time n.

2.4 Decoding Criteria

A decoding criterion is a decision rule about continuing or stopping the process de-

pending on the observations up to that time. In other words it should be a Markov

stopping time with respect to the filtration F . At each time instance n, the ran-

dom variable corresponding to the decision ζn takes one of M + 1 possible values.

The first M of them will correspond to elements of M, and will stop the trans-

mission process. The last one will correspond to continuing the transmission. It

is evident that the only form of ζn’s possible are, {M + 1,M + 1, . . . ,M + 1} or

5It might be necessary to make the corresponding random assignment M times for all M possible
messages.

6Since we are talking about discrete time systems we need to be specific about the causality
relation of Xn, Yn and Zn, which will be assumed to be Xn → Yn → Zn, as expected.

7In the most general case where feedback is not necessarily error free or infinite, Fn and θ will

not be sufficient to describe the over all probabilistic structure. In that case Gn will be the σ-field

generated by all the random variables that can be observed at either at receiver or transmitter
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{M + 1,M + 1, . . . ,M + 1, k, k, . . . , k}. The decoding time τ is then given as

τ = min{k|ζk 6= (M + 1)} (2.4)

One can partition the receiver observation intoM+1 disjoint sets, according to the

first element in ζn which is not equal to M + 1. The first M of them,χ1, χ2, . . . , χM

will correspond to decoding the corresponding message. The last one, χM+1, will

correspond to the event that decoding never occurs. The probability of error, Pe is

then given by

Pe =
1

M

M
∑

i=1

P [e| θ = i] (2.5)

where P [e| θi] = 1 −P [χi| θ = i] for i = 1 . . .M .

The expected transmission time8 is given by

τ̄ = E [τ | F0] =
1

M

M
∑

i=1

E [τ | θ = i,F0] (2.6)

Note that at time zero each message will have an a posteriori probability of 1/M . After

the observation of the first channel output, this a posteriori probability will change.

This change for each message will be a function of the channel output under the

specific coding scheme. One can continue to calculate these a posteriori probabilities

as more and more observations are made. Consequently the a posteriori probability

of a message is a function of fn and thus, as a random variable, it is a measurable

function on Fn. Thus the corresponding entropy of this a posteriori distribution is

also a random variable measurable in Fn.

Hn = H(p(fn)) = −

M
∑

i=1

pi(fn) ln pi(fn) (2.7)

where p(fn) = (p1(fn), p2(fn), . . . , pM(fn)) is the a posteriori distribution of the mes-

sages for the given fn.

8The expectation is over possible channel realizations and over possible messages.
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Indeed the value of this random variable is nothing but

Hn = H(θ | Fn = fn) (2.8)

2.5 Performance Measure and Constraints

Note that because of the variable nature of block lengths, it is not possible to define

a fixed operating rate. Instead one needs to make a new definition of Rate and Error

Exponent which is consistent with existing ones for fixed-length codes. The definitions

we use are

R =
lnM

E [τ ]
(2.9)

E(R) = lim
Pe→0

− lnPe
E [τ ]

(2.10)

These definitions are not only consistent with the definitions for fixed-length codes,

but they are also the average quantities to which the system converges after many

successive uses.

We will give some definitions which will be used in the proofs. D(p || q) will

denote the Kullback-Leibler divergence of two probability distributions.

D(p || q) =
∑

i

pi ln
pi
qi

(2.11)

We will denote the indicator function for the event q by I{q}.

We will use φ for probability mass functions on the input letter set, and ψ for the

probability mass functions on the output letters.
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Chapter 3

Basic Lemmas

Lemma 1 (Generalized Fano Inequality(for variable decoding time)). For any coding

algorithm and decoding rule such that P [τ <∞] = 1,

E [Hτ ] ≤ h(Pe) + Pe ln(M − 1) (3.1)

where h(x) = −x ln(x) − (1 − x) ln(1 − x)

Note that indeed this lemma has nothing to do with the model of channel. Thus

it can be used in the AWGNC case also.

Proof:

Since τ is a stopping time, the event τ = n is measurable in Fn. Hn is also

measurable in Fn, so that (Hn,Fn) is a stochastic sequence.

Hτ =
∞
∑

n=0

HnI{τ=n}

Thus E [Hτ ] can be written as a limit.

E [Hτ ] = lim
N→∞

N
∑

n=0

E [Hn| τ = n]P [τ = n] (3.2)

Since Hn is a bounded random variable and P [τ <∞] = 1 this limit is well defined.
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Note that at each element, fn, of the σ-field Fn, there exists a probability mass

function associated with the message set. One can use the conventional Fano

inequality to upper bound Hn for a given element fn of Fn.

Hn ≤ h(Pe(fn)) + Pe(fn) ln(M − 1) (3.3)

where Pe(fn) is the probability of error of a detector for a source with probability

mass function p̄(n) on the message set.

Since τ is a stopping time, the observation up to time n will determine whether

τ = n or not. Then we can define a set An that corresponds to the elements of Fn

at which the decoding time will be n, An = {fn ∈ Fn|τ = n}. As a result

E [Hn| τ = n] =
∑

fn∈An

HnP [fn| τ = n] E [Hτ ] =
∑

n

E [Hn| τ = n]P [τ = n] (3.4)

E [Pe[n]| τ = n] =
∑

fn∈An

Pe(fn)P [fn| τ = n] Pe =
∑

n

E [Pe[n]| τ = n]P [τ = n]

(3.5)

Note that Pe = E [Pe(fn)]. Using equations (3.2), (3.3), (3.4), (3.5), together with

the concavity of the entropy of a binary random variable we get equation (3.1).

QED

As a result of Lemma 1, we know that the expected value of entropy at the

decoding time is upper bounded in terms of the expected error probability. When

proving non-existence (converse) results, the Fano inequality is generally used as a

lower bound on probability of error in terms of the conditional entropy. Our approach

will be a little bit different; we will use average error probability to find an upper

bound on the expected value of entropy over decoding instances. Then we will find

lower bounds on the expected time to reach those expected values.

It is important to remember that conditional expectations are indeed functions

in terms of the conditioned random variables. In other words E [X|Y ] < A means

that for every value y of the random variable Y , f(y) = E [X| y] < A. Equivalently

f(Y ) = E [X|Y ] < A. The following lemmas about the change of entropy can best
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be understood with this interpretation.

Lemma 2. ∀n ≥ 0, we have the inequality,1

E [Hn −Hn+1| Fn] ≤ C

where C is the channel capacity, given by

C = max
φ

K,L
∑

i=1,j=1

φiPi,j ln
Pi,j

∑K
r=1 φrPrj

The expected value inherently includes an averaging over the possible messages

along with the received symbol Yn+1. Being more explicit, as a result of Bayes theo-

rem, we can say that the probability of fn given the message θ = i i.e. P [fn| θ = i],

is given by P [fn] pi(fn)M , where P [fn] is the probability of being at fn and pi(fn), is

the a posteriori probability of the ith message given that the realization of Fn is fn.

The expected decrease we are bounding here is indeed averaged over different

possible messages using pi(fn). In other words, at a specific a posteriori probability

distribution on messages, one can propose a coding method that will decrease the

entropy, on average2 for a specific source message much more than C. However this

method will have a poorer performance in the case when one of the other messages is

sent. If one weights these cases with the corresponding probabilities of the messages

then the weighted sum is less then C.

Proof:

What this lemma says is that the expected entropy difference above for a given

fn ∈ Fn, is the conditional mutual information between the messages and the

channel output at time n+ 1. θ has the conditional probability distribution p(fn) on

the possible message set. The feedback Zn, together with the coding for time n + 1,

can be considered as a method to assign elements of the message set to the input

1Interpreting conditioned expectation as function of the conditioned quantity, it is evident that
this relation is valid for any realization, fn of the σ-field Fn.

2Averaged over different possible channel outputs.
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alphabet. The conditional probability mass function p(fn+1) is the a posteriori

probability distribution of θ at time n + 1 given the channel output and the coding

method. So the expected value of p(fn+1) for some specific value of Zn is the

entropy of θ given Yn+1 and fn. Thus

E [Hn −Hn+1| Fn = fn] = H(θ|fn) −H(θ|fn, Yn+1)

= I(θ;Yn+1|fn)

As a result of Markov relation between implied by our assignment

θ ↔ Xn+1 ↔ Yn+1, and data processing inequality;

E [Hn −Hn+1| Fn = fn] ≤ I(Xn+1;Yn+1) ≤ C

A more algebraic proof is given in appendix B.

QED

Note that Lemma 2 is rather strong. It states that for all possible realizations

of the observations up to and including time n, the expected decrease at time n + 1

is less then C, i.e., as a random variable measurable in Fn, the expected decrease

in one time unit is bounded. It is not a result in terms of an expectation over the

realizations of the σ-field Fn. It is also important to note that it is a result in terms

of an average over messages, with the corresponding a posteriori probabilities.

Lemma 3. ∀n ≥ 0 we have the inequality,

E [lnHn − lnHn+1| Fn] ≤ D (3.6)

where

D = max
i,k

L
∑

l=1

Pi,l ln
Pi,l
Pk,l

(3.7)

Proof:
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For arbitrary non-negative ai,bil,cl, the log sum inequality states that

ln

∑

i ai
∑

i bil
≤
∑

i

ai
∑

j aj
ln
ai
bil

Multiplying both sides by cl and summing over l,

∑

l

cl ln

∑

i ai
∑

i bil
≤
∑

l

cl
∑

i

ai
∑

j aj
ln
ai
bil

Then evidently, for arbitrary non-negative ai,bil,cl,

∑

l

cl ln

∑

i ai
∑

i bil
≤ max

i

∑

l

cl ln
ai
bil

(3.8)

Using the short hand

fi = pi(fn) fi(l) = P [θ = i|Yn+1 = l,Fn = fn]

w(k|i) = P [Xn+1 = k| Fn = fn, θ = i] p(l|i) = P [Yn+1 = l| θ = i,Fn = fn]

making the substitution cl = p(l), ai = −fi ln fi, bil = −fi(l) ln fi(l) in equation

(3.8), we get

E [ln(Hn) − ln(Hn+1)| Fn = fn] =
L
∑

l=1

p(l) ln
−
∑M

i=1 fi ln fi

−
∑M

i=1 fi(l) ln fi(l)

≤ max
i

(
∑

l

p(l) ln
−fi ln fi

−fi(l) ln fi(l)
)

= max
i

∑

l

p(l) ln

(

fi
fi(l)

ln 1/fi

ln 1/fi + ln fi

fi(l)

)

Using the relation fi(l) = fip(l|θ=i)
p(l)

, in the above expression we get

E [ln(Hn) − ln(Hn+1)| Fn = fn] ≤ max
i

∑

l

p(l)






ln

p(l)

p(l|θ = i)
+ ln

1

1 +
ln

p(l)
p(l|θ=i)

ln 1/fi
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Using the identity lnx ≤ x− 1

E [ln(Hn) − ln(Hn+1)| Fn = fn] ≤ max
i

∑

l

p(l)






ln

p(l)

p(l|θ = i)
−

ln
p(l)

p(l|θ=i)

ln 1/fi

1 +
ln

p(l)
p(l|θ=i)

ln 1/fi







= max
i

∑

l

p(l) ln
p(l)

p(l|θ = i)

(

1 −
1

ln 1/fi + ln p(l)
p(l|θ=i)

)

= max
i

∑

l

p(l) ln
p(l)

p(l|θ = i)

(

1 −
1

ln p(l)
fip(l|θ=i)

)

≤ max
i

∑

l

p(l) ln
p(l)

p(l|θ = i)
(3.9)

Using the convexity of the Kullback-Leibler divergence (2.11), it is evident from the

above inequality that E [ln(Hn) − ln(Hn+1)| Fn = fn] ≤ D

QED

Lemma 4. For any n ≥ 0, Yn+1 = l

lnHn − lnHn+1 ≤ max
i,k

ln
pkl
pil

≤ max
i,k,l

ln
pkl
pil

= F (3.10)

Proof:

Note that

ln(Hn) − ln(Hn+1) = ln
−
∑M

i=1 fi ln fi

−
∑M

i=1 fi(l) ln fi(l)

≤ max
i

ln
−fi ln fi

−fi(l) ln fi(l)
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Doing almost the same calculation with the previous lemma one can find

ln(Hn) − ln(Hn+1) ≤ max
i

ln
p(l)

p(l|θ = i)

≤ max
i

ln

∑M
j=1 p(l|θ = j)

p(l|θ = i)

≤ max
i,j

ln
Pjl
Pil

QED

Finally we have the following lemma relating stochastic sequences of certain prop-

erties, stopping times and expected values of stooped stochastic sequences.

