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ABSTRACT

DUCTILE FRACTURE OF METALLIC MATERIALS THROUGH
MICROMECHANICS BASED COHESIVE ZONE ELEMENTS

Tandoğan, İzzet Tarık

M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Tuncay Yalçınkaya

September 2020, 137 pages

Gaining popularity after its coupling with the finite element method, cohesive zone

modelling has been used extensively to model fracture, especially in delamination

problems. Its constitutive relations, i.e. traction-separation laws, are mostly derived

phenomenologically without considering the physical mechanisms of crack initia-

tion and propagation. The approach could also be used for ductile fracture where

the micromechanics of the phenomenon is explained by nucleation, growth and co-

alescence of pores. In this context, the objective of the current thesis is to develop

and implement a cohesive zone modelling framework for ductile fracture in metallic

materials. In order to accomplish this, a micromechanics based traction-separation

relation which considers the growth of a physical pore is developed based on the

previous works in [1–3]. Tractions are directly represented as a function of pore

fraction, and its evolution is driven by separations. The model is implemented as

an intrinsic cohesive zone model in a two-dimensional (2D) setting. Implementa-

tion steps and methodology including the finite element framework are presented in

detail for mode-I, mode-II and mixed-mode fracture cases. The derivation of the

mixed-mode case leads to a yield function representation of tractions and separa-
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tions, instead of an explicit expression. Hence, an incremental implicit elasto-plastic

numerical integration scheme is developed to solve mixed-mode system of equations.

Implementation is validated by running tests with a single cohesive element. In ad-

dition, the framework is implemented as a user element subroutine in Abaqus (UEL)

and the numerical simulations are conducted with compact tension (CT) and single

edge notch (SEN) specimens to show the capability of the model and the influence

of the micromechanical parameters such as pore size and shape on the ductile crack

initiation and propagation. The work is concluded by presenting an outlook for the

usage of the model in micron sized specimens where the developed micromechani-

cal model presents a great potential in explaining certain deformation mechanisms in

high strength aerospace alloys.

Keywords: Cohesive Zone Model, Ductile Fracture, Porous Plasticity
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ÖZ

MİKROMEKANİK TEMELLİ KOHEZİF BÖLGE ELEMANLARI
YOLUYLA METALİK MALZEMELERDE SÜNEK KIRILMA

Tandoğan, İzzet Tarık

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Tuncay Yalçınkaya

Eylül 2020 , 137 sayfa

Sonlu elemanlar yöntemi ile beraber popülerlik kazanan kohezif bölge modellemesi,

çatlak modellemesi, özellikle katman ayrılması, için yaygın olarak kullanılmıştır. Ko-

hezif bölge modellerinin bünye denklemi, yani çekme-yer değiştirme eğrileri, çoğun-

lukla görüngüsel olarak çatlakların oluşması ve ilerlemesindeki fiziksel mekanizma-

lar dahil edilmeden türetilmektedir. Bu yaklaşım, mikromekanik olayların çekirdek-

lenme, büyüme ve porların birleşmesi ile açıklandığı sünek kırılma için de kullanıla-

bilir. Bunun için fiziksel bir porun büyümesini hesaba katan mikromekanik temelli bir

çekme-yer değiştirme eğrisi önceki çalışmalara dayanılarak geliştirildi [1–3]. Çekme

direk olarak por oranı cinsinden elde edildi ve por oranının değişimi yer değiştirmeye

bağlandı. Model iki boyutta içsel bir kohezif bölge modeli olarak uygulandı. Sonlu

elemanlar yönteminin uygulama aşamaları ve metodolojisi, mod-I, mod-II ve karı-

şık mod çatlakları için ayrıntılı olarak sunuldu. Karışık mod için türetme aşamaları

sonucunda açık bir gösterim yerine çekme ve yer değiştirmeleri içeren bir akma fonk-

siyonu elde edildi. Dolayısıyla, karışık mod doğrusal olmayan denklem sistemini çöz-

mek için örtük elastik-plastik bir numerik integrasyon düzeni kullanıldı. Uygulama,
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tek bir kohezif eleman ile testler yapılarak doğrulandı. Ayrıca model Abaqus içinde

kullanıcı eleman altprogramı (UEL) olarak uygulandı ve sünek çatlak başlaması ve

ilerlemesi üzerinde modelin kapasitesini ve por boyutu ve şekli gibi mikromekanik

parametrelerin etkisini göstermek için nümerik CT ve SEN modelleri ile simülasyon-

lar yapıldı. Çalışma, geliştirilen mikromekanik modelin yüksek mukavemetli havacı-

lık alaşımlarında belirli deformasyon mekanizmalarını açıklamada büyük bir potansi-

yel sunduğu gösterilerek ve modelin mikron boyutlu numunelerde kullanımına ilişkin

bir bakış açısı sunularak sonuçlandırılmıştır.

Anahtar Kelimeler: Kohezif Bölge Modeli, Sünek Çatlama, Porlu Plastisite
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CHAPTER 1

INTRODUCTION

Humans discovered how to use metals 9000 years ago, and it revolutionized our civ-

ilization. From there, the goal was to make better, stronger, and tougher materials.

With the idea of flying and the advent of aircraft, lighter was added to the equation.

Then came computers, electronics, microchips, and with them the need for smaller.

Today, humanity have come so far that the ideal material would be strong, tough,

light, small, resistant to heat, corrosion, radiation, but most importantly, ‘cheap’. Un-

fortunately, such material does not exist, but there is one material type that can have

most of these properties. They are used everywhere in the modern world, in build-

ings, tools, vehicles including ground, sea, air and space crafts, healthcare, industry,

and many more, and they are known as metallic alloys. Depending on the purpose of

their use, they undergo various production and manufacturing phases. Some of them

are lost in the process, damaged beyond repair or fractured. Those that survive may

be used in critical places, where failure of the part would be catastrophic. Therefore,

predicting the fracture of metallic materials is of high interest.

Fracture in metallic materials is mainly categorized into two: ductile and brittle frac-

ture. Brittle fracture is more catastrophic as it does not give any warning beforehand.

There is little to no plastic deformation, and crack can propagate at velocities be-

yond the speed of sound [5]. Whereas, in ductile fracture, there is excessive plastic

deformation before failure. Our interest is on ductile fracture. Essentially, plastic

deformation is used for the shaping of metals. From a manufacturer’s point of view,

understanding the state of ductile fracture present in the metal can greatly improve

efficiency. Therefore, significant effort has been made to model ductile fracture in

metals over the past several decades. It was known that the underlying physical
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mechanism for the initiation and propagation of ductile cracks in metallic materi-

als is the nucleation, growth and coalescence of micro-voids [6–10]. Voids nucleate

at inclusions and second phase particles due to particle-matrix interface decohesion

or particle cracking. Then, voids grow due to plastic deformation and coalesce by

necking of material between closely spaced voids or by localization of plasticity be-

tween separated voids, a mechanism that was reviewed rigorously [11–15]. This

microscopic physical mechanism eventually can be observed as macroscopic cracks

causing failure of the material. It is desired to model this phenomenon numerically.

There are various computational approaches in the literature to model ductile frac-

ture, each having merits and demerits. Some of them are covered in the following

paragraphs [16].

Discontinuous approaches, where cracks are physically modelled, i.e. there is an ac-

tual jump in the displacement field across crack faces. For example, ’element erosion’

is such an approach. In a finite element framework, discontinuity is introduced simply

by removing elements from the formulation which have exceeded their load-carrying

capacity. This removal is usually spread to several increments in order to have a better

convergence performance [17, 18]. An application in dual-phase steels was made by

modelling ductile fracture of ferrite [19]. Despite the ease of implementation and low

computational cost, this approach has problems such as mesh size and element shape

dependence, and mass loss [20]. Another example of discontinuous approaches is the

’enriched finite element’ methods. Most popular ones are Extended Finite Element

Method (X-FEM) [21], and Generalized Finite Element Method (GFEM) [22]. In

these methods, cracks can initiate and propagate at any location independent of the

mesh. Using enrichment functions, strong discontinuities such as cracks or holes [23],

or weak discontinuities like matrix/inclusion interfaces can be modelled [24]. How-

ever, as evidenced by the difference in the number of works in the literature, these

methods are more suitable for brittle fracture. Because the significant plastic defor-

mation of ductile fracture may impose a requirement for the modification of mesh,

which is against these methods’ main point. Another approach similar to element

erosion is mesh modification. Instead of removing elements, nodes can be dupli-

cated at the locations where a fracture criterion is met. Mediavilla et. al. [20] used

a nonlocal integral damage indicator, and Bouchard et. al. [25] used a stress-based
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criterion. Traction between the duplicated nodes can be released progressively over

several increments. Also, mesh refinement or mesh adaptation can be used to improve

the accuracy of simulations [26, 27]. A setback of these methods is the difficulty of

implementation, especially for 3D, and if different types and orders of elements are

involved. Finally, there are cohesive zone models (CZMs). Previous approaches

lack an accurate means to control the energy dissipation rate. CZMs achieve this

naturally by defining an initially zero thickness interface element at crack locations.

These elements can open up similar to a crack obeying a constitutive relation called

traction-separation law. This approach is discussed in more detail later on.