Lemma 5. Assume the sequence Γ0,Γ1,Γ2... of random variables are measurable in

the sigma fields F0 ⊂ F1 ⊂ F2..., and that, for some K and R

|Γn| < Kn ∀n (3.11)

E [Γn − Γn+1| Fn] ≤ R ∀n (3.12)

Assume τi and τf are stopping times with respect to the filtration F , such that E [τf ] <

∞ and τi(w) ≤ τf (w) ∀w ∈ F . Let νn = Γn +Rn. Then the following are true

1. (νn,Fn) is a submartingale and |νn| < K ′n ∀n

2. ξn = νn − νn∧τi is a submartingale and |ξn| < K ′′n ∀n

3. RE [τi| F0] ≥ E [Γ0 − Γτi | F0]

4. RE [τf | F0] ≥ E
[

Γ0 − Γτf
∣

∣F0

]

5. RE [τf − τi| F0] ≥ E
[

Γτi − Γτf
∣

∣F0

]

Proof of the lemma 5 is given in the appendix A.
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Chapter 4

Lower Bound For The Expected

Time

Generally the error exponent is interpreted as the rate of increase of − lnPe at con-

stant communication rate, R, with increasing block length, l. An alternative approach

is to view the error exponent as the rate of change of block-length with increasing

− lnPe at a fixed rate R.

E(R) = lim
Pe→0

− lnPe
l(Pe, R)

where l(Pe, R) is the minimum block-length needed in order to operate at rate R =

lnM
l(Pe,R)

with probability of error Pe. The converse discussed here is the extension of

this approach to generalized block schemes where block length is replaced by expected

block length.

4.1 Converse

Theorem 1. For any transmission method over a DMC with feedback, ∀Pe > 0 and

∀M > eB, the expected number of observations E [τ ] satisfies the inequality

E [τ ] ≥
lnM

C
−

lnPe
D

−
ln (lnM − lnPe + 1)

D
−
Pe lnM

C
+ ∆ (4.1)
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where

C = max
f

K
∑

k=1

L
∑

l=1

fkPkl ln (
Pkl

∑K
j=1 fjPjl

)

D = max
i,j

L
∑

l=1

Pi,l ln
Pi,l
Pj,l

F = max
i,j,l

ln
Pi,l
Pj,l

and ∆ and B are constants determined by the channel transition probabilities, satis-

fying B < F + 1.

Before going into the proof let us elaborate on what this equation tells us. In

order to calculate error exponent at a rate R, we need to consider the limit as Pe goes

to zero1. For M > 2 and Pe < 1/e we can write equation (4.1) as

E [τ ] ≥
lnM

C

(

1 − Pe −
C ln(1 + lnM)

D lnM

)

+
− lnPe

D

(

1 +
ln(1 − lnPe)

lnPe

)

+ ∆

If we divide both sides by E [τ ] and calculate lim infPe→0 on both sides we get

lim inf
Pe→0

− lnPe
DE [τ ]

(

1 +
ln(1 − lnPe)

lnPe

)

≤ 1−lim sup
Pe→0

lnM

CE [τ ]

(

1 − Pe +
CD∆− C ln(1 + lnM)

D lnM

)

(4.2)

For any sequence of coding decoding algorithms to have rate R, lim supPe→0
lnM
E[τ ]

≥ R.

Using equation (4.2)

lim inf
Pe→0

− lnPe
E [τ ]

≤ D

(

1 −
R

C

)

Repeating same calculations for lim sup, considering the condition lim infPe→0
lnM
E[τ ]

≥

R we get

lim sup
Pe→0

− lnPe
E [τ ]

≤ D

(

1 −
R

C

)

1For ǫ-capacity, the theorem extends the known subtlety about the feedback case, to generalized
block coding. If we fix a constant error probability, Pe = ǫ, the fourth term does not become
negligible as we increase M . Thus we can not prove that ǫ-capacity is not improved by feedback
using this result. Indeed it is the same subtlety mentioned in [5], referring to [15] about feedback
channels. We know that for DMC, the ǫ-capacity, Cǫ is equal to channel capacity for every epsilon
less than one and greater than zero. However, with feedback, the value of Cǫ is not known in
general. What is known for block-coding schemes is that if the rate is strictly greater then C the
error probability is lower bounded away from zero. Theorem 1 says that this is true for generalized
block coding schemes also, but nothing more.
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R

E(R)

E(R) = D
(

1 − R
C

)

C

D

Figure 4-1: Error-Exponent vs Rate for DMC

Thus

E(R) ≤ D

(

1 −
R

C

)

For the case of the error exponent at R = 0, we need M to go infinity as we decrease

Pe, but it should be slower than any exponential function of expected decoding time.

Thus the zero-rate exponent will not be higher than D.

Proof:

The generalized Fano inequality implies that the expected value of the entropy2 at

decoding time is upper bounded by a function of the average error probability. Also

the expected change in entropy is bounded as a result of lemmas 2, 3 and 4. If we

measure the time required for a sufficient decrease of entropy in some way we will be

able to bound the minimum expected time in terms of the change in entropy.

Let us consider the stochastic sequence (ξn,Fn) such that

ξn =







C−1Hn + n if Hn ≥ B

D−1 lnHn + a+ n if Hn < B







(4.3)

where B and a are constants to be selected later. This can be written as

ξn = n + C−1HnI{Hn≥B} + (D−1 lnHn + a)I{Hn<B} (4.4)

where I{·} is the indicator function.

2The expectation is over possible messages and possible decoding times.
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First we will assume that ξn is a submartingale without proof.3 After finishing the

proof of the theorem we will verify that ξn is a submartingale.

It is a known result that if (ξn,Fn) is a submartingale, and τ is a stopping time with

respect to the filtration F , then (ξn∧τ ,Fn) also forms a submartingale, this can be

found in [6](pp248, theorem 4).

ξ0 ≤ E [ξn∧τ | F0] ≤ lim
n→∞

E [ξn∧τ | F0]

= lim
n→∞

E
[

(n ∧ τ) + C−1Hn∧τI{Hn∧τ≥B} + (D−1 lnHn∧τ + a)I{Hn∧τ<B}

∣

∣F0

]

= lim
n→∞

E
[

(n ∧ τ) + D−1 lnHn∧τ + a+ (C−1Hn∧τ −D−1 lnHn∧τ − a)I{Hn∧τ≥B}

∣

∣F0

]

where n ∧m is the minimum of n and m and we have used equation (4.4).

Using the positivity of entropy,

ξ0 ≤ lim
n→∞

E
[

(n ∧ τ) + C−1Hn∧τ + D−1 lnHn∧τ

∣

∣F0

]

+ |a| +
| lnB|

D

Using the concavity of ln(·) together with Jensen’s inequality

ξ0 ≤ lim
n→∞

E
[

(n ∧ τ) + C−1Hn∧τ

∣

∣F0

]

+ D−1 lnE [Hn∧τ | F0] + |a| +
| lnB|

D

Since P [τ <∞] = 1, limn→∞ E [n ∧ τ | F0] = E [τ | F0]. Then we can use the

boundedness of Hn to see4

E [τ | F0] ≥ ξ0 −C−1E [Hτ | F0] −D−1 lnE [Hτ | F0] − |a| −
| lnB|

D

Since H0 = lnM > B, we have ξ0 = C−1H0 so

E [τ | F0] ≥ C−1 lnM −C−1E [Hτ | F0] −D−1 lnE [Hτ | F0] − |a| −
| lnB|

D

3Namely we will assume that E [Hn] < ∞ and that there exists a and B such that E [ξn+1| Fn] ≥
ξn.

4If P [τ < ∞] 6= 1, then E [τ ] = ∞, and the theorem holds.
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Inserting the generalized Fano inequality, and bounding the binary entropy by

h(Pe) ≤ −Pe lnPe + Pe,

E [τ | F0] ≥ C−1 lnM−C−1(Pe lnM+h(Pe))−D−1(lnPe+ln(lnM−lnPe+1))−|a|−
| lnB|

D

Bounding the binary entropy, −h(Pe) > − ln 2, and defining ∆ to be

∆ = −|a| − | lnB|
D

−C−1 ln 2

E [τ | F0] ≥ C−1 lnM −PeC
−1 lnM −D−1 lnPe−D−1 ln(lnM − lnPe+1)+∆ (4.5)

Now we need to prove that ξn is a submartingale. We will start with proving that

E [|ξn|] <∞.

Consider the following two stochastic sequences

ξ′n = C−1Hn + n ξ′′n = D−1 lnHn + n + a

Using the boundedness of entropy, 0 ≤ Hn ≤ lnM , we get n < ξ′n ≤ lnM
C

+ n

consequently |ξ′n| ≤ n+ lnM
C

. As a result of this boundedness

E [|ξ′n|] <∞ (4.6)

Using Lemma 4 we can see that, lnH0 − nF ≤ lnHn ≤ ln lnM and consequently

|ξ′′n| ≤ | ln lnM
D

+ n| + | lnH0

D
− F−D

D
n|. Using this boundedness one can conclude that

E [|ξ′′n|] <∞ (4.7)

Note that an alternative way of writing ξn is

ξn = ξ′nI{Hn>B} + ξ′′nI{Hn≤B} (4.8)

As a result

E [|ξn|] ≤ E [|ξ′n|] + E [|ξ′′n|]
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Using equation 4.6, 4.7, 4.8 we get E [|ξn|] <∞

Now we will look at the change from ξn to ξn+1 and try to bound it, using lemma

2,3 and corollary 4 and setting the constants B and a accordingly. First consider

the two processes we described before

E
[

ξ′n+1 − ξ′n
∣

∣Fn

]

= E

[

1 −
Hn+1 −Hn

C

∣

∣

∣

∣

Fn

]

(4.9)

Using lemma 2

E
[

ξ′n+1 − ξ′n
∣

∣Fn

]

> 0 (4.10)

Together with equation (4.6), this implies that ξ′n is a submartingale.

E
[

ξ′′n+1 − ξ′′n
∣

∣Fn

]

= E

[

1 −
lnHn+1 − lnHn

D

∣

∣

∣

∣

Fn

]

(4.11)

Using lemma 3

E
[

ξ′n+1 − ξ′n
∣

∣Fn

]

> 0 (4.12)

Together with equation (4.7), this implies that ξ′′n is a submartingale.

Now we need to find the values for B and a such that, E [ξn+1 − ξn| Fn] > 0 holds.

Consider the functions

f1(H) = C−1H f2(H) = D−1 lnH + a f(H) =







C−1H if H ≥ B

D−1 lnH + a if H < B







(4.13)

It is evident from the graph that

f(H) ≥ f1(H) ∀H ≥ A

f(H) ≥ f2(H) ∀H
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H

f

f1(H) = H
C

f2(H) = lnH
D

+ a

BA

F

Figure 4-2: f1(H) & f2(H) vs H

Considering the relations ξn = f(Hn) + n, ξ′n = f 1(Hn) + n, and ξ′′n = f(Hn) + n.

ξn ≥ ξ′n if Hn ≥ A

ξn ≥ ξ′′n

Let us consider two cases

Case 1: Hn < B:

Since ξn+1 ≥ ξ′′n+1, E [ξn+1| Fn] ≥ E
[

ξ′′n+1

∣

∣Fn

]

. Since ξ′′n is a submartingale,

E [ξn+1| Fn] ≥ ξ′′n. Using the fact that Hn < B we get E [ξn+1| Fn] ≥ ξn.

Case 2: Hn > B:

If we know that P [Hn+1 ≥ A| Fn] = 1 than we can argue that ξn+1 ≥ ξ′n+1 and then

E [ξn+1| Fn] ≥ E
[

ξ′n+1

∣

∣Fn

]

. Since ξ′n is a submartingale, E [ξn+1| Fn] ≥ ξ′n. Using

the condition about the case Hn > B we get E [ξn+1| Fn] ≥ ξn.

So what we need is to ensure that P [Hn+1 ≥ A| Fn] = 1 whenever Hn > B. But we

know that P
[

Hn+1 ≥ Hne
−F
∣

∣Fn

]

= 1. So solving equations,

C−1A = D−1 lnA+ a

C−1B = D−1 lnB + a

A = Be−F
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we get the values of B and a that will guarantee that ξn is a submartingale.

A =
CF

D(1 − e−F)
e−F

B =
CF

D(1 − e−F)

a =
1

D

(

FeF

eF − 1
+ ln

D(1 − e−F)

CF

)

QED

We will give an alternative proof of converse in the next section, which reallies on

a conjecture we have made. Conjecture depends on an intuitive assumption that we

failed to prove. Apart from the material presented in the next sub-section, all of the

discussions in the thesis is independent of validity of the conjecture.

4.2 Alternative Converse & A Conjecture

The motivation of the following calculation is two fold. The first is to find a bound that

is asymptotically as tight as the one found by Burnashev using simpler probabilistic

tools. The second is to understand the connection between the converse proof done

by Burnashev and the converse proof claimed in [13].

Although the earlier proof dealt quite a bit with the entropy, it did not impose

any structure on the coding algorithm or decoding rule. It only used the bound on

the expected value of the entropy, which is valid for any coding algorithm decoding

rule pair that has an expected error Pe because of the generalized Fano inequality.