There are continuous approaches, where cracks or pores are not represented explic-

itly. Instead, they are included in phenomenological relations, and they influence the

damage and degradation of material in macro scale. The most widely used ones for

ductile fracture modeling are Continuum Damage Models (CDMs). The Lemaitre

model uses an effective stress definition with a damage variable D [28] to include

the effect of pores [29]. For the evolution of the damage variable, usually, empirical

laws are used. Differently, the most popular Gurson-Tvergaard-Needleman (GTN)

model [30, 31] and the Rousselier model [32] took a micromechanical approach to

the problem. As a result, a porosity variable appears explicitly in the yield function,

and the effect of the size and shape of pores can be induced. However, similar to

the Lemaitre model, they rely on phenomenological corrections or empirical laws to

provide accurate results in real-life applications. It was shown that as damage pro-

gresses, it localizes to a single layer of elements, causing mesh dependency [33].

Several methods in the literature address this problem. Namely, non-local integral

formulations, non-local implicit gradient formulations, strain gradient plasticity for-

mulations, and thick level-set method. Another continuous approach is multiscale

methods. In theory, it is possible to model a part’s whole microstructure to solve for

the macroscopic response. This is called a direct numerical simulation, DNS. How-

ever, it is not possible with today’s computational power. Because of that, multiscale

methods aim to obtain a macro-scale solution from micro-scale calculations; in other

words, homogenization. Gurson’s analytical approach to a spherical pore is analyt-

ical homogenization [30]. These are limited by the complexity of the geometry and

boundary conditions. There is also computational homogenization, where micro and
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macro-scale are solved simultaneously. Representative volume elements (RVEs) in

the micro-scale are used to obtain material laws on the macro-scale.

Another approach is the continuous-discontinuous transition (CDT). In most CDMs,

it is assumed that damage variable is small, a D above 0.5 is considered unrealistic

[29]. Similarly, there is a correction in GTN to boost pore growth when coalescence

becomes dominant [31]. Hence, CDMs should model the softening of the material up

to a certain point, after which a fracture mechanism is necessary. The objective here is

to relieve the damaged regions from the load. At first sight, the obvious strategy is to

combine continuous approaches like CDMs or multiscale methods with discontinuous

approaches like element erosion or enriched finite element methods. There are many

examples of this in the literature [34–41]. A more novel and recent approach is Phase-

Field (PF) methods, where a damage model, regularization technique and CDT model

exist in one theory. It can be seen as a optimization problem to minimize the potential

energy [42, 43]. Similar to before, there is a bulk variable from 0 to 1 describing the

damage. However, instead of sharp interfaces, cracks are weakly represented by this

continuous damage variable. The potential for brittle fracture includes elastic-plastic

energy and fracture energy. Due to ductile fracture complexities, an extension is done

by adding plastic potential energy to brittle fracture potential. This extension requires

additional considerations, and it is not straightforward. Hence, most of the literature

using PF is on brittle fracture. Some examples are [44–47]. Another novel approach

is the thick level-set (TLS) method. Like PF, instead of a sharp interface, there is a

transition zone between failed and undamaged material. This zone has a given length,

lc, and is imposed using an level-set (LS) function [48]. Unlike PF, TLS is coupled to

a CDM, so there is no PF potential function defined.

That was a short review of the methods used to model ductile fracture. From now

on, focus will be on cohesive zone modelling. It has been more than fifty years

since the first appearance of the cohesive zone concept by [49] and [50], which was

later described by [51]. After the pioneering work of [52], over the years, it has

been proven to be powerful in the modelling of fragmentation of materials when

coupled with the finite element method. With this approach, the fracture mechanism

is represented with interface elements or cohesive elements placed in-between the

bulk elements at potential separation locations. These cohesive elements initially
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Figure 1.1: Cohesive zone concept at the crack tip. Traction of crack surfaces, T, is a

function of crack face separation, δ.

have zero thickness. They can open up similar to a crack, and a traction-separation

law (TSL) governs their behavior while the bulk elements remain undamaged. In a

TSL, traction is a function of the displacement jump or separation. The concept of

a cohesive zone model is represented in Figure 1.1. It is assumed that at the crack

tip, there is a process zone or cohesive zone with a given length. In this zone, at the

front of the crack tip material is undamaged. Towards the back of the crack, as crack

opening increases, the material becomes more and more damaged. After a critical

separation, it becomes fully broken. At a point in the material where crack forms

and opposite faces separate, the material’s resistance to separation decreases with

increasing separation. This is based on the fact that the cohesive force between atoms

and molecules first increase, then decrease as they get further from stable position,

see Figure 1.2. The energy spent to separate the molecules is the energy required to

create a new crack surface. This phenomenon of separating molecules and creating

a fracture surface is phenomenologically represented by a Traction-Separation Law,

TSL, in cohesive zone modelling. There is no unique form of the traction-separation

law, and countless of them have been suggested in the literature. Based on atomic
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Figure 1.2: Repulsive and attractive forces with respect to distance between atoms.

binding energy calculations by Rose et al. [53,54], Xu and Needleman [55] suggested

an exponential form for normal traction versus normal separation. Bilinear being

the simplest one, exponential, polynomial, and trilinear forms exist; see Figure 1.3.

For ductile fracture, often exponential (Fig. 1.3(e)) and trilinear (Fig. 1.3(b)) forms

are used. The maximum traction, the area under the traction-separation curve, or

fracture energy, and the critical separation where the traction becomes zero are the

main characteristics of such laws. They are mainly divided into two forms, initially

elastic, or intrinsic, and initially rigid, or extrinsic. In the former, traction starts from

zero, increases to a non-zero value, then decreases, while in the latter, traction starts

from a finite value and then decreases (Fig. 1.3(f)). There are differences in their

implementation due to their nature, which will be discussed next.

Cohesive elements are zero-thickness surface elements that respond to loading ac-

cording to a TSL. These elements are inserted between other bulk elements in a finite

element mesh, where cracks are expected to form. For the case of intrinsic TSLs, im-

plementation is straightforward. Because cohesive elements can be inserted into the

potential crack paths before the analysis begins. However, this convenience comes
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Figure 1.3: Some common types of traction-separation laws. Bilinear (a), trapezoidal

(b), smooth trapezoidal (c), polynomial (d), exponential (e), linear softening (f).

together with a problem, namely, artificial compliance. Remember that in intrinsic

TSLs, there is an initial region where traction increases from zero to maximum. This

region has an elastic slope. This fact reduces the stiffness of the material and affects

the macroscopic response [56]. Therefore, it is advised that the elastic slope of the

TSL should be reasonably big. If it is too big, convergence problems can arise. A

way around is taking the slope as infinite and allowing separation of cohesive ele-

ments only when maximum traction is reached. This can be done by using Lagrange

multipliers [57], or in Abaqus software, multi-point-constraint (MPC) subroutine can

be used to tie nodes [58]. However, the implementation of it becomes cumbersome

when 3D and mixed-mode are involved. A built-in solution to artificial compliance is

extrinsic TSLs since they do not have an elastic slope (Fig. 1.3(f)). In extrinsic cohe-

sive zone models, cohesive elements are inserted during the analysis when a fracture

criterion is met. This approach is challenging to implement as it requires mesh ma-

nipulation during analysis. Nodes need to be duplicated to insert a cohesive element.

Another advantage of extrinsic CZM is that it is not necessary to know crack paths a

priori [59]. Whereas, if this is the case for intrinsic CZM, cohesive elements should

be inserted everywhere, but that makes the artificial compliance problem worse and

increases computational cost. Both approaches suffer from mesh dependency. Due to
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the fact that cracks can only form on cohesive elements, the crack path is hugely de-

pendant on mesh size. Hence, CZMs are very suited to problems where the crack path

is known. For example, interface debonding problems, i.e. matrix-inclusion debond-

ing or delamination in composites [60–63]. Still, recent developments showed that

mesh dependency could be solved by coupling CZM to advanced finite element meth-

ods. For example, [64] modeled 2D ductile fracture using CZM with X-FEM. There

is not a single correct form for the TSLs. This is an advantage of cohesive zone mod-

elling since it allowed researchers to introduce different physical mechanisms into

cohesive zone modelling. For example, a decay factor is introduced to diminish max-

imum traction under constant amplitude displacement cycling to model fatigue crack

growth [65]. Busto et al. [66] modelled fatigue by using an irreversible TSL with a

damage parameter and modelled hydrogen embrittlement by including hydrogen con-

centration coupled with a diffusion mechanism to penalize traction. Zhou et al. [67]

modelled dynamic crack propagation in brittle materials by making the critical sep-

aration, where tractions become zero, a function of crack tip velocity. Valoroso et

al. [68] modelled rate-dependency by amplifying the critical energy release rate with

a function. Banerjee and Manivasagam [69] proposed an effective triaxiality parame-

ter for mode-I to model ductile fracture at different stress states. Chanda and Ru [70]

related maximum traction of TSL to maximum fraction stress obtained from Johnson

and Cook model at a range of temperatures to model temperature dependant fracture

of pipeline steels. These examples show how the effect of some physical mecha-

nisms can be incorporated relatively easily. Of course, if desired, they can be directly

coupled to have a more physically accurate model [66, 71].

Cohesive traction separation laws may be derived by following theoretical, exper-

imental, or computational approaches. Here, some of the early theoretical works

and improvements will be discussed. Needleman [72] introduced a debonding po-

tential, φ, which was used to model inclusion debonding. This potential is a func-

tion of normal and tangential separations, φ(δn, δt, δb). Tractions are obtained sim-

ply by taking the derivative of φ with respect to δn, δt and δb. The motivation in

choosing the form of potential is to obtain a specific type of response in normal

traction, as stated by the author. The potential results in cubic-polynomial nor-

mal traction and linear tangential traction. Since tangential traction can increase
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endlessly, the model is limited to small shear separations. Later on, the same au-

thor [73] proposed a potential energy that agrees with the universal binding energy

[53]. Normal-tangential tractions are of exponential-periodic form. However, the

model does not include fracture parameters for mode-II and cannot describe mixed-

mode response. Beltz and Rice [74, 75] generalized [73] and introduced a length

scale parameter to make Tn satisfy a more logical boundary condition under mixed-

mode loading. However, this potential cannot be used for mode-II failure since tan-

gential traction is periodic. A one-dimensional effective displacement-based model

was introduced by Tvergaard [76]. Effective traction as a function of effective dis-

placement is given as, T (∆) = 27
4
σmax∆(1 − 2∆ + ∆

2
), which is same form as

the normal traction of [72], where σmax is maximum traction. Effective displace-

ment is ∆ =
√

(∆n/δn)2 + (∆t/δt)2, and tractions are given as Tn = T (∆)

∆
∆n

δn
,

Tt = T (∆)

∆
αe

∆t

δt
, where αe is associated with mode mixity, ∆n/t is normal/tangen-

tial separation, δn/t is normal/tangential failure separation. This approach allows us

to model mixed-mode fracture problems with a mode mixity parameter using a 1D

framework for tractions. Later on, Tvergaard and Hutchinson [77] used a 1D potential

leading to αe = δn/δt. However, different fracture energies of mode-I and mode-II

are not considered. Effective displacement methods have some common problems.

Stiffness can be positive under softening conditions, fracture energies for mode-I and

mode-II are the same, and negative normal separation has the same effect as positive

one [78]. [73] was improved by Xu and Needleman [55]. Both normal and tangential

tractions are of exponential form intending to model pure mode-II failure. Also, the

ratio of mode-I and mode-II fracture energies can be specified with a parameter, q.

This model was successful and has been used extensively to the date. However, it has

some defects, as pointed out by Park and Paulino [78], and it was improved by Bosch

et al. [79]. Camacho and Ortiz [59] introduced the extrinsic cohesive zone models,

which do not have an initial elastic region in TSL. It was used it to model dynamic

fragmentation [80] and microbranching [81]. Addressing the problems in previous

CZMs, Park et al. [82] proposed the potential based Park-Paulinho-Rosler, PPR, co-

hesive zone model. It can model mixed-mode fracture for a range of materials and

is very flexible. Both tractions have polynomial form, mode-I and mode-II fraction

energies, and maximum tractions can be specified separately. Also, the size of the

elastic regime in TSL and the shape of the softening region can be selected.
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The theoretical approaches discussed above are phenomenological. Usually, a poten-

tial is assumed to obtain the desired form of the TSL, which can be motivated by phys-

ical reasons [55]. There is not a consensus on the form of TSL for ductile fracture. In

ductile fracture, elasticity, plasticity, and damage are included together, and the form

of TSL cannot be determined experimentally. An experimental approach is to assume

a form of the TSL, then fit the maximum traction and cohesive energy to best repre-

sent the macroscopic response of experimental specimens [83–85]. However, Schei-

der [86] showed that the shape of TSL has a significant effect on the results of crack

propagation simulations of ductile materials. Li and Chandra [87] suggested that

forms of CZMs are results of different micromechanisms taking part in energy dissi-

pation during fracture. A widely used and physically motivated numerical approach

to obtain traction-separation relations for ductile materials is using the well-known

GTN model. GTN model, a continuum damage model, based on nucleation, growth

and coalescence of pores, is used to obtain the macroscopic response, which can then

be used to fit cohesive parameters of a selected form. Tvergaard and Hutchinson [88]

obtained parameters of TSL by modelling a ’void-sheet’ with multiple interacting

voids ahead of the crack tip by using the Gurson model. Schieder [89] extracted the

TSL from the mesoscopic response of a representative volume element with a hetero-

geneous microstructure using Gurson’s model. Andersen et al. (2019) [90] analyzed

ductile plate tearing with GTN to obtained a micromechanics based cohesive zone

model with bilinear and trilinear TSLs. Andersen et al. (2020) [91] showed that

heterogeneous microstructure strongly influences the cohesive energy of TSL in the

tearing of ductile plates where GTN is used as a material model.

Cohesive zone modelling has been one of the most popular approaches for modelling

the fracture process, yet its constitutive TSLs are mostly based on phenomenological

relations, as discussed before. Usually, in ductile fracture, the physics at the fracture

process zone is incorporated into cohesive parameters of a TSL using homogenization

schemes. In this thesis, a more direct approach is followed. The idea here is to bridge

the information obtained from the physical fracture mechanism due to void growth to

a traction-separation law to obtain a physically motivated relation to be implemented

in ductile crack propagation simulations. The derivation and the numerical analysis of

a traction-separation law based on the growth of pores are discussed. First, an array of
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cylindrical representative volume elements with initial cylindrical pores is considered.

Under normal and shear displacements, traction separation relations are obtained by

applying the upper bound theorem for mode-I and mode-II, respectively. As a re-

sult, micromechanical parameters appear in the traction separation-law directly, such

as pore fraction and pore height. The evolution of these parameters is governed by

normal and tangential separations, which leads to an implicit mixed-mode capabil-

ity. For mixed-mode, a yield function consisting of normal and tangential tractions

and pore variables is obtained. Hence, an implicit elastoplastic numerical integration

scheme is employed to solve the mixed-mode system of equations. The performance

of the model and the effect of micromechanical parameters are investigated through

numerical simulations.

The thesis is organized as follows. First, in Chapter 2, derivations of the models and

equations are detailed for micromechanics based cohesive zone model (MBCZM) for

mode-I, mode-II and mixed-mode loading. Then, in Chapter 3 numerical implemen-

tation of the model is presented. In Chapter 4, numerical simulations are conducted

using MBCZM. Finally, in Chapter 6, the conclusions and the future remarks are

given.
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CHAPTER 2

DERIVATION OF PHYSICS BASED COHESIVE ZONE MODEL

In this chapter, the steps for obtaining the traction-separation equations are presented

in detail. A cylindrical RVE with a cylindrical pore is subjected to tractions where

the material is rigid-perfectly plastic. The upper-bound theorem is applied to de-

termine tractions. Obtained traction-separation laws are based on micromechanical

parameters such as initial pore fraction, initial pore height and pore spacing. The

evolution of the micromechanical parameters under given boundary conditions de-

termine the change in tractions. Derivations are done first for pure mode-I, II, then

for mixed-mode. The derivation presented in the following are based on the initial

studies in [1–3]. Note that the presented cylindrical RVE is a non-space filling type

of RVE, which has been used in the literature together with the space filling RVEs.

Please check the recent study in Firooz et al. [92] to see an overview on the issue.

The advantage of this type of RVE is that maximum void volume fraction, 1, can be

reached which is also observed in a real cutout of a material. Also, it is suitable to

predict isotropic material behavior because it can capture isotropy intrinsically.

2.1 Traction-separation relation for Mode-I loading

Imagine an array of cylindrical volumes in a plane, each with a cylindrical hole in the

middle. Each cylinder has diameter 2l, height h, and the hole represents an idealized

pore with a radius of a (Fig. 2.1). In Fig. 2.2, a close-up to the crack tip under mode-I

loading is shown, and crack opening process is represented by the cylindrical RVEs.

Take one cylinder as representative volume element subject to following boundary

conditions visualized in Fig. 2.2,
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Figure 2.1: Idealization of pores within a plane as cylinders and dimensions of the

RVE.

– δn = 0 at z = 0, longitudinal displacement, δn, is fixed at the bottom surface

of RVE.

– u = 0 at r = l, radial displacement, u, at outer lateral surface is zero, i.e. in

plane macroscopic strain is zero.

– δn at z = h, displacement is applied at the top surface of RVE.

For mode-I loading, RVE is displaced by δn in z direction (Fig. 2.2). Since it is

constrained, rate of displacement in normal direction is δ̇n = ḣ. This is another

advantage of the cylindrical RVE, a simple velocity field, δ̇n = ḣ, is obtained with the

given boundary conditions. If a space-filling cubic RVE were used, pore growth and

the velocity field would be more complex. Apply upper bound theorem, which states

work done by the limit load is smaller or equal to the integral energy dissipation of

the effective strain rate at yield stress.

πl2Tnδ̇n ≤
∫ l

a

ε̇eσy2πrhdr (2.1)

Assuming the material is rigid-perfectly plastic, incompressibility condition gives

ε̇r + ε̇θ + ε̇z = 0, in polar coordinates. Using small strain-displacement relations

ε̇z = ḣ/h, ε̇θ = u̇/r, ε̇r = du̇/dr for axisymmetric loading we have,

du̇

dr
+
u̇

r
+
ḣ

h
= 0 or

du̇

dr
+

1

r
u̇ = − ḣ

h

This is a first order linear ordinary differential equation (ODE) with the boundary

condition u̇ = 0 at r = l. For the general first order linear ODE, ẏ + a(x)y = f(x),

solution is given by,

y =

∫
u(x)f(x)dx+ C

u(x)
where u(x) = e

∫
a(x)dx is integrating factor

14



δ /2
n

δ /2
n

Tn

δ /2
n

δ /2
n

nT  ,
.
δ = h

.

n

δ

h

h/2

h/2

Figure 2.2: Crack opening represented by RVEs under mode-I loading.