The only converse proof in the literature for generalized block-coding schemes before

Burnashev’s work is in [13] for the infinite bandwidth AWGNC channel with an

amplitude limit. However they restricted themselves to the set of decoders that only

decodes when the a posteriori probability of one of the messages goes above 1−Pe. As

mentioned by Burnashev it is by no means obvious that the optimal decoder should

be of this form. Let us call the restricted set of decoding rules DR and the general
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set D. What we conjectured is

min
C,D

E [τ | F0] ≥ λ(Pe) min
C,DR

E [τ | F0] (4.14)

where limPe→0 λ(Pe) = 1. Thus the restriction from D, to DR for the set of possible

decoders, does not change results about error exponent or channel capacity.

The following is the theorem and partial proof of this conjecture. There is a

monotonicity assumption which is taken for granted in the proof of the theorem.

Although the assumption seems intuitive we have no proof of it at this time.5

Theorem 2. For any transmission method over a DMC with feedback, ∀Pe > 0,

∀M > 2 and for all e−F > δ > Pe the expected number of observations is bounded as

follows.

E [τ ] ≥

(

1 −
Pe(ln(M − 1) − lnPe + 1)

δ

)(

lnM

C
−

ln δ

D
−

1

C
−

F

D

)

(4.15)

Proof:

We will first start with finding a bound on the probability of the event that

{Hτ > δ}, for any δ, where Hτ is the value of the entropy6 at the decoding time.

Then we will define a method to obtain a ‘modified stopping rule’ for any coding

algorithm decoding rule pair such that the expected value of the ‘modified stopping

time’ is proportional to a lower bound on the expected decoding time of the pair.

After that we will bound the expected value of ‘modified stopping time’. Finally we

will combine these to find a lower bound on expected decoding time to propose a

lower bound on reliability function.

Let F∞ be the σ-field that includes all of the Fn’s i.e., F∞ = ∪∞
k=0Fk. Then Hτ ≤ δ

is a well defined event in F∞. Then we can write the expectation of the decoding

5Since we do not rely on this monotonicity assumption in any of the calculations other then the
alternative proof of converse all of our results are valid independent of validity of this assumption.

6Indeed the conditional entropy given the observation fn.
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time in terms of conditional expectations as follows

E [Hτ ] = E [Hτ |Hτ ≤ δ]P [Hτ ≤ δ] + E [Hτ |Hτ > δ]P [Hτ > δ]

≥ δP [Hτ > δ]

Using the generalized Fano inequality, E [Hτ ] ≤ h(Pe) + Pe ln (M − 1)

P [Hτ > δ] ≤ Pe
ln(M − 1) − lnPe + 1

δ
(4.16)

In order to be able describe the modified scheme, and write bounds on the expected

value of modified scheme we need to set the notation for threshold crossing times of

entropy. Let the initial value of the entropy be A, and the threshold for stopping be

B, and the first time instance with an Hn below threshold be

TA→B = min{n : Hn ≤ B}. Then we can define the minimum of expected value of

TA→B over all coding algorithms.7

α(A,B) = min
C

E [TA→B] (4.17)

For any coding/decoding pair, and for any δ > 0 we can define the following

stopping time. We run the coding decoding algorithm once without any

interruption.If Hτ ≤ δ we stop, else we start the coding algorithm which has the

minimum expected time to reach the threshold δ.8

E [τ ′(δ)] = E [τ |Hτ ≤ δ]P [Hτ ≤ δ] + (E [τ + THτ→δ|Hτ > δ])P [Hτ > δ]

= E [τ |Hτ ≤ δ]P [Hτ ≤ δ] + E [τ |Hτ > δ]P [Hτ > δ] + E [THτ→δ|Hτ > δ]P [Hτ > δ]

= E [τ ] + α(Hτ → δ)P [Hτ > δ]

If we assume α(· → δ) to be monotonic function, since Hτ ≤ H0, we can conclude

7There might be different probability distributions that correspond to the same entropy value,
we stick with the one at hand to define α, but we will later lower bound it using function that is
blind to the initial distribution other then its entropy value.

8Note that we are not imposing a unique algorithm for different decoding points, at every decoding
point with Hτ > δ transmitter will pick the coding algorithm with least expected time to reach δ.
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that α(Hτ → δ) ≤ α(H0 → δ). Thus

E [τ ′(δ)] ≤ E [τ ] + α(H0 → δ)P [Hτ > δ]

Using the fact E [τ ′(δ)] ≥ α(H0 → δ)

α(H0 → δ) ≤ E [τ ] + α(H0 → δ)P [Hτ > δ]

Which will immediately lead to

E [τ ] ≥ α(H0 → δ)P [Hτ ≤ δ] (4.18)

We have already bounded P [Hτ ≤ δ] by 4.16, we will bound the α(H0 → δ) using

lemmas 2, 3,4 and 5.

Because of Lemma 4 the decrease of lnHn in one time unit is upper bounded by F.

As a result Hn+1 can not go below e−F if Hn is greater then 1. We can write TH0→δ

in two parts. The first part is from the starting time to the first time that entropy

goes below 1. The second is the time from the first value of Hn less then 1 to δ.

Since this first value is greater than e−F we can lower bound the expectation of

second phase with the expected time from e−F to δ

α(H0, δ) ≥ α(H0, 1) + α(e−F, δ)

Note that |Hn| ≤ lnM , E [Hn −Hn+1| Fn] ≤ C, thus we can apply lemma 5 part 4,

for Hn and first passage time of 1,

α(H0, 1) ≥
H0 − 1

C

consequently

α(H0, 1) ≥
lnM − 1

C

Note that | lnHn| ≤ Fn+ ln lnM , E [lnHn − lnHn+1| Fn] ≤ D, thus we can apply
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lemma 5 part 4, for lnHn and first passage time of δ,

α(e−F, δ) ≥
− ln δ

D

consequently

α(e−F, δ) ≥
−F − ln δ

D

Using 4.18, we get the required relation

QED

We can make various substitutions, for δ in theorem 2 to get the bound on re-

liability function, we already have as result of theorem 1. Note that if E(R) 6= 0

then limPe→0
lnM

− lnPe
< ∞ as a result for small enough Pe values we can make the

substitution δ = Pe(lnM − lnPe + 1)(− lnPe) ≤ e−F, to get the relation,

E [τ ] ≥

(

1 +
1

lnPe

)(

lnM

C
−

lnPe
D

−
ln(− lnPe) + ln(lnM − lnPe + 1)

D
−

F

D
−

1

C

)

(4.19)

Indeed Equation (4.19) tells us the reason why the converse proofs in [13], which

restricts the set of possible decoders to DR, can be transfered to general case, where

decoder set is DR.9 Because (4.19) mean that for any coding/decoding algorithm

pair, with a average probability of error, Pe; there exist a coding/decoding algorithm

pair such that the decoding occurs only when the entropy of the messages goes below

a threshold, Pe(− lnPe)(lnM− lnPe+1), and expected decoding time of the modified

scheme is proportional to a lower bound on the expected decoding time of the original

scheme. Furthermore the proportionality constant goes to 1 as Pe goes to 0.

9In that part of the discussion we did not use anything specific to DMC, channel could perfectly
be AWGNC. There are issues about cost constraints but those can be worked out.

40



Chapter 5

Achievability

In the last section we found lower bounds on the decoding time, depending on the

size of message set and the average error probability. It will be shown in this section

that there exist coding algorithms with a decoding criterion such that their expected

decoding time is upper bounded by a function whose main terms coincide with those

of the lower bound.

We will give two separate proofs of achievability. The first will be the proof

used by Burnashev in [2] for a special class of channels.1 The second will be a

more precise and detailed version of the proof by Yamamoto and Itoh in [17]. It is

striking that although Yamamoto and Itoh were proposing an asymptotically optimal

method for generalized block-coding schemes, they were not aware of it. They make a

comparison with Horstein’s work, [8], and conclude that their scheme is suboptimal.

The comparison is unfair, however, because the scheme proposed by Horstein is not

a generalized block-coding scheme.

Both of the proofs will require high-rate feedback, even higher than the evident

bound ln |Y|, where |Y| is the size of output alphabet. But the Yamamoto-Itoh

scheme will then be modified to give a coding scheme that will only need a feedback

rate equal to the forward channel capacity.

1We won’t give his proof for general case.
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5.1 Burnashev Proof

Considering the definition of D, we can see that at least one (i0, j0) pair exits such

that

D = max
i,j

∑

l

Pil ln
Pil
Pjl

=
∑

l

Pi0l ln
Pi0l
Pj0l

Then we will define D∗ of the channel as

D∗ =
∑

l

Pj0l ln
Pj0l
Pi0l

If more than one pair of (i, j)’s exists with a corresponding Kullback Leibler divergence

equal to D, we will define D∗ to be the maximum of all reverse Kullback Leibler

divergences, i.e.,

D∗ = max

(i0, j0);
∑

l

Pi0l ln
Pi0l
Pj0l

= D

∑

l

Pj0l ln
Pj0l
Pi0l

Theorem 3. For a DMC with infinite, noiseless and instantaneous feedback

• if D∗ > C a coding algorithm decoding, criterion pair exists such that

E [τ ] <
lnM

C
−

lnPe
D

+ ∆

where ∆ is a constant determined by the transition probabilities.

• for all values of D∗ and ∀ǫ > 0, coding/decoding pairs exist such that

E [τ ] <
lnM
C

− lnPe

D
+ (D−C) ln ǫ

CD

1 − ǫ
+ ∆

where ∆ is a constant determined by the transition probabilities.

We will prove only the first statement of the theorem, which is for the channels

such that D∗ > C. We will prove a theorem which is almost equivalent2 to the second

2Except that it only works efficiently for equiprobable messages; it is unable to make use of
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statement of the theorem, in the next section. The coding scheme that will be used

will only require a finite delay noiseless feedback channel whose capacity is equal to

the forward channel capacity, C.

Proof:

Our decoding rule will be log-likelihood decoding; for any given δ > 0, we will

decode at the first time instant that the log likelihood ratio of one of the messages

goes above ln 1/δ. It is easy to show that the probability of error is less than or

equal to δ with log-likelihood decoding.

In proving achievability we will work with log-likelihood ratios rather than the

entropy. The log-likelihood ratio of the mth message at time n is defined as

Λm(fn) = ln
pm(fn)

1 − pm(fn)
(5.1)

Note that pm(fn) and Λm(fn) are measurable in the σ-field generated by Fn−1 and

Yn, i.e., we do not need to know the assignments of the messages for the next time

instant in order to calculate the log-likelihood ratios of the messages. Log-likelihood

decoding can be summarized by the stopping time,

τ(δ) = min{n : max
j

Λj(fn) ≥ ln
1

δ
} (5.2)

We will denote the log-likelihood ratio of the true message at time n by Λ(fn). Then

we can define another stopping time as

τtr(δ) = min{n : Λ(fn) ≥ ln
1

δ
} (5.3)

For any coding algorithm, τ(δ) will be less then or equal to τtr(δ) for all realizations

of the experiment.3 Consequently for all coding algorithms the expected value of

stopping time τtr(δ) is an upper bound for the expected decoding time with

log-likelihood decoding; E [τ(δ)] ≤ E [τtr(δ)].

smaller starting entropy values with M messages.
3Note that here we are talking about G rather than F , since τtr(δ) is not measurable in F .
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It is evident that a decoding time should be a stopping time with respect to

filtration F , i.e., it should only depend on the observation of the receiver.

Nevertheless a mathematical stopping time, as opposed to a decoding time for a

coding algorithm, is not necessarily a stopping time with respect to the filtration F ;

rather it can be a stopping time with respect to G. Indeed this is the difference

between τ(δ) and τtr(δ)

We will start with developing a coding algorithm such that the sequence of Λ(fn)’s

forms a submartingale of the form,

E [Λ(fn+1) − Λ(fn)| Fn−1, Yn, θ] ≥







C if Λ(fn) < ln p0
1−p0

D if Λ(fn) ≥ ln p0
1−p0







(5.4)

where p0 is a constant to be determined later. Then we will use this submartingale

to establish an upper bound on E [τtr(δ)].

Our coding algorithm will involve a random part, i.e., the assignments that we send

back to the transmitter via Zn, to be used at time n+ 1, will not necessarily be a

deterministic function of Yn and Fn−1. The relation will be just a probabilistic one

as follows.

We will set the a posteriori probability of the kth input letter given Fn−1 = fn−1,

Yn = yn, θ = m to be φk(fn−1, yn, m).

K
∑

k=1

φk(fn−1, yn, m) = 1 ∀yn, ∀fn−1, ∀m

φk(fn−1, yn, m) will be such that a posteriori probability of the kth input letter given

Fn−1 = fn−1, Yn = yn will be ϕ0
k, where ϕ0 = (ϕ0

1, ϕ
0
2, . . . , ϕ

0
K) is the capacity

achieving probability distribution.