Applying it to our equation, integrating factor becomes,

e
∫

1/rdr = elnr = r

And solution is given by,

u̇ =

∫
r
−ḣ
h
dr + C

r
=
−r

2

2

ḣ

h
+ C

r
= −r

2

ḣ

h
+
C

r

where C is a constant. Applying boundary condition u̇ = 0 at r = l, C is found as,

0 = − l
2

ḣ

h
+
C

l
or C =

ḣ

h

l2

2

Noting that ε̇z = ḣ/h, we obtain,

u̇ = (ε̇zr/2)(l2/r2 − 1), ε̇θ =
u̇

r
=
ε̇z
2

(
l2

r2
− 1

)
ε̇r = −(ε̇θ + ε̇z) = − ε̇z

2

(
l2

r2
+ 1

)
(2.2)

15



Then, using (2.2) effective strain rate can be written as,

ε̇e =

√
2

9
[(ε̇r − ε̇θ)2 + (ε̇r − ε̇z)2 + (ε̇θ − ε̇z)2] = ε̇z

√
1 +

l4

3r4
(2.3)

Noting δ̇n = ḣ and ε̇z = ḣ/h, and substituting (2.2) and (2.3) into (2.1), we get,

Tn ≤ σy

∫ 1

f

√
1 +

(
1

3ν2

)
dν

where ν = r2/l2, dν = 2r/l2dr and f = a2/l2 (2.4)

with f being the area fraction of pores.

Now, the integral in (2.4) can be evaluated in two ways [93].

Minkowski inequality:
(∫

(f + g)kdx

) 1
k

>

(∫
fkdx

) 1
k

+

(∫
gkdx

) 1
k

or

Jensen’s inequality:
∫

(f + g)kdx <

∫
fkdx+

∫
gkdx where k < 1

Using Jensen’s inequality retains the upper bound theorem’s formal nature, while the

Minkowski inequality is a better approximation of the integral but is the opposite

sense of the upper bound theorem. Additionally, Minkowski inequality results in a

continuous function for mixed-mode loading while Jensen’s inequality results in a

discontinuous one. Depending on the inequality, different traction-separation equa-

tions are obtained, each having their merits and demerits, which can be calibrated

with experiments. Both ways will be shown here. It should be noted that the upper

bounds obtained by using these inequalities are in a strict sense only estimates.

Applying Jensen’s inequality to (2.4) gives,∫ 1

f

√
1 +

1

3v2
dv <

∫ 1

f

√
1dv +

∫ 1

f

√
1

3v2
dv

∫ 1

f

√
1 +

1

3v2
dv < (1− f) +

∫ 1

f

1√
3|v|

dv where f > 0

∫ 1

f

√
1 +

1

3v2
dv < (1− f) +

1√
3
ln

1

f

16



Tn ≤ σy

[
(1− f) +

(
1√
3
ln

1

f

)]
(2.5)

or the yield function,

g =
Tn

(1− f) +
1√
3
ln

1

f

− σy = σ − σy (2.6)

Applying Minkowski inequality to (2.4) gives,[∫ 1

f

√
1 +

1

3v2
dv

]2

>

[∫ 1

f

√
1dv

]2

+

[∫ 1

f

√
1

3v2
dv

]2

[∫ 1

f

√
1 +

1

3v2
dv

]2

> (1− f)2 +

[∫ 1

f

1√
3|v|

dv

]2

where f > 0

[∫ 1

f

√
1 +

1

3v2
dv

]2

> (1− f)2 +

[
1√
3
ln

1

f

]2

∫ 1

f

√
1 +

1

3v2
dv >

[
(1− f)2 +

[
1√
3
ln

1

f

]2
] 1

2

Tn ≈ σy

[
(1− f)2 +

(
1√
3
ln

1

f

)2
] 1

2

(2.7)

which is no longer an upper bound, but an approximation. In yield function form,

g =

 T 2
n

(1− f)2 +

(
1√
3
ln

1

f

)2


1
2

− σy = σ − σy (2.8)

(2.7) and (2.5) give traction as a function of pore fraction, f . Thus, the evolution of f

is needed to calculate the traction. Since the matrix is incompressible, the conserva-

tion of volume can be used to find it. For a change dh in height, the pore radius will

17



grow by da,

π(l2 − a2)h =π(l2 − (a+ da)2)(h+ dh)

(l2 − a2)h =(l2 − a2 − 2ada− da2)(h+ dh)

2ahda =(l2 − a2)dh where f = a2/l2

2ada

l2
h =(1− f)dh where df = 2ada/l2

hdf =(1− f)dh

Then, evolution equations are,

df =
dh

h
(1− f)

dh =dδn from boundary condition.

Assuming f = f0 when h = h0, it can be written,∫ f

f0

df

1− f
=

∫ h

h0

dh

h

−ln(1− f)|ff0 =lnh|hh0
1− f
1− f0

=
h0

h

Also assume that h = h0 when δn = 0. Using dh = dδn, we have h = h0 + δn.

Substituting,

1− f =
h0(1− f0)

h0 + δn

f =
δn + h0f0

δn + h0

Then, substituting f to (2.5) gives Tn for Jensen’s inequality,

Tn = σy

[
h0(1− f0)

(δn + h0)
+

1√
3
ln

(
(δn + h0)

(δn + h0f0)

)]
(2.9)

And, substituting to (2.7) gives Tn for Minkowski inequality.

Tn = σy

[(
h0(1− f0)

(δn + h0)

)2

+

(
1√
3
ln

(
(δn + h0)

(δn + h0f0)

))2
] 1

2

(2.10)

Figure 2.3 shows the variation of Tn with δn for Jensen’s and Minkowski inequality

respectively. Maximum traction decreases with increasing f0 and decrease rate of
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Figure 2.3: Dependence of Mode-I traction-separation law on initial volume fraction

and height of voids for σy = 100 MPa and h0 = 0.2µm (left) and f0 = 0.01 (right), by

using Jensen’s inequality (top) and Minkowski inequality (middle), and a comparison

of them (bottom).

traction is controlled by h0. Pores can obtain an elliptical shape during growth. h0

is an idealized means to represent that elliptical shape. If h0 is small, pore is like a

crack and it can grow faster under normal, mode-I, loading.
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2.2 Traction-separation relation for Mode-II loading

δ /2
t δ /2

t

Tt

δ /2
t

h/2

h/2

Tt

h

δ /2
t

δ

Tt

Figure 2.4: Crack opening represented by RVEs under mode-I loading.

h-dh

2a+dd2a+ddt t

h

ddt

Figure 2.5: Geometry change under shear loading.

Similar to mode-I, in Fig. 2.4, under mode-II loading fracture process zone is rep-

resented by the RVEs. For mode-II, RVE is loaded in radial direction. Shear load-

ing elongates the pores in the direction of shear and causes them to be more like a

crack [94](see Fig. 2.5 (left)). The new shape can be approximated as shown in Fig.

2.5(right). Upper bound theorem for mode-II loading gives,

πl2Ttδ̇t ≤
∫ l

a

ε̇eσy2πrhdr (2.11)
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For pure mode-II effective strain rate can be written as,

ε̇e =
√
γ̇2/3 where γ̇ = δ̇t/h

Substituting and applying the change of variables given in (2.4),

Tt ≤ σy

∫ 1

f

√(
1

3

)
dν or Tt ≤

σy√
3

(1− f) (2.12)

In yield function form,

g =

√
3Tt

(1− f)
− σy = σ − σy (2.13)

Again, the evolution of pore fraction is needed. From the definition of pore fraction,

f = a2/l2,

df =
2a

l

da

l
= 2
√
f
dδt
l

where da = dδt

In shear deformation assuming volume of the RVE is preserved, it can be written,

π(2a)2h =π(2a+ dδt)
2(h− dh)

π4a2h =π4a2h+ 4πahdδt − 4πa2dh

dh =
dδt
a
h

Similar to Mode-I, assume that f = f0 when δt = 0,∫ f

f0

df

2
√
f

=

∫ δt

0

dδt
l√

f |ff0 =
δt
l
|δt0

f =

(√
f0 +

δt
l

)2

Substituting to (2.14), mode-II traction-separation law is obtained in terms of initial

pore fraction, f0, and pore spacing l.

Tt =
σy√

3

[
1−

(√
f0 +

δt
l

)2
]

(2.14)

Figure 2.6 show the variation of Tt with δt.
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Figure 2.6: Mode-II traction-separation equation for σy = 100 MPa and l = 1µm

with changing f0 (left), and f0 = 0.01 with changing l (right).

2.3 Traction-separation relation for Mixed-Mode loading

Remember for mode-I loading, dh = dδn and df = dδn(1− f)/h. And, for mode-II

loading, dh = dδt(h/a) and df = dδt(2
√
f/l). Note that for mode-II dh is negative

for positive δt. Superposing, for combined normal and shear deformation we get,

df = dδn
(1− f)

h
+ dδt

2
√
f

l

dh = dδn − dδt
h

a
(2.15)

Upper bound theorem for mixed-mode gives,

Tnδ̇n + Ttδ̇t ≤ σy

∫ 1

f

√
δ̇2
n

(
1 +

1

3ν2

)
+
δ̇2
t

3
dν where ν =

r2

l2
(2.16)

Applying Jensen inequality to 2.16 gives,

Tnδ̇n + Ttδ̇t ≤ σy

∫ 1

f

√
δ̇2
n

(
1 +

1

3ν2

)
dv +

∫ 1

f

√
δ̇2
t

3
dv


Tnδ̇n + Ttδ̇t ≤ σy

[
δ̇n

∫ 1

f

√
1 +

1

3ν2
dv + δ̇t

∫ 1

f

√
1

3
dv

]

The first integral on the right hand side was found before for pure mode-I. Substitut-

ing,

Tnδ̇n + Ttδ̇t ≤ σy

[
δ̇n

(
(1− f) + (

1√
3
ln

1

f
)

)
+ δ̇t

(
1− f√

3

)]
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Letting δ̇ = δ̇t/δ̇n,

Tnδ̇n

(
1 +

Tt
Tn
δ̇

)
≤ σy δ̇n

[(
(1− f) + (

1√
3
ln

1

f
)

)
+ δ̇

(
1− f√

3

)]

For a specified Tt/Tn,

Tn ≤
σy

[(
(1− f) +

1√
3
ln

1

f

)
+ (1− f)

¯̇δ√
3

]
(

1 +
Tt
Tn

¯̇δ

) where δ̇ =
δ̇t

δ̇n
(2.17)

R.H.S is minimized by ¯̇δ = 0 or ¯̇δ =∞ which gives,

Tn ≤σy
[
(1− f) +

1√
3
ln

1

f

]
(2.18)

Tt ≤
σy√

3
(1− f) (2.19)

respectively.