M
∑

m=1

φk(fn−1, yn, m)pm(fn) = ϕ0
k ∀k, ∀yn, ∀fn−1 (5.5)

At each time n, for all m = 1, . . . ,M , the receiver will make an assignment

according to the probability mass function φ(fn−1, yn, m). The assignment of the
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mth message will be denoted by κ(m). Evidently each κ(m) is a part of Zn and will

be used at time n+ 1, in the calculation of Λ(fn+1). Once these assignments are

made we can calculate the a posteriori probability of the kth input letter, given Fn,

at time n + 1 as follows:

ϕk(fn) =
∑

κ(m)=k

pm(fn) (5.6)

We will need to find the expected value of ϕk(fn), conditioned on Fn−1,Yn,θ,κ(θ).

Using (5.6),

E [ϕk(fn)| Fn−1, Yn, θ, κ(θ)] = E





∑

κ(m)=k

pm(fn)

∣

∣

∣

∣

∣

∣

Fn−1, Yn, θ, κ(θ)





= E

[

∑

m

I{κ(m)=k}pm(fn)

∣

∣

∣

∣

∣

Fn−1, Yn, θ, κ(θ)

]

=
∑

m

P [κ(m) = k| Fn−1, Yn, θ, κ(θ)] pm(fn)

For each m 6= θ, P [κ(m) = k| Fn−1, Yn, θ, κ(θ)] = φk(fn−1, yn, m),

Where as for m = θ, P [κ(m) = k| Fn−1, Yn, θ, κ(θ)] = δκ(θ),k. Thus the conditional

expected value of the a posteriori probability of kth input letter at time n+ 1, given

Fn−1,Yn,θ,κ(θ) is

E [ϕk(fn)| Fn−1, Yn, θ, κ(θ)] =
∑

m6=θ

φk(fn−1, yn, m)pm(fn) + pθ(fn)δκ(θ),k (5.7)

= ϕ0
k + (δk,κ(θ) − φk(fn−1, yn, θ))pθ(fn) (5.8)

where we have used (5.5) in the last step

The a posteriori probability, pm(fn+1), of the mth message at time n+ 1 can be
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written as follows:

P [θ = m| Fn+1 = fn+1] = P [θ = m| Fn = fn, Yn+1 = l]

=
P [θ = m| Fn = fn]P [Yn+1 = l| Fn = fn, θ = m]

P [Yn+1 = l| Fn = fn]

=
P [θ = m| Fn = fn]Pκ(m)l

∑M
j=1 P [θ = j| Fn = fn]Pκ(j)l

Using equation (5.6),

pm(fn+1) =
pm(fn)Pκ(m)l
∑K

j=1 ϕj(fn)Pjl

Λ(fn+1) − Λ(fn) = ln
(1 − pθ(fn))Pκ(θ)l

∑K
j=1 ϕj(fn)Pjl − pθ(fn)Pκ(θ)l

(5.9)

Using the convexity of ln( 1
x−φ

) in x with equation (5.9)

E [Λ(fn+1) − Λ(fn)| Fn−1, Yn, θ, κ(θ)] ≥

L
∑

l=1

Pκ(θ)l ln
(1 − pθ(fn))Pκ(θ)l

K
∑

k=1

E [ϕk(fn)| Fn−1, Yn, θ, κ(θ)]Pkl − pθ(fn)Pκ(θ)l

Using equation (5.8)

≥
∑

l

Pκ(θ)l ln
(1 − pθ(fn))Pκ(θ)l

∑

k

(ϕ0
k + (δk,κ(θ) − φk(fn−1, yn, θ))pθ(fn))Pkl − pθ(fn)Pκ(θ)l

=
∑

l

Pκ(θ)l ln
(1 − pθ(fn))Pκ(θ)l

∑

k

(ϕ0
k − φk(fn−1, yn, θ)pθ(fn))Pkl

=
∑

l

Pκ(θ)l

[

ln
(1 − pθ(fn))Pκ(θ)l
∑

k ϕ
0
kPkl

− ln

(

1 −

∑

k φk(fn−1, yn, θ)Pkl
∑

k ϕ
0
kPkl

pθ(fn)

)]

Using the fact that C = ln
Pk,l

PK
i=1 ϕ

0
iPi,l

∀ϕ0
k > 0, for the capacity achieving probability

distribution, ϕ0.

= C + ln(1 − pθ(fn)) −
∑

l

Pκ(θ)l ln

(

1 −

∑

k φk(fn−1, yn, θ)Pk,l
∑

k ϕ
0
kPk,l

pθ(fn)

)
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Using iterated expectations on Λ(fn+1) − Λ(fn)

E [Λ(fn+1) − Λ(fn)| Fn−1, Yn, θ] = E [E [Λ(fn+1) − Λ(fn)| Fn−1, Yn, θ, κ(θ)]| Fn−1, Yn, θ]

≥ C + ln(1 − pθ(fn))

−
∑

k,l

φk(fn−1, yn, θ)Pkl ln

(

1 −

∑K
i=1 φi(fn−1, yn, θ)Pil
∑K

i=1 ϕ
0
iPil

pθ(fn)

)

Note that both ψ(l) =
∑

k φk(fn−1, yn, θ)Pkl and ψ̂(l) =
∑

k ϕ
0
kPkl give us probability

mass functions on the output set Y . we then can write the last term of the sum as

follows,

∑

k,l

φk(fn−1, yn, θ)Pkl ln

(

1 −

∑

i φi(fn−1, yn, θ)Pil
∑

i ϕ
0
iPil

pθ(fn)

)

=
∑

l

ψl ln

(

1 −
ψl

ψ̂l
pθ(fn)

)

=
∑

l

ψ̂l
ψl

ψ̂l
ln

(

1 −
ψl

ψ̂l
pθ(fn)

)

Using the convexity of the function x ln(1 − δx), ∀δ ≥ 0 in x, we get

∑

k,l

φk(fn−1, yn, θ)Pkl ln

(

1 −

∑

i φn(fi−1, yi, θ)Pil
∑

i ϕ
0
iPil

pθ(fn)

)

≥ (
∑

l

ψ̂l
ψl

ψ̂l
) ln

(

1 −
∑

l

ψ̂l
ψl

ψ̂l
pθ(fn)

)

= ln(1 − pθ(fn))

As a result the expected increase in log-likelihood ratio of the true message is

greater then channel capacity, C, with this randomized coding algorithm.4

E [Λ(fn+1) − Λ(fn)| Fn−1, Yn, θ] ≥ C (5.10)

Now we know how to code in order to obtain part of the submartingale in equation

(5.4) when pθ < p0. But we need to find the appropriate threshold p0 and also the

coding for the second part. Note that if we assign the true message to i0 and all of

4We can not argue right away that a deterministic coding algorithm exists which satisfies equation
(5.10). Any random coding method is a weighted sum of deterministic ones, but it is possible that
none of the deterministic algorithms satisfies equation (5.10) for all possible θ, while their average
does.
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the others to j0 as a result of equation (5.9) we know that the expected increase in

log likelihood ratio of the true message is D. But a coding algorithm can not assign

messages to input letters in a way that will depend on the true message, i.e., symbol

assigned to a message can only depend on feedback and the message itself. Thus we

can not assume that receiver assigns the true message to i0 and all others to j0 it

can only assign the messages depending on the realization of Fn not depending on

θ. The way we deal with this problem is as follows.

When the a posteriori probability of one message is over a threshold,p0 then we will

assign the most likely message to i0 and all others to j0. Consequently if the message

with the highest a posteriori probability is the same as the true message, i.e.,θ̂ = θ

E
[

Λ(fn+1) − Λ(fn)| Fn−1, Yn, θ, θ̂ = θ
]

= D (5.11)

otherwise, some θ 6= θ̂ is the most likely message and

E
[

Λ(fn+1) − Λ(fn)| Fn−1, Yn, θ, θ̂ 6= θ
]

=

L
∑

l=1

pj0l ln
pj0l(1 − pθ(fn))

pj0l(1 − pθ(fn)) + pθ̂(fn)(pi0l − pj0l)

= D∗ +
L
∑

l=1

pj0l ln
pi0l(1 − pθ(fn))

pj0l(1 − pθ(fn) − pθ̂(fn)) + pθ̂(fn)pi0l

Note that second term in the expression can be made as close to zero as desired by

setting higher and higher threshold values for phase change of the coding. Using the

assumption D∗ > C we can guarantee an expected increase of C by setting an

appropriate threshold value p0, i.e.,

E
[

Λ(fn+1) − Λ(fn)| Fn−1, Yn, θ, θ̂ 6= θ
]

≥ C

Thus, independent of the phase of the coding the expected increase in the

log-likelihood ratio of the true message is greater then or equal to C, if the a

posteriori probability of the true message is less then p0. Also when the a posteriori

probability of the true message is greater then p0 the expected increase in the
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log-likelihood of the true message is D.

E [Λ(fn+1) − Λ(fn)| Fn−1, Yn, θ] ≥







C if pθ(fn) < p0

D if pθ(fn) ≥ p0







Using the following lemma from, [3], for the filtration whose nth element will be the

σ-field generated by Fn−1 and Yn, and Λ(fn) − ln p0
1−p0

we get.

E [τtr(δ)] <
lnM

C
−

ln(δ)

D
+ ∆ (5.12)

where ∆ is a constant determined by transition probabilities.5

Lemma 6. Assume that the sequence (ξn,Fn),n = 0, 1, 2 . . . forms a submartingale,

where

E [ξn+1| Fn] = ξn +K1, if ξn < 0, where K1 > 0

E [ξn+1| Fn] = ξn +K2, if ξn ≥ 0, where K2 > K1

|ξn+1 − ξn| ≤ K3, ξ0 < 0

and Markov moment τ given by the condition

τ = min{n : ξn ≥ B} where B > 0

Then we have the inequality

E [τ | F0] ≤
B

K2
+

|ξ0|

K1
+ ∆(K1, K2, K3)

where ∆(K1, K2, K3) only depends on K1,K2 and K3.

QED

5The expectation is over channel realizations, and the random choice of coding symbols. There
is no expectation over possible messages here.
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5.2 Yamamoto & Itoh Proof

The scheme proposed is a two phase scheme, like the one in Burnashev’s paper [2],

but instead of using log-likelihood ratios, and bounding the average error probability

by bounding the error probability at each and every decoding time, more conventional

methods are used, i.e., given θ the probability of θ̂ 6= θ, P
[

θ̂ 6= j
∣

∣

∣
θ = j

]

is bounded.

The time used for each phase is fixed in each ‘trial’. In other words l0 = l1 + l2 where

l1, l2 are the corresponding times used for each phase in one trial, and l0 is the over

all length of one trial.

Phase 1:

A plain (non-feedback) code of rate C(1− ǫ) is used to send the message. The coding

theorem states that for any ǫ > 0,any error probability Pe1 > 0; any sufficiently large

M , a code of block-length lnM
C(1−ǫ)

or less exist with probability of error Pe1 or less. In

other words for ∀Pe1 > 0, ∀ǫ > 0, and ∀M a code of length l1 exists, such that

l1 <
lnM

C(1 − ǫ)
+ ∆1(Pe1, ǫ) (5.13)

where ∆1(Pe1, ǫ) is a function that is determined by the transition probabilities.

At the end of this phase the receiver has an estimate about the message, with an

a posteriori probability. The likelihood corresponding to this a posteriori probability

was used in Burnashev’s Proof.

Phase 2:

As a result of perfect feedback, the transmitter knows the receivers estimate of the

message instantaneously.6 If this estimate is true the transmitter will send an ac-

knowledgment message; if it is false it will send a rejection message. An acknowledg-

ment will end the transmission for the current message, and the transmitter will start

sending the next message. A rejection will lead to a retransmission of the current

message again. There are two kinds of errors in the second phase. The first is that

the receiver might interpret an acknowledgment as a rejection, A → R, which will

6Momentarily we are assuming, infinite, instantaneous, error-free feedback that will allow us to
let the receiver tell the estimate to the transmitter instantly. Better methods which will decrease
the required feedback will be presented soon after the basic proof.
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increase the expected decoding time. The second is interpreting a rejection as an

acknowledgment, R → A, which will result in an immediate error. Since our demand

on probability of error is much more stringent,7 we want the probability of R → A

type errors, PRA, to decay as fast as possible with time, under the constraint that the

probability of A→ R type errors PAR is kept below some predefined value.

In order to understand the asymptotic behavior of these two errors as a function

of signaling duration, we quote the following corollary in Csiszár and Körner, [4](pp

19, Corollary 1.2) Suppose one needs to choose between two probability distributions

P (x) and Q(x). The output set will be divided into two parts,A & B one corre-

sponding to detecting distribution P , A; one corresponding to the distribution as Q,

B.

Lemma 7. For any 0 < δ < 1

lim
k→∞

1

k
log β(k, δ) = −D(P ||Q)

where

β(k, δ) = min
A,P k(A)>1−δ

Qk(A)

Indeed lemma 7 is equivalent to saying ∀ǫ > 0, δ > 0 ∃k0(δ, ǫ) such that ∀k >

k0(ǫ, δ)

Qk(A) ≤ e−kD(P ||Q)(1−ǫ) and P k(A) ≥ 1 − δ

After a little algebra, one can show that, the minimum time needed for detection

between two probability distributions, with the condition that P [P → Q] ≤ δ and

P [Q→ P ] ≤ ϕ, is upper bounded as

k(ϕ, δ) ≤
− lnϕ

D(P ||Q)(1− ǫ)
+ ∆(ǫ, δ) ∀ǫ > 0 (5.14)

7We are trying to maximize − lnPe

E[τ ] . A small increase in PRA will increase E [τ ] slightly, where a

small increase in PRA will decrease − lnPe drastically.
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Going back to our problem,

D = max
i,j

D(P (y|xi||P (y|xj) = D(P (y|xi0||P (y|xj0))

If we use xi0 for acknowledgment and xj0 for rejection, we know that

l2 <
− lnPRA
D(1 − ǫ)

+ ∆(PAR, ǫ) ∀ǫ > 0, ∀PRA > 0, ∀PAR > 0 (5.15)

where ∆ is a function determined by the transition probabilities.

In other words for any PAR > 0 and ǫ > 0

l0 = l1 + l2

l0 ≤

(

lnM

C
−

lnPRA
D

)

1

1 − ǫ
+ ∆(PAR, Pe1, ǫ)

After the first trial, there are four possible outcomes. The possible events with cor-

responding probabilities are

1. True message was estimated, acknowledgment was successful, (1−Pe1)(1−PAR)

2. True message was estimated, acknowledgment was unsuccessful, (1 − Pe1)PAR

3. Estimate was wrong, rejection was successful, Pe1(1 − PRA)

4. Estimate was wrong, rejection was unsuccessful, Pe1PRA

It is evident that the first case corresponds to successful decoding at the first trial,

and the last case corresponds to erroneous decoding at the first trial. The other two

cases correspond to retransmission. Let us call the retransmission probability at a

trial Pη. Then the probability of error, Pe, is

Pe = Pe1PRA

(

∞
∑

k=0

P k
η

)

=
Pe1PRA
1 − Pη

In [17] this expression is given as Pe = Pe1PRA which is not true, but is a reasonable
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approximation. Similarly the expected decoding time can be written as

E [τ ] = l0

∞
∑

k=0

P k
η =

l0
1 − Pη

Finally the retransmission probability is

Pη = Pe1PRR + (1 − Pe1)PAR

If we fix Pe1 = PAR = δ, then Pη < 2δ, and the expected decoding time is

E [τ ] ≤
l0

1 − 2δ
Pe <

δ

(1 − 2δ)
PRA (5.16)

This will mean that for any δ > 0 and ǫ > 0 a coding/decoding method exists whose

expected decoding time satisfies the following inequality

E [τ ] <
1

1 − 2δ

[(

lnM

C
−

lnPRA
D

)

1

1 − ǫ
+ ∆′(PAR, Pe1, ǫ)

]

(5.17)

Using equations (5.15) and (5.16)

E [τ ] <
1

1 − 2δ

[(

lnM

C
−

lnPe
D

+

δ
(1−2δ)

D

)

1

1 − ǫ
+ ∆′(δ, ǫ)

]

(5.18)

E [τ ] <
1

1 − 2δ − ǫ

(

lnM

C
−

lnPe
D

+ ∆′(δ, ǫ)

)

(5.19)

This immediately proves the achievability of Burnashev’s exponent.

5.3 What is actually needed

Throughout all of the calculations it was assumed that an instantaneous, infinite

and error-free feedback is available. It is evident that the converse result (lower

bound on expected decoding time) will still hold for any feedback which is deprived

of any of these qualities. A first look at the system would suggest that, knowing
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the channel output exactly instantaneously should be enough for achieving the best

possible reliability function. In other words an error-free, finite delay feedback path

with a channel capacity of ln |Y | should be enough. Instead of proving this result we

will prove a stronger result.8

Let us assume that constant delay is T. Let the size of message set be M = NN2
1 .

As a similar approach with the phase1 of previous section we can have codes of error

probability Pe1

N2
, size N1, and block-length lnN1

C(1−ǫ)
. We can use this code N2 times

successively in order to send a member of super code, of size M , with a probability

of error less then Pe1. If the transmitter sends each sub-message right after when it

is decoded then the duration of of l1, the time receiver needs to estimate the message

sent, and inform the transmitter about its estimate, will be given by the following

expression.

l1 <
N2 + 1

N2

lnM

C(1 − ǫ)
+ T + ∆1(Pe1, ǫ)

where ∆1(Pe1, ǫ) is a function determined by transition probabilities. We can write

this result by including N2+1
N2

in the coefficient of lnN
C

and the constant T in ∆1(Pe1, ǫ).

By doing this we are fixing N2 which means any further asymptotic will be using

N1,which turns out to be enough.

l1 <
lnM

C(1 − 2ǫ)
+ ∆′

1(Pe1, ǫ,T)

In the second phase will be asking for the correctness of the super message rather

than parts of it. We would have corresponding duration expression as

l2 <
− lnPRA
D(1 − ǫ)

+ ∆2(PAR, ǫ) + T

So the duration of a trial can be bounded as

l0 <

(

lnM

C
−

lnPRA
D

)

1

1 − 2ǫ
+ ∆(PAR, ǫ,T) (5.20)

8The Author was not initially aware of the work [11]; the results are derived independently.

54



where the function ∆(PAR, ǫ,T) is function determined by transition probabilities.

Following almost same steps we got the same result as equation (5.18)

Theorem 4. For any DMC, with an error free feedback channel of rate C or higher

of finite delay T, ∀δ > 0, there exist a coding scheme such that for all M > 1 and

∀Pe > 0 the expected decoding time E [τ ] is upper bounded as follows

E [τ ] ≤
1

1 − δ

(

lnM

C
−

lnPe
D

+ ∆(δ,T)

)

(5.21)

where ∆ is a function determined by transition probabilities.

This result shows the sufficiency of a noiseless feedback capacity C. We have no

result saying that feedback channels with smaller capacity will not be able to reach

the same exponent. But it is plausible that C is also the necessary amount. Before

starting the second phase the transmitter needs to know estimate at the receiver, and

this requirement will introduce extra delay unless the feedback link has a rate equal

to C, at least for the set of generalized coding schemes we have used here to prove

the achievability. For rates smaller then C, one can make an optimization with the

sphere packing exponent, by demanding a rate that is strictly smaller then C, for

phase 1.
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Chapter 6

Preliminaries Concepts for Cost

Constraint Case

6.1 Capacity and Detection Exponent Under Cost

Constraint

The mutual information between input and output of a DMC channel with probability

transition matrix P and input distribution φ can be written as the minimum of a

convex function over a compact set as follows.

I(φ,P) =

K,L
∑

k=1,l=1

φkPkl ln
Pkl

∑K
j=1 φjPjl

= min
ψ

K,L
∑

k=1,l=1

φkPkl ln
Pkl
ψl

(6.1)

where ψ is constrained to be a probability mass function.

The capacity is C = maxφ I(φ,P). Consequently it can be written as

C = max
φ

min
ψ

L(φ, ψ) L(φ, ψ) =
∑

k,l

φkPkl ln
Pkl
ψl

Note that L is convex in ψ and concave in φ. Since both φ and ψ are probability

mass functions we also have compact set constraints. Thus it is known1 that L has a

1Bertsekas [16] Saddle Point Theorem, Proposition 2.6.9 (case 1), pp151
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saddle point and the min-max is equal to the max-min, i.e.,

C = min
ψ

max
φ

K,L
∑

k=1,l=1

φkPkl ln
Pkl
ψl

Using the fact that φ is a probability mass function

C = min
ψ

max
k

∑

l

Pkl ln
Pkl
ψl

It is easy to see that C =
∑

l Pkl ln
Pkl

P

j φ
∗

jPjl
for all values of k such that φ∗

k > 0 for

the capacity achieving distribution φ∗.

Similar results exists for the cost constraint case. The cost constrained capacity

is

C(P) = max

φ
∑

k=1Kφkρk ≤ P

K,L
∑

k=1,l=1

φkPkl ln
Pkl

∑K
r=1 φrPrl

We can include cost constraint in the maximized expression it self,

C(P) = max
φ

min
γ≥0

(

K,L
∑

k=1,l=1

φkPkl ln
Pkl

∑K
r=1 φrPrl

+ γ(P −
K
∑

k=1

φkρk)

)

Using equation (6.1)

C(P) = max
φ

min
γ≥0

min
ψ

∑

k,l

φk

(

Pkl ln
Pkl
ψl

+ γ(P − ρk)

)

C(P) = max
φ

min
γ≥0,ψ

L(φ, ψ, γ)

L(φ, ψ, γ) =
∑

k

φk

(

∑

l

Pkl ln
Pkl
ψl

+ γ(P − ρk)

)

Since the set of γ ≥ 0 is not compact we can not apply the argument used for

capacity. But it is known2 that L has a saddle point if φ has a compact set constraint,

2Bertsekas [16] Saddle Point Theorem, Proposition 2.6.9 (case 2), pp151
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and there exists a φ0 with a corresponding R such that {(ψ, γ)|L(φ0, ψ, γ) < R} is a

non-empty compact set. Indeed this condition is just the existence of a probability

mass function that satisfies the cost constraint. Provided that we do not have an

impossible cost constraint P, i.e., provided that P ≥ ρmin, this condition is satisfied.

Thus we can write the max-min as a min-max

C(P) = min
ψ

min
γ≥0

max
φ

∑

k

φk

(

∑

l

Pkl ln
Pkl
ψl

+ γ(P − ρk)

)

C(P) = min
ψ

min
γ≥0

max
k

∑

l

Pkl ln
Pkl
ψl

+ γ(P − ρk)

Also for every value of cost constraint P, there exists a γP such that

C(P) = min
ψ

max
k

∑

l

Pkl ln
Pkl
ψl

+ γP(P − ρk) (6.2)

If P is a non-trivial constraint,3 i.e. C(P) < C then γP > 0. Otherwise it will be

zero.

One can define the following parameters for the problem of binary detection using

a DMC with cost constraints.

Let us define Di as,

Di = max
j

L
∑

l=1

Pil ln
Pil
Pjl

(6.3)

This is the error exponent of a constrained binary detection problem in which

we are obliged to use the ith input letter for the hypothesis with higher probability.

Recall that D in the non-constrained case is given by,

D = max
i

Di

Similar to the cost constrained capacity one can define a cost-constrained detection

3This is equivalent to stating that none of the capacity achieving distributions satisfy the cost
constraint.
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problem.4

D(P) = max

φ
∑K

k=1 φkρk ≤ P

K
∑

k

φkDk (6.4)

The convexity concavity discussions are evident because of linearity, thus we can write

D(P) = min
γ≥0

max
φ

∑

k

φkDk + γ(P −
∑

k

φkρk)

D(P) = min
γ≥0

max
k

(Dk − γρk) + γP

Also for every value of cost constraint P, there exist a γP such that

D(P) = max
k

(Dk − γPρk) + γPP (6.5)

Similar to the cost constrained capacity case, if P is a non-trivial constraint, i.e.

D(P) < D then γP > 0, else γP will be zero.

6.2 Cost Constraint For Variable Decoding Time

Systems

In order to be able to adopt the variable decoding time nature of the system we will

relax our cost constraint from a fixed total power constraint to an expected power

constraint. Thus we will put restrictions on the expected energy that is used in

terms of the expected time of the transmission. The expected energy needed for

transmission of one message will be E [Sτ | F0]. So the cost constraint transmission

will mean the set of transmissions satisfying E [Sτ | F0] ≤ PE [τ | F0]. We write the

expected energy spend as the expectation of the energy per use of the channel; this

allows an uneven distribution of the expected energy and its time average between

the different decoding times. Thus some of the possible decoding paths might have

4Although we are using the words ‘capacity’, or ‘detection’, indeed we are just defining minimiza-
tion/maximization problems for probability mass functions with set constraints their operational
meaning will be clear when we prove the relevant theorems for the corresponding problems.
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an average power that might be very large or small when compared to the average

constraint we had.

In order to measure the energy spent up to the decoding time, we will define a

stochastic sequence, Sn which is the sum of energies of all the input symbols used

until the decoding time. Evidently we need to know what the true message is in order

to calculate the value of Sn. Thus Sn, is not a random variable that is measurable

in Fn, however it is a random variable that is measurable in Gn. The constraint

on Sn is in terms of the expected value of Sn, E [Sτ ], which is measurable in the

filtration F . Being more specific the expectation will average over the messages at

each decoding point, with the weights being a posteriori probabilities, consequently

resulting quantity will be measurable in F . In short although the actual energy used is

not a quantity that is known at the receiver, i.e., it is not measurable in the filtration

F , we are not interested in that since we are considering constraints on expected

power. A more detailed explanation of this fact can be as follows.