Applying Minkowski inequality to (2.16) gives,∫ 1

f

√
δ̇2
n

(
1 +

1

3ν2

)
+
δ̇2
t

3
dv

2

>

[∫ 1

f

√
δ̇2
n

(
1 +

1

3ν2

)
dv

]2

+

∫ 1

f

√
δ̇2
t

3
dv

2

∫ 1

f

√
δ̇2
n

(
1 +

1

3ν2

)
+
δ̇2
t

3
dv >

δ̇2
n

[∫ 1

f

√(
1 +

1

3ν2

)
dv

]2

+ δ̇2
t

[∫ 1

f

√
1

3
dv

]2
 1

2

Again, the first integral on the right hand side was found before for pure mode-I.

Substituting,

∫ 1

f

√
δ̇2
n

(
1 +

1

3ν2

)
+
δ̇2
t

3
dv >

[
δ̇2
n

[
(1− f)2 +

(
1√
3
ln

1

f

)2
]

+
δ̇2
t

3
(1− f)2

] 1
2

Then,

Tnδ̇n + Ttδ̇t ≈ σy

(
δ̇2
n

[
(1− f)2 +

(
1√
3
ln

1

f

)2
]

+
δ̇2
t

3
(1− f)2

) 1
2
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Letting δ̇ = δ̇t/δ̇n,

Tnδ̇n

(
1 +

Tt
Tn
δ̇

)
≈ σy δ̇n

[(1− f)2 +

(
1√
3
ln

1

f

)2
]

+
δ̇

2

3
(1− f)2

 1
2

Tn ≈

σy

[(1− f)2 +
(

1√
3
ln 1

f

)2
]

+
δ̇

2

3
(1− f)2

 1
2

(
1 +

Tt
Tn

¯̇δ

) where δ̇ =
δ̇t

δ̇n

Minimize RHS by finding the δ̇, where
∂(RHS)

∂δ̇
= 0. Taking derivative of RHS, and

letting A =

[
(1− f)2 +

(
1√
3
ln 1

f

)2
]

+
δ̇

2

3
(1− f)2,

0 =

1
2

(A)−
1
2

(
2
3
(1− f)2δ̇

)(
1 +

Tt
Tn

¯̇δ

)
− (A)

1
2

(
Tt
Tn

)
(

1 +
Tt
Tn

¯̇δ

)2

(A)

(
Tt
Tn

)
=

1

2

(
2

3
(1− f)2δ̇

)(
1 +

Tt
Tn

¯̇δ

)
[

(1− f)2 +

(
1√
3
ln

1

f

)2
]
Tt
Tn

+
δ̇

2

3
(1− f)2 Tt

Tn
=
δ̇(1− f)2

3
+
δ̇

2

3
(1− f)2 Tt

Tn

δ̇ =
3

(1− f)2

Tt
Tn

[
(1− f)2 +

(
1√
3
ln

1

f

)2
]

Substitute δ̇ back into RHS,

Tn ≈

σy


[
(1− f)2 +

(
1√
3
ln 1

f

)2
]

+

3

[
Tt
Tn

]2

(1− f)2

[
(1− f)2 +

(
1√
3
ln 1

f

)2
]2


1
2

(
1 +

3

(1− f)2

(
Tt
Tn

)2 [
(1− f)2 +

(
1√
3
ln 1

f

)2
])
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Tn ≈

σy

[
(1− f)2 +

(
1√
3
ln 1

f

)2
] 1

2

1 +

3

[
Tt
Tn

]2

(1− f)2

[
(1− f)2 +

(
1√
3
ln 1

f

)2
]

1
2

(
1 +

3

(1− f)2

(
Tt
Tn

)2 [
(1− f)2 +

(
1√
3
ln 1

f

)2
])

Tn ≈
σy

([
(1− f)2 +

(
1√
3
ln 1

f

)2
]) 1

2

(
1 +

3

(1− f)2

(
Tt
Tn

)2 [
(1− f)2 +

(
1√
3
ln 1

f

)2
]) 1

2

σy ≈
Tn

(
1 +

3

(1− f)2

(
Tt
Tn

)2 [
(1− f)2 +

(
1√
3
ln 1

f

)2
]) 1

2

([
(1− f)2 +

(
1√
3
ln 1

f

)2
]) 1

2

σy ≈

(
T 2
n +

3T 2
t

(1− f)2

[
(1− f)2 +

(
1√
3
ln 1

f

)2
]) 1

2

([
(1− f)2 +

(
1√
3
ln 1

f

)2
]) 1

2

 T 2
n(

(1− f)2 +
(

1√
3
ln 1

f

)2
) +

3T 2
t

(1− f)2


1
2

− σy ≈ 0

Results in the yield function,

g =

 T 2
n

(1− f)2 +

(
1√
3
ln

1

f

)2 +
3T 2

t

(1− f)2


1
2

− σy = σ − σy (2.20)

Notice that letting Tt = 0 in (2.20) would give the same result for Tn as previous

section (2.8), and (2.18) is already the same as before (2.5). And, by letting Tn = 0

in (2.20), we get the same form as (2.19) for pure mode-II loading.
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Now, the traction-separation relations for mode-I-II and mixed-mode loadings are ob-

tained. Note that the Minkowski version of TSLs, equations (2.10) and (2.20), will be

used in implementation since it results in a continuous yield function for mixed-mode.

Tractions are expressed as a function of pore fraction, f . In pure mode cases f can

be determined as a function of separation δn,t. However, for the mixed-mode case, an

explicit expression does not exist. Instead, there is a yield function including normal-

tangential traction and f , obtained by applying the upper-bound theorem. This nature

results in an intrinsic mixed-mode capability, where the evolution of f is driven by

both δn and δt. Hence, tractions for mixed-mode are evaluated by utilizing an im-

plicit numerical integration scheme similar to plasticity. Details of implementation

are given in the next chapter.
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CHAPTER 3

NUMERICAL IMPLEMENTATION OF MBCZM

The traction-separation relations are implemented into Abaqus as a user-defined el-

ement (UEL). In the simplest form, Abaqus provides the displacements at the nodes

of the element and expects the residual force vector (RHS) and the Jacobian (stiff-

ness) matrix (AMATRX) in return. These matrices can be calculated with the normal

and tangential tractions, and their derivatives with respect to normal and tangential

separations.

First, the finite element framework for a 2D, 4 node element is presented in detail.

The weak form of the problem is explained. The shape functions and global to local

transformation matrices are shown for the 4-noded linear cohesive element. With

these, the internal force vector and the tangent matrix of a cohesive surface element

can be found.

Second, the numerical procedure is shown using the uncoupled form of traction-

separation relations for pure mode-I and mode-II problems. In uncoupled form,

traction can be expressed analytically in terms of separations. Tractions and their

derivatives are implemented into the UEL subroutine. An algorithm including con-

tact, loading, unloading, and failure conditions is presented. The subroutine is tested

with a simple model, where a single cohesive element is placed between two bulk

elements. Next, the traction-separation relations are derived in incremental form,

later to be implemented in mixed-mode. The incremental form is compared with the

analytical form.

Third, mixed-mode implementation scheme is presented. In the mixed-mode trac-

tions cannot be written explicitly but as a yield function. Therefore, a plasticity for-
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mulation is used to satisfy the yield function for mixed-mode. This formulation is

summarized for the general plasticity case. Then, it is applied to our cohesive zone

model framework for mode-I, mode-II and finally mixed-mode.

The micromechanics based TSL is an initially rigid (extrinsic) model with no initial

elastic region; there is only softening. This type of cohesive zone models require mesh

manipulation during analysis, and they are difficult to implement. Therefore, for the

ease of implementation, an initial elastic part is added to micromechanics based TSL

for all implementation schemes turning it into an initially elastic (intrinsic) cohesive

zone model. The elastic regime is chosen very small compared to the softening part

in order to capture the original behavior.

3.1 Finite element framework

The weak form of the problem is obtained from the principal of virtual work. Work

done by the external tractions on the boundary is equal to the summation of virtual

strain energy in the domain (Ω) and the cohesive fracture energy on the fracture sur-

face (Γf ).

∫
Γ

Textdu dS =

∫
Ω

σ : dε dV +

∫
Γf

Tdδ dS (3.1)

where du, dε and dδ are virtual displacement, virtual strain and virtual separation,

respectively. In addition, σ is the Cauchy stress tensor, while T is cohesive traction

along the fracture surface. The first term on the right-hand side of Eq. (3.1) is associ-

ated with the internal force of bulk elements, while the second term is related to the

internal cohesive force of cohesive surface elements. The term on the left-hand side

of Eq. (3.1) corresponds to the external force.