Let the random variable Sn(i) be the cost for the codeword that corresponds to

ith message up to and including time n. Since we know the part of the codewords up

to time n for each messages at the receiver, when we know fn, we can calculate Sn(i)

at the receiver at time n. Thus Sn(i)’s are measurable in Fn and the expected cost

at some fn ∈ Fn can be written as

E [Sn| Fn = fn] =

M
∑

i

pi(fn)Sn(i)

where pi(fn) is the a posteriori probability of the ith message defined previously. Since

we can be at fn with different θ’s, the expected energy given fn is an average over

messages. Similarly we can define the total expected energy E [Sτ ] where τ is the

decoding time.

Let us calculate the expected value of Sn+1 given fn Note that

E [Sn+1| fn+1] =
M
∑

m=1

pm(fn+1)Sn+1(m)
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E [Sn+1| fn+1] =
∑

m

Sn+1(m)
pm(fn)p(l|m)

p(l)

E [Sn+1| fn] =
∑

l

p(l)

(

∑

m

Sn+1(m)
pm(fn)p(l|m)

p(l)

)

E [Sn+1| fn] =
∑

l

(

∑

m

Sn+1(m)pm(fn)p(l|m)

)

E [Sn+1| fn] =
∑

m

pm(fn)Sn+1(m)

E [Sn+1| fn] = E [Sn| fn] +
∑

m

pm(fn)
∑

k

w(k|m)ρk

Thus

E [Sn+1| Fn] = E [Sn| Fn] +
∑

m

pm(fn)
∑

k

w(k|m)ρk (6.6)
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Chapter 7

Preliminary Discussions For Cost

Constrained Case

7.1 Basic Lemmas For Cost Constraint Case

We have established constraints on the ‘average’ change of entropy, but these con-

straints are blind to any cost that might be associated with the input letters. Now we

will establish bounds on the expected change of entropy together with the expected

change in the energy that has been used. Similar to the case without costs, we should

interpret the conditional expectations as functions of the conditioned quantity, thus

the following lemmas are valid for all realizations, fn of Fn.

Let us define a stochastic sequence as follows

V P
n = Hn + γPE [Sn| Fn] (7.1)

Note that V P
n is measurable in Fn and using equation (6.2), one can bound the

expected decrease in V P
n in one unit of time.

Lemma 8. ∀n ≥ 0, and ∀P ≥ ρmin we have the inequality,

E
[

V P
n − V P

n+1

∣

∣Fn

]

≤ C(P) − γPP (7.2)
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where the cost constrained capacity C(P) is given by

C(P) = max

φ
∑K

k=1 φkρk ≤ P

K,L
∑

k=1,l=1

φkPkl ln
Pkl

∑K
r=1 φrPrl

Proof:

Using equation (B.1) which is proved in the course of proving Lemma 2,

E [Hn −Hn+1| Fn = fn] ≤ min
ψ

L
∑

l=1

M
∑

i=1

K
∑

k=1

pi(fn)w(k|i)Pkl ln
Pkl
ψl

Together with Equation (6.6), this will lead to

E
[

V P
n − V P

n+1

∣

∣Fn = fn
]

≤ min
ψ

∑

i

pi(fn)

(

∑

l

∑

k

w(k|i)Pkl ln
Pkl
ψl

− γs
∑

k

w(k|i)ρk

)

= min
ψ

∑

i

∑

k

pi(fn)w(k|i)

(

∑

l

Pkl ln
Pkl
ψl

− γsρk

)

≤ min
ψ

max
k

(

∑

l

Pkl ln
Pkl
ψl

− γsρk

)

= C(P) − γPP

where we have used equation (6.2) in the last equality.

QED

Let us define a stochastic sequence that will be a more accurate tool to handle

small values of entropy as follows

WP
n = lnHn + γPE [Sn| Fn] (7.3)

Note that WP
n is measurable in Fn and using the equation (6.5) one can bound the

expected decrease in WP
n in one unit of time.
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Lemma 9. ∀n ≥ 0, and ∀P ≥ ρmin we have the inequality

E
[

WP
n −WP

n+1

∣

∣Fn

]

≤ D(P) − γPP (7.4)

where

D(P) = max

φ
∑K

k=1 φkρk ≤ P

K
∑

k=1

φkDk and Dk = max
j

L
∑

l=1

Pkl ln
Pkl
Pjl

Proof:

Using equation (3.9)

E [lnHn − lnHn+1| Fn]≤ max
i

L
∑

l=1

p(l) ln
p(l)

p(l|i)

= max
i

∑

l

(

∑

k,j

pj(fn)w(k|j)

)

Pkl ln

∑

k,j pj(fn)w(k|j)Pkl

p(l|i)
∑

k,j pj(fn)w(k|j)

where
∑

k w(k|j) = 1,
∑

j pj(fn) = 1 thus
∑

k,j pj(fn)w(k|j) = 1.

Using the log sum inequality

≤ max
i

∑

l

∑

k,j

pj(fn)w(k|j)Pkl ln
pj(fn)w(k|j)Pkl
p(l|i)pj(fn)w(k|j)

= max
i

L
∑

l

K,M
∑

k,j

pj(fn)w(k|j)Pkl ln
Pkl
p(l|i)

=
∑

k,j

pj(fn)w(k|j) max
i

∑

l

Pkl ln
Pkl
p(l|i)

Using the convexity of Kullback-Leibler divergence together with the fact
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p(l|i) =
∑

k w(k|i)Pkl

≤
∑

k,j

pj(fn)w(k|j) max
r

(

∑

l

Pkl ln
Pkl
Prl

)

=

K,M
∑

k=1,j=1

pj(fn)w(k|j)Dk

Using the definition of WP
n,together with equation (6.6) we get

E
[

WP
n −WP

n+1)
∣

∣Fn = fn
]

≤

K
∑

k=1

M
∑

j=1

pj(fn)w(k|j)(Dk − γPρk)

≤ max
k

Dk − γPρk

= D(P) − γPP

where we have used equation (6.5) in the last equality.

QED

7.2 Trivial Extensions of the case without cost con-

straint

Before starting the analysis of the case with cost constraint we will discuss some

trivial cases and exclude them from the analysis for both converse and achievability.

Let us first note that if P ≥ ρmax then the cost constraint does not introduce any

restriction on the coding algorithms or decoding rules that can be used, it does not

effect the converse either. Thus this case will be equivalent to that there are no-cost

constraint.

The other evident case is when P = ρmin, i.e. E [Sτ ] ≤ ρminE [τ ]. It is evident

that no letter with ρi > ρmin can ever be used. Thus we are strictly restricted to the

set of input letters whose costs are ρmin. This means that we have an equivalent of

the problem without cost constraint for a smaller set of input letters, i.e., using one
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or other element of the set does not cost us more or less energy. It is worth noting

that this ‘awkward’ discontinuity of the characteristics at P = ρmin, is a result of the

way we impose the cost constraint. If we had allowed a ‘negligible’ extra cost that

vanishes ‘asymptotically’ we would reach a characteristics that is equal to the limits

of the characteristics as P goes to zero.

Our last consideration will be on the costs, ρi, and the constraint P. Our con-

straint is an additive constraint of the form E [Sτ ] ≤ PE [τ ]. Thus following two

constraints are equivalent

• E [Sτ ] ≤ PE [τ ]

• E [Sτ − ρminτ ] ≤ (P − ρmin)E [τ ],

In other words if we subtract ρmin both from the letter costs, and constraint we get an

equivalent problem. Because of this equivalence, we henceforth assume that ρmin = 0.
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Chapter 8

Converse With Cost Constraint

Theorem 5. Consider any generalized block code with M > 2, Pe > 0, and P >

0, for any DMC with feedback, such that 1E [Sτ ] ≤ PE [τ ] the expected number of

observations E [τ ] satisfies the inequality

E [τ | F0] ≥ min
0≤<PA,PB≤ρmax

max{V1,V2}

where

V1 =
lnM − Pe(lnPe + lnM + 1) lnM − 1

C(PA)
−

lnPe + F + ln(lnM − lnPe + 1)

D(PB)

V2 =
PA
P

lnM − Pe(lnPe + lnM + 1) lnM − 1

C(PA)
−

PB
P

lnPe + F + ln(lnM − lnPe + 1)

D(PB)

When proving converse results it is important to have constraints as weak as

possible. Accordingly we have not even put a constraint on the expected energy at

each decoding time, our constraint is on the expected amount of energy that is spent

for one message. Being more specific, under this constraint it is possible to have

decoding points, at which expected energy spent up until that time, is much higher

then the product of power constraint and time.

Proof:

1Remember our reasoning that leads to the assumption ρmin = 0.
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Note that if E [τ | F0] = ∞ then the theorem holds trivially. Therefore we will

assume E [τ | F0] <∞.

Using the generalized Fano inequality, together with the Markov inequality we have

already shown that, for any δ > 0,

E [Hτ ] ≥ δP [Hτ > δ] P [Hτ > δ] ≤ Pe
lnPe + lnM + 1

δ
(8.1)

In filtration F , define a stopping time tδ by

tδ = min{n|Hn ≤ δ}

Clearly τδ = τ ∧ tδ is also a stopping time, and τδ ≤ τ for all realizations of F .

We will start by lower bounding E [τδ]. Let us find an upper bound on E [Hτδ | F0]

first.

E [Hτδ | F0] = E
[

HtδI{τ≥tδ} +Hτ I{τ<tδ}

∣

∣F0

]

= E
[

HtδI{τ≥tδ}

∣

∣F0

]

+ E
[

Hτ I{τ<tδ}

∣

∣F0

]

≤ E
[

δI{τ≥tδ}
∣

∣F0

]

+ E
[

lnMI{τ<tδ}

∣

∣F0

]

= δP [τ ≥ tδ| F0] + lnMP [τ < tδ| F0]

≤ δ + lnMP [Hτ > δ| F0]

Using equation (8.1) and setting δ = 1

E [Hτ1 | F0] ≤ 1 + Pe(lnPe + lnM + 1) lnM (8.2)

Consider the following stochastic sequence

ξn = Hn + γPA
E [Sn| Fn]
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Note that as a result of Lemma 8

E [ξn − ξn+1| Fn] ≤ C(PA) − γPA
PA

Note that |ξn| ≤ γPA
ρmaxn+ lnM and by our initial assumption E [τ | F0] <∞.

Thus we can apply the Lemma 5, part 3, for ξn,τ1 and τ

(C(PA) − γPA
PA)E [τ1| F0] ≥ E [lnM − (Hτ1 + γPA

Sτ1)| F0]

C(PA)E [τ1| F0] ≥ lnM−Pe(lnPe+lnM+1) lnM−1+γPA
E [PAτ1 − Sτ1 | F0] (8.3)

Now we will find a lower bound on E [τ − τ1| F0]. As a result of Lemma 4 and the

definition of τδ, Hτ1 ≥ e−F, so lnHτ1 ≥ −F, and thus E [lnHτ1 | F0] ≥ −F.

Because of the generalized Fano inequality we have

E [Hτ | F0] ≤ Pe(lnM − lnPe + 1)

Taking the logarithm of both sides we get

lnE [Hτ | F0] ≤ lnPe + ln(lnM − lnPe + 1)

Using Jensen’s inequality and the concavity of ln(·) we get

E [lnHτ | F0] ≤ lnE [Hτ | F0] ≤ lnPe + ln(lnM − lnPe + 1) (8.4)

Consider the stochastic sequence, νn given by

νn = lnHn + γPB
E [Sn| Fn]

As a result of Lemma 9,

E [νn − νn+1| Fn] ≤ D(PB) − γPB
PB
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As a result of Lemma 4 |νn| < (γPB
ρmax + F)n + ln lnM , also by assumption

E [τ | F0] <∞. Then using lemma 5, part 5, for νn, τ1 and τ we get

(D(PB) − γPB
PB)E [τ − τ1| F0] ≥ E [(lnHτ1 + γPB

Sτ1) − (lnHτ − γPB
Sτ )| F0]

D(PB)E [τ − τ1| F0] ≥ −F−lnPe−ln(lnM−lnPe+1)+γPB
E [PB(τ − τ1) − (Sτ − Sτ1)| F0]

(8.5)

It is worth mentioning that equations (8.3) and (8.5) are both valid for any value of

PA ≥ 0 and PB ≥ 0. The cost constraint is

E [Sτ | F0] ≤ PE [τ | F0]

Noting evident facts

E [τ | F0] = E [τ1| F0] + E [τ − τ1| F0] E [Sτ | F0] = E [Sτ1 | F0] + E [Sτ − Sτ1 | F0]

There must exist a (PA,PB) , 0 ≤ PA,PB ≤ ρmax satisfying the following three

relations;

E [Sτ1 | F0] ≤ PAE [τ1| F0]

E [Sτ − Sτ1 | F0] ≤ PBE [τ − τ1| F0]

E [Sτ | F0] ≤ PAE [τ1| F0] + PBE [τ − τ1| F0] = PE [τ | F0] (8.6)

Inserting these in equation (8.3) and equation(8.5) we get

C(PA)E [τ1| F0] ≥ lnM − Pe(lnPe + lnM + 1) lnM − 1

D(PB)E [τ − τ1| F0] ≥ −F − lnPe − ln(lnM − lnPe + 1)
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Thus we know that E [τ | F0] should satisfy,

E [τ | F0] ≥
lnM − Pe(lnPe + lnM + 1) lnM − 1

C(PA)
−

lnPe + F + ln(lnM − lnPe + 1)

D(PB)
(8.7)

Also as a result of equation(8.6), we have

E [τ | F0] ≥
PA
P

lnM − Pe(lnPe + lnM + 1) lnM − 1

C(PA)
−
PB
P

lnPe + F + ln(lnM − lnPe + 1)

D(PB)
(8.8)

We can conclude that there exist an (PA,PB) pair such that equations (8.7) and

(8.8) are both satisfied, which immediately leads to the assertion of the theorem.