Following the finite element discretization, the displacement field u is approximated

by interpolation of nodal displacements u with shape functions,

u(X) = Nu (3.2)

where N is a shape function matrix, and X denotes the global coordinates.
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In addition, the local separation δ is approximated by using the nodal displacement

u. In order to obtain the local separation based on the global nodal displacement,

the global coordinates X are first transformed to the local coordinates x of a cohesive

element, i.e.

x = ΛX (3.3)

where Λ is a coordinate transformation matrix. Using a rotational matrix R consisting

of Λ, the global node displacement u is transformed to the local node displacement

v.

v = Ru (3.4)

From local displacements, one can obtain normal and tangential separations of the

cohesive element (δ).

δ = Lv (3.5)

where L is the local displacement-separation relation matrix. Then, separation along

a cohesive element is found using shape functions.

δ(x) = Nδ (3.6)

Substitution of (3.4) and (3.5) into (3.6) gives,

δ(x) = NLRu = Bu (3.7)

where B is a global displacement-separation transformation matrix.

The internal force vector fcoh of a cohesive element can be found from the local trac-

tion by using transpose of global displacement-separation transformation matrix.

fcoh =

∫
Γf

BTT dS (3.8)

The gradient of the internal force vector leads to the tangent matrix Kcoh, i.e.

Kcoh =
∂fcoh
∂u

=

∫
Γf

BT ∂T
∂δ

∂δ

∂u
dS =

∫
Γf

BT ∂T
∂δ
BdS (3.9)

Traction vector T and tangent matrix ∂T/∂δ are found from the micromechanics

based traction separation law relations.
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Figure 3.1: 2D linear cohesive surface element and nodal displacements in the global

(left) and the local (right) coordinates.

This is the general framework applicable to 2D and 3D elements. Now, consider a

2D linear cohesive surface element (Fig. 3.1). This type of element has 4 nodes

each with 2 degrees of freedom. Thus, the global nodal displacement vector is

u = (u1, u2, u3, u4, u5, u6, u7, u8). In Fig. 3.1, capital X and Y represent the gloabal

coordinate system while small x and y represent the local coordinate system of the

cohesive element. Notice that the x axis of the local coordinate system is the bisector

of the angle between upper edge (node 3-4) and the lower edge (node 1-2) of cohe-

sive element. This is according to the finite strain definition. In the local coordinate

system, nodal displacements are v = (v1, v2, v3, v4, v5, v6, v7, v8) which are obtained

from the global coordinates by using the rotational matrix R,

R =


Λ 0 0 0

0 Λ 0 0

0 0 Λ 0

0 0 0 Λ

 where Λ =

 cosθ sinθ

−sinθ cosθ



where θ is the angle between local and global coordinates. Then, in the local coordi-

nate system, the separations at the ends of cohesive element are given as,

δ1 = v7 − v1, δ2 = v8 − v2, δ3 = v5 − v3, δ4 = v6 − v4, (3.10)
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which gives L,

L =


−1 0 0 0 0 0 1 0

0 −1 0 0 0 0 0 1

0 0 −1 0 1 0 0 0

0 0 0 −1 0 1 0 0


Separation along the element is given by the shape function matrix N,

N =

N1 0 N2 0

0 N1 0 N2


where N1 =

1− ξ
2

, N2 =
1 + ξ

2
are linear shape functions.

By combining N, L and R matrices, the global displacement-separation relation ma-

trix B is obtained,

B =

−CN1 −SN1 −CN2 −SN2 CN2 SN2 CN1 SN1

SN1 −CN1 SN2 −CN2 −SN2 CN2 −SN1 CN1


where C = cosθ and S = sinθ.

Finally, with T and ∂T/∂δ from cohesive law, and B from finite element framework,

the internal force vector (3.8) and the tangent matrix (3.9) can be calculated using

Gauss quadrature numerical integration scheme. Note that similar steps are explained

in the educational paper for PPR cohesive zone model implementation by Park and

Paulino [95].

3.2 Mode I-II uncoupled implementation

Tractions in terms of separations and the derivatives of tractions with respect to sep-

arations are required. These relations can be obtained analytically for the microme-

chanics based cohesive zone model for pure mode I and mode II problems. As it is

shown in equation (2.7), which gives normal traction in terms of normal separation.

Similarly, (2.14) gives tangential traction in terms of tangential separation only. As

stated before, to make the implementation easier, an elastic part is added to the trac-

tion relations making the cohesive zone model an initially elastic one. See Fig. 3.2
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for a comparison. Note that the elastic slope is reasonably high so that the behav-

ior is similar to the extrinsic model. Also, even tough it is called as elastic region,

Poisson’s ratio is not specified and it is not required to define a traction-separation

relation, at the least this is the case for the phenomenological CZMs in the literature.

However, the derived tractions are not phenomenological, and a poisson’s ratio may

be required, but even then the added elastic region is negligible compared to softening

region. Therefore, this approach should not result in a significant error.

T

T
max

δ δ

δ
cr

T

T
max

E

Figure 3.2: Initially rigid (extrinsic) and initially elastic (intrinsic) traction separation

laws.

The tractions and the derivatives of tractions are evaluated by considering four cases:

contact, loading, unloading/reloading and complete failure. See Algorithm 1 below

for an outline, where δn/t are current normal/tangential separations, Tn/t are normal/-

tangential tractions, Dnn/nt/tt/tn are derivatives of tractions with respect to separa-

tions, δn/t,max are maximum separations reached during the analysis, δn/t,cr are the

critical separations where maximum traction is reached, δt,final is the final separation

where tangential traction becomes zero, En/t are the elastic part slopes, and f is the

current pore fraction.

As it was shown in section 2, Eqns. (2.7)(2.14), if normal and tangential tractions are

uncoupled, which is the case for pure mode I-II problems, the tractions in terms of

separations can be analytically expressed, i.e.

Tn(f) =σy

(
(1− f)2 +

(
1√
3
ln

1

f

)2) 1
2

where f =
δn + h0f0

δn + h0

(3.11)

Tt(f) =
σy√

3
(1− f) where f =

(√
f0 +

δt
l

)2

(3.12)
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–Normal cohesive interaction:

if δn < 0 (Contact) then
Tn = Dnnδn, Dnn = En, Dnt = 0

else if δn > δn,max and δn 6 δn,cr (Loading-Elastic) then
Tn = Dnnδn, Dnn = En, Dnt = 0

else if δn > δn,max and δn > δn,cr (Loading-Softening) then
Tn = Tn(f), where f = f(δn), Dnn = ∂Tn

∂f
∂f
∂δn
, Dnt = 0

else if δn < δn,max (Unloading/reloading) then
Tn = Tn(fmax)

δn
δn,max

, Dnn = Tn(fmax)
1

δn,max
, Dnt = 0

end

–Tangential cohesive interaction:

if |δt| > δt,max and |δt| 6 δt,cr and |δt| < δtfinal
(Loading-Elastic) then

Tt = Dtt|δt|sign(δt), Dtt = Et, Dtn = 0

else if |δt| > δt,max and |δt| > δt,cr and |δt| < δtfinal
(Loading-Softening)

then
Tt = Tt(f)sign(δt), where f = f(|δt|), Dtt = ∂Tt

∂f
∂f
∂δt
, Dtn = 0

else if |δt| < δt,max and |δt| < δtfinal
(Unloading/reloading) then

Tt = Tt(fmax)sign(δt)
|δt|

δt,max
, Dtt = Tt(fmax)

1
δt,max

, Dtn = 0

else if |δt| > δtfinal
(Failure) then

Tt = 0, Dtt = 0, Dtn = 0

end
Algorithm 1: Evaluation of tractions and derivatives of tractions for analytical

implementation.

As stated at the end of previous chapter, Minkowski version of TSLs are used for

implementation. An initial elastic part should be added to make the model intrinsic.

Elastic part is defined linearly with slope En/t, and it is defined until a critical sepa-

ration δn/t,cr where maximum tractions in (3.11)(3.12) are reached. Then, tractions

become,

Tn(δn) =Enδn, if δn ≤ δn,cr (3.13)

Tn(f) =σy

(
(1− f)2 +

(
1√
3
ln

1

f

)2) 1
2

if δn > δn,cr, f =
δn − δn,cr + h0f0

δn − δn,cr + h0

Tt(δt) =Etδt, if δt ≤ δt,cr (3.14)

Tt(f) =
σy√

3
(1− f) if δt > δt,cr, f =

(√
f0 +

δt − δt,cr
l

)2
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Original tractions are slided by δn/t,cr in the separation axis simply by modifying f .

If En/t is specified, δn/t,cr can be found as,

δn,cr =
Tn,max
En

, δt,cr =
Tt,max
Et

(3.15)

And maximum tractions are obtained by setting δn/t = 0 in (3.11)(3.12),

Tn,max = σy

[
(1− f0)2 +

(
1√
3
ln

1

f0

)2
] 1

2

and Tt,max =
σy√

3
[1− f0] (3.16)

The derivatives of tractions with respect to separations are needed for the Jacobian in

a finite element framework. Simply take derivative of (3.13) and (3.14).

∂Tn
∂δn

=En, if δn ≤ δn,cr (3.17)

∂Tn
∂δn

=
∂Tn
∂f

∂f

∂δn
=
σy
2

[
(1− f)2 +

1

3
(lnf)2

]−1/2[
2(1− f)(−1) +

2

3

lnf

f

]
...

...