QED

Note that as a result of theorem

1 ≥ min
0≤PA,PB∈≤P

max

{

V1

E [τ | F0]
,

V2

E [τ | F0]

}

Thus there exist a (PA,PB) pair such that

1 ≥
V1

E [τ | F0]
and 1 ≥

V2

E [τ | F0]

This is equivalent to saying that an (PA,PB) pair exists such that

− lnPe − F − ln(lnM − lnPe + 1)

E [τ | F0]
≤ D(PB)

(

1 −
1

C(PA)

lnM − Pe(lnPe + lnM + 1) lnM − 1

E [τ | F0]

)

− lnPe − F − ln(lnM − lnPe + 1)

E [τ | F0]
≤

D(PB)P

PB

(

1 −
PA

PC(PA)

lnM − Pe(lnPe + lnM + 1) lnM − 1

E [τ | F0]

)

In order to have a sequence of coding/decoding schemes at a rate R, we need to have,

lim inf
Pe→0

lnM

E [τ | F0]
= R. Using this fact and little bit of algebra here and there we can

conclude that

E(R) ≤ lim sup
Pe→0

− lnPe
E [τ | F0]

≤ max
PA,PB

min

{

D(PB)

(

1 −
R

C(PA)

)

,D(PB)
P

PB

(

1 −
PA
P

R

C(PA)

)}

(8.9)

We will discuss some properties of the solution of this maximization problem after
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proving the achievability.
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Chapter 9

Achievability With Cost Constraint

We will use a scheme based on the one proposed by Yamamoto and Ito in [17]. We

will prove that for all 0 ≤ PA,PB ≤ ρmax a coding algorithm exists satisfying the

cost constraint E [Sτ | F0] ≤ PE [τ | F0] and having an expected decoding time upper

bounded by a function whose main terms are same as the main terms of max{V1,V2}.

Thus the result of the maximization problem stated in the previous section is indeed

asymptotically achievable. Using this we will be able to specify what the reliability

function is for generalized block code under cost constraint with perfect feedback.

Our scheme might have an auxiliary waiting phase in which the transmitter will

just send a zero cost input letter.1 This phase will ensure that the average power

constraint is satisfied for the given reference average power pair (PA,PB).

Phase1:

Similar to the case without cost constraint, the coding theorem states that, ∀PA ≥ 0,

∀Pe1 > 0, and ǫ > 0 and ∀M there exists a codebook of length l1,

l1 ≤
lnM

C(PA)(1 − ǫ)
+ ∆1(PA, Pe1, ǫ) (9.1)

whose codewords have costs S1 ≤ PAl1, where ∆1(Pe1, ǫ,PA) is a function that is

determined by the transition probabilities and S1 is the amount of energy needed for

1Remember our discussion about ρmin and resulting assumption that ρmin = 0.
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any θ = [1, . . . ,M ]. Thus we also have

S1 ≤ PA
lnM

C(PA)(1 − ǫ)
+ PA∆1(PA, Pe1, ǫ) (9.2)

Similar to the case without cost constraint we have an estimate at the end of this

phase.

Phase 2:

Let φPB
be the input distribution that satisfies

K
∑

i=1

φPB
(i)Di = D(PB)

K
∑

i=1

φPB
(i)ρi ≤ PB

Then we will define a subset of the input letters ΞPB
as

ΞPB
= {i|φPB

(i) > 0}

and we will have |ΞPB
| sub detections. If all of these detections result in an acceptance

then we will decide that the estimate we had as a result of the first phase is true,

else we will ask for a retransmission. The A → R and R → A probabilities of the

ith input letter will be denoted by PAR(i), and PRA(i) respectively. Then the rule on

overall acceptance and rejection will lead to

PAR ≤
∑

i∈ΞPB

PAR(i) PRA =
∏

i∈ΞPB

PRA(i)

For a given upper bounds for PAR and PRA, we will chose the corresponding upper

bounds on PAR(i) and PRA(i) as follows,

PRA(i) ≤ PRA
φPB

(i)Di

D(PB) PAR(i) ≤
PAR
|ΞPB

|
(9.3)

Using lemma 7 we can find an upper bound on minimum duration of each sub de-

tection problem for equation (9.3), as we did for the case without cost constraints.

For each element i ∈ ΞPB
we will send the input letter i itself for acceptance and the
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letter κ(i) for rejection where

Di = max
j

D(Pil||Pjl) = D(Pil||Pκ(i)l)

∀i ∈ ΞPB
using equation (5.15), ∀PRA(i) > 0, ∀PAR(i) > 0 we can upper bound l2(i),

as follows ∀ǫ > 0,

l2(i) <
− lnPRA(i)

Di(1 − ǫ)
+ ∆i

2(PAR(i), ǫ)

Using the equation (9.3), ∀ǫ > 0, ∀PRA > 0, ∀PAR > 0, ∀PB ≥ 0

l2(i) < φPB
(i)

− lnPRA
D(PB)(1 − ǫ)

+ ∆i
2(PAR, ǫ)

Using l2 =
∑

i∈ΞPB
l2(i) we can calculate an upper bound on l2 and energies required

for acceptance and rejection for a (PRA, PAR) pair,

l2 <
− lnPRA

D(PB)(1 − ǫ)
+∆2(PB, PAR, ǫ) ∀ǫ > 0, ∀PRA > 0, ∀PAR > 0, ∀PB ≥ 0 (9.4)

The acceptance and the rejection costs will then be given respectively by

S2A =
∑

i∈ΞPB

l2(i)ρi ≤ −PB
lnPRA

D(PB)(1 − ǫ)
+ ∆∗

2(PB, PAR, ǫ)

S2R =
∑

i∈ΞPB

l2(i)ρκ(i) ≤
∑

i∈ΞPB

l2(i)ρmax ≤ ρmaxl2

Similar to Phase 1, we can calculate the energy spent in this phase, but only as an

expected value over the two cases about the estimate, i.e., the case where the estimate

is true and the case where it is wrong.

E [S2] = Pe1S2R + (1 − Pe1)S2A

E [S2] ≤ PB
lnPRA

D(PB)(1 − ǫ)
+ PB∆∗

2(PB, PAR, ǫ) + ρmaxl2Pe1 (9.5)

Considering the four possible outcomes of a trial and the rules governing the overall
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process we can write expressions for retransmission probability Pη and error proba-

bility Pe

Pη = Pe1(1 − PRA) + (1 − Pe1)PAR Pe =
Pe1PRA
1 − Pη

As in the case without cost constraints we will make substitutions for Pe1 and PAR

Pe1 =
S

ρmax

δ

2
PAR =

δ

2

Assuming2 also δ ≤ 2/3

Pη ≤ δ Pe ≤
δ

2(1 − δ)
PRA ≤ PRA

Then we can argue that there exist a function ∆(P,PA,PB, δ, ǫ) determined by tran-

sition probabilities and costs, such that following relations hold for ant S > 0.

l1 + l2 ≤

(

lnM

C(PA)
−

lnPe
D(PB)

)

1

1 − ǫ
+ ∆(P,PA,PB, δ, ǫ) (9.6)

E [S1 + S2] ≤

(

PA
lnM

C(PA)
+ PB

lnPe
D(PB)

)

1

1 − ǫ
+ P∆(P,PA,PB, δ, ǫ) + Pl2

δ

2
(9.7)

Phase 3

We will let l3 be

l3 =

(

max

{

lnM

C(PA)
−

lnPe
D(PB)

,PA
lnM

C(PA)
+ PB

lnPe
D(PB)

}

+ ∆

)

(1 + δ/2) − l1 − l2

Note that because of equation (9.6) and equation (9.7), the condition on l3, being

positive, is satisfied. Thus

l0 = max

{

lnM

C(PA)
−

lnPe
D(PB)

,PA
lnM

C(PA)
+ PB

lnPe
D(PB)

}

(1 + δ/2) + ∆(1 + δ/2)

S0 ≤ Pl0

2Remember the discussion about P , i.e., if P ≥ ρmax we have a trivial cost constraint which is
equivalent to having none. Thus we investigate the case for P < ρmax. Also it can be seen easily by
a little algebra that the theorem holds for P ≥ ρmax.
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Note that

E [τ ] =
l0

1 − Pη
≤

l0
1 − δ

E [Sτ ] =
S0

1 − Pη

Thus ∀P > 0, ∀ǫ > 0 and ∀δ > 0 there exists a coding algorithm which satisfies

E [Sτ ] ≤ PE [τ ] such that

E [τ ] ≤
1 + δ/2

(1 − δ)(1 − ǫ)
max

{(

lnM

C(PA)
−

lnPe
D(PB)

)

,

(

PA
P

lnM

C(PA)
+

PB
P

lnPe
D(PB)

)}

+∆(1+δ/2)

where ∆ = ∆(P,PA,PB, δ, ǫ) is a function determined by transition probabilities and

input letter costs.

Going through similar analysis as we did for case with out cost constraint we

can easily extend this discussion to the finite delay feedback systems, with restricted

feedback channel capacity. As a result we get the following theorem

Theorem 6. For any DMC with cost constraints and an error free feedback channel

of rate C or higher of finite delay T, ∀S > 0, ∀δ > 0, and for all (PA,PB) such that

0 ≤ PA,PB ≤ ρmax, there exist a coding scheme such that for all M > 1 and ∀Pe > 0

the expected decoding time E [τ ] is upper bounded as follows

E [τ ] ≤
1

1 − δ
max

{(

lnM

C(PA)
−

lnPe
D(PB)

)

,

(

PA
P

lnM

C(PA)
+

PB
P

lnPe
D(PB)

)}

+∆(P,PAPB,T, δ)

(9.8)

where ∆ is a function determined by transition probabilities and costs of input letters.

This result together with the converse and previous discussions about P give us

the expression for the reliability function for any P > 0 as follows:

E(R) = max
PA,PB

min {W1(PA,PB)W2(PA,PB)} (9.9)

where

W1(PA,PB) = D(PB)

(

1 −
R

C(PA)

)

W2(PA,PB) = D(PB)
P

PB

(

1 −
PA
P

R

C(PA)

)
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Even without knowing anything specific about the channel or the constraint we can

describe the region where the reliability function lies, and some other properties as

follows.

If we look at the operating point for an even distribution of power which is equal

to the average power constraint, i.e., (PA,PB) = (P,P), we get a lower bound on the

reliability function.

E(R) = max
PA,PB

min {W1(PA,PB)W2(PA,PB)}

≥ min {W1(P,P)W2(P,P)}

= D(P)

(

1 −
R

C(P)

)

Similarly the case without cost constraints is an upper bound, which can also be

seen algebraically as follows

E(R) = max
PA,PB

min {W1(PA,PB)W2(PA,PB)}

≤ max
PA,PB

W1(PA,PB)

≤ W1(ρmax, ρmax)

= D

(

1 −
R

C

)

We know that Pe > 0 if R > C. Similar fact will follow the converse theorem that will

be proved int the next section for the cost constraint case, i.e., Pe > 0 if R > C(P).

Thus

E(R) = 0 ∀R > C(P)

Note that

W1(PA,PB) = D(PB) W2(PA,PB) = D(PB)
P

PB

Using the concavity and positivity of D(P) function we can conclude that

E(R) ≤ D(P)
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R

E(R)

C

D

C(P)

D(P)

Figure 9-1: Reliability Function Of a DMC with cost constraint.

Thus the reliability function should lie in the region that whose boundaries are given

by four identities we get. The typical shape of the region together with the reliability

function itself is as follows.
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Chapter 10

Zero Error Capacity

Our last topic is to consider the case when one or more transition probabilities are

zero, i.e., one or more Di’s are infinity. First we will show that the cost constraint ca-

pacity with perfect feedback, is equal to the cost constraint capacity without feedback.