[
1− f
h

]
if δn > δn,cr

∂Tn
∂δt

=0

∂Tt
∂δt

=Et, if δt ≤ δt,cr (3.18)

∂Tt
∂δt

=
∂Tt
∂f

∂f

∂δt
=

[
−σy√

3

][
2
√
f

l

]
if δt > δt,cr

∂Tt
∂δn

=0

Note that the derivatives ∂f/∂δn/t are obtained from the evolution equations for

mode-I and mode-II, where,

df =
dδn
h

(1− f),
df

dδn
=

1− f
h

for pure mode-I (3.19)

df =2
√
f
dδt
l
,
df

dδt
=

2
√
f

l
for pure mode-II (3.20)

The unloading/reloading relationship is linear towards the origin (see Fig.3.3). There

are two main choices here. Unloading can be towards the origin, or it can be with an

initial elastic slope similar to plasticity. The latter is suggested for ductile materials,

while the former is suggested for brittle ones [96]. However, the former is used in

early ductile models because unloading relations do not have a considerable effect
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Figure 3.3: Regions of traction-separation law.

under monotonic loading. They become important when fatigue failure is modelled,

where cyclic loading is the main driving force. Our numerical examples are also for

monotonic loading, so unloading is taken towards the origin due its convenience.

In the implementation, the maximum separation reached is saved separately for mode-

I and mode-II as δn,max and δt,max respectively. When, δ < δmax, unloading is initi-

ated, and fmax is calculated at δmax, which can be used to calculate traction at δmax.

Then, it is multiplied with a factor δn,t/δmax to have linear unloading towards origin,

i.e.

Tn,t = Tn,t(fmax)
δn,t
δmax

if δ < δmax (Unloading/reloading) (3.21)

, and derivative is simply,

∂Tn,t
∂δ

= Tn,t(fmax)
1

δmax
(3.22)

For contact condition in the normal direction, δn < 0, a penalty stiffness is used,

which is taken equal to the elastic slope here. As the material self penetrates, trac-

tion keeps increasing following penalty stiffness times separation, in a way to hinder

penetration.

Tn = Enδn if δn < 0 (Contact) (3.23)

For pure mode analytical implementation, failure is defined only for mode-II. Mode-I

behaves exponentially, approaching zero traction at infinite separation. For failure, a
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final separation δt,final is calculated, after which tractions and derivatives of tractions

become zero. It can be calculated from (3.12), by setting traction Tt to zero and

finding δt.

δt,final = l(1− f0), (3.24)

Tt = 0 and
∂Tt
∂δt/n

= 0 if δt > δt,final (Failure). (3.25)

Some numerical simulations are conducted in Abaqus to test the developed UEL sub-

routine. A simple model is created, including two bulk elements and one cohesive

element in between. It is tested for pure mode-I and mode-II cases. Contact, loading,

unloading/reloading and failure responses are obtained. Loading histories are repre-

sented in Figs. 3.4 and 3.6, and different conditions are numbered in the Figs. 3.5 and

3.7.
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Figure 3.4: Mode-I loading history.
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Figure 3.5: Traction versus displacement response to mode-I loading/unloading.
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In Fig. 3.5, element is under mode-I loading. First, it is compressed, making it self-

penetrate (1), and then unloaded to initial position (2). It is then put under tension

where the elastic (3) and softening (4) regions can be seen. Finally, it is unloaded to

the initial position where force goes back to zero as expected (5).

3 4−5 61−2

Fixed Free−Initial Free−Final

Figure 3.6: Mode-II loading history.
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Figure 3.7: Traction versus displacement response to mode-II loading/unloading.

In Fig. 3.7, element is under mode-II loading. First, it is sheared to the right side,

and elastic (1) and softening (2) response are observed. Then it is unloaded (3) and

sheared to the other side. First, there is reloading (4) response, then the softening

continues from where it was left on the other side and fails (5). Finally, it is unloaded

to the initial position (6).

The results are as expected for pure mode analytical implementation. Next, incre-

mental implementation of tractions is explained, which is a stepping stone towards

mixed-mode implementation.
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3.3 Mode I-II incremental implementation

In the previous section, evolution of pore fraction, df , and pore height, dh, were

expressed separately for mode-I and mode-II, which allowed us to take their integrals,

and express f and h as a function of δn and δt. This is not possible for mixed-mode

evolution equations (2.15). Therefore, instead of obtaining Tn and Tt directly as a

function of δn and δt by taking integral of df and dh, pore fraction f and pore height

h are incrementally updated, and the tractions are written as a function of f and h.

This allows us to update f using both δn and δt, which is required for mixed-mode

implementation. The evolution of f and h are known from equation (2.15) for mixed

mode. These relations are approximated with a backward Euler scheme, first for

uncoupled pure mode-I and mode-II. Then, the relations for updating f and h are

found for mixed-mode. This implementation is tested with the one element model

and compared with uncoupled implementation.

For pure mode-I, we have,

df =
dδn
h

(1− f)

dh = dδn (3.26)

Using backward Euler scheme,

fn+1 − fn =
∆δn
hn+1

(1− fn+1)

hn+1 − hn = ∆δn (3.27)

Hence,

fn+1 =
fn + ∆δn

hn+1

1 + ∆δn
hn+1

hn+1 = hn + ∆δn (3.28)

For pure mode-II, we have,

df = 2
√
f
dδt
l

dh = −h
a
dδt (3.29)
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Using backward Euler scheme,

fn+1 − fn = 2
√
fn+1

∆δt
l

hn+1 − hn = −hn+1

a
∆δt where a =

√
f0l (3.30)

After some manipulation,

fn+1 =

(√
fn +

∆δ2
t

l2
+

∆δt
l

)2

hn+1 =
hn

1 + ∆δt√
f0l

(3.31)

Rewriting equation (2.15) for mixed-mode,

df =
dδn
h

(1− f) + 2
√
f
dδt
l

dh = dδn −
h

a
dδt (3.32)

Using backward Euler scheme,

fn+1 − fn =
∆δn
hn+1

(1− fn+1) + 2
√
fn+1

∆δt
l

(3.33)

hn+1 − hn = ∆δn −
hn+1

a
∆δt where a =

√
f0l (3.34)

After some manipulation,

fn+1 =

(
∆δt
l

+

√
(∆δt)

2

l2
+

(∆δn)2

h2
n+1

+ fn +
∆δn
hn+1

(fn + 1)

)2

(
1 +

∆δn
hn+1

)2 (3.35)

hn+1 =
hn + ∆δn

1 +
∆δt√
f0l

(3.36)

As a confirmation, by setting ∆δt = 0 or ∆δn = 0 in (3.35) and (3.36) pure mode

update equations (3.28) and (3.31) are obtained respectively.

Tractions and derivatives are the same as analytical implementation. In addition, there

are cross derivatives,

∂Tn
∂δt

=
∂Tn
∂f

∂f

∂δt
=
σy
2

[
(1− f)2 +

1

3
(lnf)2

]−1/2[
2(1− f)(−1) +

2

3

lnf

f

][
2
√
f

l

]
∂Tt
∂δn

=
∂Tt
∂f

∂f

∂δn
=

[
−σy√

3

][
1− f
h

]
(3.37)
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Contact and unloading relations are the same. However, failure is determined by

checking if f > 1, and both tractions become zero in case of failure. Considering

these changes, Algorithm 1 is slightly modified as follows for incremental implemen-

tation,
–Normal cohesive interaction:

if δn < 0 (Contact) then
Tn = Dnnδn, Dnn = En, Dnt = 0

else if δn > δn,max and δn 6 δn,cr and f < 1 (Loading-Elastic) then
Tn = Dnnδn, Dnn = En, Dnt = 0

else if δn > δn,max and δn > δn,cr and f < 1 (Loading-Softening) then
hi+1 = h(hi,∆δn,∆δt), fi+1 = f(hi, fi,∆δn,∆δt)

Tn = Tn(fi+1), Dnn = ∂Tn
∂f

∂f
∂δn
, Dnt = ∂Tn

∂f
∂f
∂δt

else if δn < δn,max and f < 1 (Unloading/reloading) then
Tn = Tn(fmax)

δn
δn,max

, Dnn = Tn(fmax)
1

δn,max
, Dnt = 0

end

–Tangential cohesive interaction:

if |δt| > δt,max and |δt| 6 δt,cr and f < 1 (Loading-Elastic) then
Tt = Dtt|δt|sign(δt), Dtt = Et, Dtn = 0

else if |δt| > δt,max and |δt| > δt,cr and f < 1 (Loading-Softening) then
hi+1 = h(hi,∆δn,∆δt), fi+1 = f(hi, fi,∆δn,∆δt)

Tt = Tt(fi+1)sign(δt), Dtt = ∂Tt
∂f

∂f
∂δt
, Dtn = ∂Tt

∂f
∂f
∂δn

else if |δt| < δt,max and f < 1 (Unloading/reloading) then
Tt = Tt(fmax)sign(δt)

|δt|
δt,max

, Dtt = Tt(fmax)
1

δt,max
, Dtn = 0

end

–Failure check:

if f > 1 (Failure) then
Tt = 0, Tn = 0 Dtt = 0, Dtn = 0, Dnt = 0, Dnn = 0

end
Algorithm 2: Evaluation of tractions and derivatives of tractions for incremental

implementation.

Same as before, derivatives of f are found from,

df =
dδn
h

(1− f) + 2
√
f
dδt
l

for mixed-mode

df

dδn
=

1− f
h

,
df

dδt
=

2
√
f

l
(3.38)
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In the incremental UEL implementation, in addition to maximum separations δn/t,max,

pore height h and pore fraction f are saved at the end of each increment as state vari-

ables.