This will also imply that zero error capacity is at most C(P). Then we will propose a

method based on the Yamamoto Itoh scheme that reaches the cost-constrained capac-

ity, C(P), with zero error probability, for all P > 0. The case P = 0 is investigated

later.

Theorem 7. For any DMC channel with feedback, under the cost constraint P, for

any Pe ≥ 0, the expected value of decoding time will satisfy

E [τ | F0] ≥
lnM − h(Pe) − Pe ln(M − 1)

C(P)

Note that this bound on expected decoding time is valid for any DMC. But it is

not as tight as Theorem 5 which is valid only for channels without zero transition

probabilities.

Proof:

Consider the the stochastic process

ξn = Hn + Sn + n(C(P) − γPP)
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We have already shown that |ξn| < Kn and ξn is a submartingale. Using lemma 5,

part 4, for ξn and τ we get

(C(P) − γPP)E [τ | F0] ≥ E [ξ0 − ξτ | F0]

C(P)E [τ | F0] ≥ E [lnM −Hτ | F0] + γPE [Sτ − Sτ | F0]

Considering the condition E [Sτ | F0] ≥ E [Sτ | F0] this leads to

E [τ | F0] ≥
E [lnM −Hτ | F0]

C(P)

Using the generalized Fano inequality we get the required relation.

QED

As a result of the coding theorem without feedback, for any cost constraint P ≥ 0,

∀Pe1 > 0 and ǫ > 0 there exists a block code of length l1,

l1 ≤
lnM

C(P)(1 − ǫ)
+ ∆(P, Pe1, ǫ)

whose code words satisfy S1 ≤ Pl1.

In the second phase we we will either accept or reject the estimate of the receiver,

for a duration of l2. Let X = r be the input letter which has a zero transition

probability, i.e. say Pru = 0 and let X = a be an input letter whose transition

probability to u is non zero Pau = (1 − q) 6= 0. We will use X = r for rejection and

X = a for acceptance. If we observe a Y = u we would decide that the estimate is

true else will try once more. This will guarantee that PRA = 0, thus Pe = 0 also. The

expression for retransmission probability, Pη will be

Pη = Pe1 + (1 − Pe1)q
l2
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If we let Pe1 = δ
2

and ql2 = δ
2

then l2 = ln(δ/2)
ln q

then Pη < δ

l1 + l2 ≤
lnM

C(P)(1 − ǫ)
+ ∆(P, δ/2, ǫ) +

ln(δ/2)

ln q

S1 + S2 ≤ P
lnM

C(P)(1 − ǫ)
+ P∆(P, δ/2, ǫ) + ρmax

ln(δ/2)

ln q

Then we will have a phase 3, of duration

l3 =
ρmax
S

ln(δ/2)

ln q
− l2

It is evident at the end of phase 3, the energy spend, S0 = S1 + S2 + S3, satisfies the

average power constraint for all messages and realization, i.e.,

S0 ≤ Pl0

Also l0 is bounded as follows

l0 ≤
lnM

C(P)(1 − ǫ)
+ ∆(P, ǫ)

Using the fact

E [τ ] =
l0

1 − Pη
and E [Sτ ] =

S0

1 − Pη

Thus there exist a coding algorithm that satisfies the cost constraint such that

E [τ ] ≤
1

1 − Pη

lnM

C(P)(1 − ǫ)
+ ∆(P, ǫ, δ)

Theorem 8. For any DMC with cost constraints and an error free feedback channel

of rate C or higher of finite delay T, if there exists a vanishing transition probability

∀P > 0,∀δ > 0,there exists a coding algorithm such that

E [τ ] =
1

1 − δ

lnM

C(P)
+ ∆(P,T, δ) and E [Sτ ] ≤ PE [τ ]

with zero-error probability.
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Indeed this together with the converse says that, for any P > 0 zero-error capacity

under cost constraint, E [Sτ ] ≤ PE [τ ], is equal to cost constraint capacity C(S), if

there exist on zero transition probability.

For P = 0 case if there is only one letter with ρi = 0, then C(0) = 0. Thus

zero-error capacity is also zero under cost constraint P = 0 is also zero.

If there exist more than one input letters the C(0) > 0, but we are restricted to

set of input letters which has zero cost. If this restricted set has a zero transition

probability1 then zero error capacity will be equal to C(0). Indeed as mentioned

previously if we allow a ‘vanishing’ relaxation in the cost constraint, we will not have

this ‘discontinuity’ of the problem at P = 0. Zero error capacity at zero cost will be

just cost constraint capacity at zero cost, C(0).

1Here we are considering a restricted set of input letters, i.e., input letters which has zero cost,
and a restricted set of output letters, output letters that has a non-zero transition probability from
at least one of the element’s of the restricted input letters.
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Chapter 11

Conclusion

We have considered generalized block codes on a DMC with perfect feedback. Since

the decoding time is not fixed we can not use conventional definitions of rate and

error exponent. Instead we have used the following by replacing the block length

with its expectation

R =
lnM

E [τ ]
E(R) = −

lnPe
E [τ ]

For a DMC that does not have zero transition probabilities Burnashev,[2], showed

that the reliability function is just a straight line, of the form

E(R) = D

(

1 −
R

C

)

for the case with out cost constraint.

We have generalized his results to the cost constrained case. As it is done for rate

and error exponent, a conventional additive cost constraint is relaxed in a certain

sense, to be compatible with the variable nature of decoding time. In order to have

a more comprehensive set for admissible coding/decoding algorithms, instead of im-

posing a constraint on expected energy for all decoding instances, we only impose a

constraint on the expected energy of one message transmission, in terms of expected

decoding time. i.e.,

E [Sτ ] = PE [τ ]
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where E [Sτ ] is the expected value of the energy spent in one trial.1 This defini-

tion/approach will allow time an uneven average power distribution on different de-

coding points. We have shown that the reliability function of generalized block coding

schemes, ∀P > 0 under cost constraint, E [Sτ ] = PE [τ ] on a DMC with perfect feed-

back is given by;

E(R) = max
PA,PB

min

{

D(PB)

(

1 −
R

C(PA)

)

,D(PB)
P

PB

(

1 −
PA
P

R

C(PA)

)}

(11.1)

Also it is shown that with the coding scheme proposed by Yamamoto and Itoh,

[17], this reliability function is reached. We will use a code reaching cost-constraint

capacity C(P∗
A) and a simple sequence of binary signallings where P∗

A is the optimal

value of PA for the maximization problem given.

For a DMC that has zero transition probabilities Burnashev showed that zero

error capacity, with generalized block coding, is equal to the channel capacity without

feedback, C. We extended this result to the cost constraint case as follows. ∀P > 0

under the cost constraint E [Sτ ] = PE [τ ], zero-error capacity with generalized block

codes is equal to the cost constraint capacity without feedback, C(P).

Finally for the P = 0 case we conclude that both the zero-error rate problem and

the error exponent problem are equivalent to the corresponding problems without

cost constraint for a restricted set of input letters, namely the set of input letters

having a zero cost. This discontinuity of the problem is a result of the stringency

of the form of the cost constraint, i.e., E [Sτ ] ≤ PE [τ ]. If we allow a ‘vanishing’

additional cost than our result for P = 0, will just be the limits of the results for

P > 0 case, as expected.

1With the assumption ρmin = 0, validity of which has already been discussed.
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Appendix A

Proof of Lemma 5

Proof:

1. (νn,Fn) is a submartingale and |νn| < K ′n ∀n:

Because of equation(3.11), |νn| ≤ K ′n for K ′ = K + |R|, so E [νn] <∞ ∀n.

Because of equation(3.12) E [νn+1| Fn] ≥ νn; thus (νn,Fn) is a submartingale.

2. ξn = νn − νn∧τi is a submartingale and |ξn| < K ′′n ∀n

Note that one can write νn∧τi as

νn∧τi = ντiI{τi≤n} + νnI{τi>n}

Since τi is a stopping time with respect to the filtration F , I{τi≤n} is a

measurable random variable in Fn. Thus the random variables νn∧τi and ξn

are also measurable in Fn.

ξn = νn − ντiI{τi≤n} − νnI{τi>n}

= (νn − ντi)I{τi≤n}
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Now we can write the expression for the expected value of ξn+1

E [ξn+1| Fn] = E
[

(νn+1 − ντi)I{τi≤n+1}

∣

∣Fn

]

= E
[

(νn+1 − ντi)(I{τi≤n} + I{τi=n+1})
∣

∣Fn

]

If we add and subtract ξn within the expectation,

E [ξn+1| Fn] = E
[

ξn − (νn − ντi)I{τi≤n} + (νn+1 − ντi)(I{τi≤n} + I{τi=n+1})
∣

∣Fn

]

= ξn + E
[

(νn+1 − νn)I{τi≤n}
∣

∣Fn

]

+ E
[

(νn+1 − ντi)I{τi=n+1}

∣

∣Fn

]

= ξn + E [νn+1 − νn| Fn] I{τi≤n} + E
[

(νn+1 − νn+1)I{τi=n+1}

∣

∣Fn

]

Using submartingale property on νn and using the fact that the last term is 0.

E [ξn+1| Fn] ≥ ξn

It is evident that |νn| < K ′n implies, |ξn| < K ′′n for some K ′′. Thus

E [ξn] <∞ and (ξn,Fn) is a submartingale.

3. RE [τi| F0] ≥ E [Γ0 − Γτi | F0]:

Note that since E [τi] <∞ and |νn| ≤ K ′n ∀n, the conditions of theorem 6 in

[6] p250, will hold for νn and τi. Thus

E [ντi | F0] ≥ E [ν0| F0]

E [Rτ + Γτi| F0] ≥ ν0

RE [τi| F0] ≥ E [Γ0 − Γτi | F0]

4. RE [τf | F0] ≥ E
[

Γ0 − Γτf
∣

∣F0

]

:

This is the same as part 3 replacing τi with τf .

5. RE [τf − τi| F0] ≥ E
[

Γτi − Γτf
∣

∣F0

]

:
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Note that since E [τf ] <∞ and |ξn| ≤ K ′′n ∀n, the conditions of theorem 6

in [6] p250, will hold for ξn and τf . Thus

E
[

ξτf
∣

∣F0

]

≥ E [ξ0| F0]

Using the definition of ξn

E
[

ντf − ντf∧τi
∣

∣F0

]

≥ 0

Using the fact τf ≥ τi

E
[

ντf − ντi
∣

∣F0

]

≥ 0

As a result of definition of νn

E
[

(Rτf + Γτf ) − (Rτi + Γτi)
∣

∣F0

]

≥ 0

RE [τf − τi| F0] ≥ E
[

Γτi − Γτf
∣

∣F0

]

QED
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Appendix B

Alternative Proof Of Lemma 2

Proof:

We will first introduce a short hand that will also be used in the next proof.

fi = pi(fn) fi(l) = P [θ = i|Yn+1 = l,Fn = fn]

w(k|i) = P [Xn+1 = k| Fn = fn, θ = i] p(l|i) = P [Yn+1 = l| θ = i,Fn = fn]

Using the probabilistic relation of channel input and channel output

p(l|i) =
K
∑

k=1

w(k|i)Pkl p(l) =
M
∑

i=1

pi(fn)p(l|i) fip(l|i) = p(l)fi(l)
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Using the shorthand and above relations

E [Hn −Hn+1| Fn = fn] = E [Hn| Fn = fn] −E [Hn+1| Fn = fn]

= Hn −E [Hn+1| Fn = fn]

= −
M
∑

i=1

fi ln fi +
L
∑

l=1

p(l)
M
∑

i=1

fi(l) ln fi(l)

=

M
∑

i=1

L
∑

l=1

fip(l|i) ln
fi(l)

fi

=

M
∑

i=1

L
∑

l=1

fip(l|i) ln
p(l|i)

p(l)

= I(θ;Yn+1|Fn = fn) ≤ C

Or being more straightforward and doing the algebra for the last inequality

E [Hn −Hn+1| Fn = fn] = min
ψ

M
∑

i=1

L
∑

l=1

fip(l|i) ln
p(l|i)

ψl

= min
ψ

M
∑

i=1

L
∑

l=1

fi

K
∑

k=1

w(k|i)Pkl ln

∑K
k′=1w(k′|i)Pk′l

ψl
∑K

k′=1w(k′|i)

≤ min
ψ

L
∑

l=1

M
∑

i=1

K
∑

k=1

fiw(k|i)Pkl ln
w(k|i)Pkl
ψlw(k|i)

= min
ψ

L
∑

l=1

M
∑

i=1

K
∑

k=1

fiw(k|i)Pkl ln
Pkl
ψl

≤ min
ψ

max
k

L
∑

l=1

Pkl ln
Pkl
ψl

= C (B.1)

The first equality is just writing mutual information as a minimization over output

distributions which can be found in [1], the first inequality is a result of log-sum

inequality, and the second inequality is just because a weighted sum of some

quantity should be less then the maximum of weighted ones.

QED
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