In Figs. (3.8) and (3.9), the same numerical simulations for the previous analytical

model are done with the incremental model. It is confirmed that the results are the

same, and the incremental model can be extended to mixed mode.
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Figure 3.8: Traction versus displacement response to mode-I loading/unloading for

incremental and analytical model.
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Figure 3.9: Traction versus displacement response to mode-II loading/unloading for

incremental and analytical model.
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3.4 Mixed-mode implementation scheme

In the mixed-mode derivation, a yield function as a function of tractions and pore

fraction, f , was obtained, see equation (3.39), where f is a function of pore height,

h, and separations. Evolution of h is also controlled by separations, δn,t. Ultimately,

our yield function is a function of tractions, Tn, Tt, and separations, δn, δt, see below.

g =

 T 2
n

(1− f)2 +

(
1√
3
ln

1

f

)2 +
3T 2

t

(1− f)2


1
2

− σy = σ − σy (3.39)

df =
dδn
h

(1− f) + 2
√
f
dδt
l

dh = dδn −
h

a
dδt (3.40)

Obviously, there is not an explicit form for the tractions, and they cannot be read-

ily calculated. Therefore, to calculate the change of tractions resulting from a given

change in separations, a numerical integration scheme for coupled elastoplastic and

damage equations is employed [97]. It’s general formulation is explained in the fol-

lowing subsection, which is then applied to the derived cohesive zone model. Yield

functions of the derived cohesive zone model are used with this integration scheme to

solve for tractions.

3.4.1 Numerical integration scheme for coupled elastoplastic and damage equa-

tions

In this section a generic implicit numerical integration scheme is addressed for a class

of constitutive laws where, the yield function is given by,

F = σ(σij, ε
p
ij)− σy = 0. (3.41)

and then applied to the yield type of mixed-mode traction separation relation to get

the incremental update of tractions.
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Assume that total strain is additively decomposed into elastic and plastic components,

εij = εeij + εpij. (3.42)

An increment of plastic strain dεpij is allowed only if equation (3.41) is satisfied,

meaning the stress state is on the yield surface. The direction of the plastic strain

increment is given by the following flow rule,

dεpij = dµ
∂F

∂σij
= dµ

∂σ

∂σij
(3.43)

where dµ is the plastic multiplier. Or, we may write,

dεpij = dµ gij where gij =
∂σ

∂σij
. (3.44)

If F < 0, material response is elastic,

dσij = Dijkldε
e
kl = Dijkldεkl (3.45)

where Dijkl is a fourth order stiffness tensor.

In the context of an incremental numerical scheme, consider the case where the stress

σij , the total strain εij , and the accumulated plastic strain εpij are known up to the cur-

rent increment. In the current increment, the total strain increment ∆εij is provided,

and ∆σij need to be found.

Again, If F < 0, response is elastic and simply,

∆σij = Dijkl∆ε
e
kl = Dijkl∆εkl. (3.46)

If F ≥ 0, following implicit integration scheme is employed,

At the end of the current increment the stress state must be on the yield surface.

Thus,

F = σ(σij + ∆σij, ε
p
ij + ∆εpij)− σy = 0. (3.47)

The direction of the plastic strain increment at the point (σij + θ∆σij, ε
p
ij + θ∆εpij)

is found, where 0 ≤ θ ≤ 1. A value in the range 0.5 to 1 ensures that the solution is

unconditionally stable. Equation 3.44 gives,

Gij = ∆εpij −∆µ gij(σij + ∆σij, ε
p
ij + ∆εpij) = 0. (3.48)
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Finally, the stress and strain increments must satisfy the elastic constitutive law,

Hij = σij + ∆σij −Dijkl(ε
∗
kl −∆εpij) = 0 (3.49)

where

ε∗ij = εij + ∆εij − εpij. (3.50)

If it is assumed that the elastic stiffness matrix is not a function of inelastic strain,

then,

Hij = ∆σij −Dijkl(∆εij −∆εpij) = 0. (3.51)

Equations 3.47, 3.48 and 3.51 represent a set of 13 nonlinear equations and 13 un-

knowns (∆σij,∆ε
p
ij and ∆µ). This system of nonlinear equations can be solved by

using Newton’s method. After i iterations, the values of (∆σij,∆ε
p
ijand∆µ)i are

given by,


∆εpkl

∆σkl

∆µ


i

=


∆εpkl

∆σkl

∆µ


i−1

−


δikδjl − θ∆µ

∂gij
∂εpkl

−θ∆µ gij
∂σkl

−gij

Dijkl δikδjl 0

∂σ

∂εpkl

∂σ

∂σkl
0



−1

i−1


Gij

Hij

F


i−1

where subscript i− 1 indicates that calculations are done using values obtained at the

end of the previous increment. Iteration is continued until a small enough tolerance

for Gij, Hij and F is reached.

In a finite element framework, we also need the Jacobian,

Jijkl =
∂∆σij
∂∆εkl

(3.52)

It can be determined directly by noting that (∆σij,∆ε
p
ij and ∆µ) are functions of the

total strain increment ∆εij . Taking derivative of equations 3.47, 3.48 and 3.51 with

respect to ∆εij then gives,
δikδjl − θ∆µ

∂gij
∂εpkl

−θ∆µ gij
∂σkl

−gij

Dijkl δikδjl 0

∂σ

∂εpkl

∂σ

∂σkl
0




∂∆εpkl
∂∆εmn

Jklmn

∂∆µ

∂∆εmn

 =


0

Dijmn

0


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For the Jacobian, all quantities within the matrices are determined by using the values

at the end of the final iteration for the determination of the stress increment.

This was the general formulation of the implicit numerical integration scheme. In

order to apply it to the derived cohesive zone model, following changes are made.

Strain tensor, εij , is replaced by separations δn and δt, and separations are additively

decomposed into elastic and plastic parts, i.e. δ = δe + δp. Stress tensor, σij , is

replaced by tractions Tn and Tt. Fourth order stiffness tensor, Dijkl, is replaced by

elastic slopes En and Et. Before the implicit numerical integration scheme is applied

for our cohesive zone model, there are a few things to consider. f and h are updated

incrementally considering contributions from both modes. When updating f and h

there are some points taken into account,

1) f and h are updated only if the material is at the softening region of the traction-

separation law (see Fig. 3.3), i.e. if the loading is plastic, yield function F ≥ 0. This

is achieved by updating f and h using plastic separations, δpn and δpt , instead of total

separations δn and δt.

2) f and h are not updated if the material is under unloading/reloading/contact for that

mode. For example, if the material is loaded in mode-I, but unloading in mode-II, f

and h are updated as it is pure mode-I.

3) If the material is under loading, f and h are not updated if the loading is elastic.

4) Element fails when f = 1.

5) Elastic slopes should be as high as possible to have convergence and an accurate

solution.

First, mode-I and mode-II are considered. These pure mode versions will be used for

the unloading/reloading cases in mixed-mode.

3.4.2 Mode I using plasticity formulation

In this subsection, the generic iteration scheme explained previously is applied for

mode-I loading case, and the system of equations is derived. Equations to be satisfied
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in the next increment,

F = σ − σy = 0 (3.53)

Gn = ∆δpn −∆µ
∂σ

∂Tn
= 0 (3.54)

Hn = Tn + ∆Tn − En(δn + ∆δn − δpn −∆δpn) = 0 (3.55)

Unknowns: ∆δpn, ∆Tn, ∆µ where σ := σ(δpn, Tn)

Use Newton-Raphson’s algorithm,

Xn = Xn−1 −

(
∂f

∂Xn−1

)−1

f(Xn−1) (3.56)

Then,


∆δpn

∆Tn

∆µ


n

=


∆δpn

∆Tn

∆µ


n−1

−



∂Gn

∂δpn

∂Gn

∂Tn

∂Gn

∂µ
∂Hn

∂δpn

∂Hn

∂Tn

∂Hn

∂µ
∂F

∂δpn

∂F

∂Tn

∂F

∂µ



−1

n−1


Gn

Hn

F


n−1

Derivatives are given by,

∂Gn

∂δpn
= 1−∆µ

∂
(
∂σ
∂Tn

)
∂δpn

,
∂Gn

∂Tn
= −∆µ

∂2σ

∂T 2
n

,
∂Gn

∂µ
= − ∂σ

∂Tn
(3.57)

∂Hn

∂δpn
= En,

∂Hn

∂Tn
= sign(Tn),

∂Hn

∂µ
= 0 (3.58)

∂F

∂δpn
=

∂σ

∂δpn
,

∂F

∂Tn
=

∂σ

∂Tn
,

∂F

∂µ
= 0 (3.59)

Letting
∂σ

∂Tn
= gn, we have,


∆δpn

∆Tn

∆µ


n

=


∆δpn

∆Tn

∆µ


n−1

−


1−∆µ

∂gn
∂δpn

−∆µ
∂gn
∂Tn

−gn

En sign(Tn) 0

∂σ

∂δpn
gn 0



−1

n−1


Gn

Hn

F


n−1
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σ =

[
T 2
n

(1− f)2 + (lnf)2/3

] 1
2

=
|Tn|

[(1− f)2 + (lnf)2/3]
1
2

(3.60)

df = dδpn
(1− f)

h
(3.61)

dh = dδpn (3.62)

dδn = dδen + dδpn (3.63)

Evolution of f and h was found in (3.28), but here δpn is used.

fn+1 =

fn +
∆δpn
hn+1

1 +
∆δpn
hn+1

(3.64)

hn+1 = hn + ∆δpn (3.65)

Derivatives,

gn =
∂σ

∂Tn
=

Tn
σ[(1− f)2 + (lnf)2/3]

(3.66)

∂gn
∂Tn

=
(σ − Tngn)

σ2[(1− f)2 + (lnf)2/3]
(3.67)

∂σ

∂f
=

1

2σ

[
−T 2

n [−2(1− f) + 2
3
lnf 1

f
]

[(1− f)2 + (lnf)2/3]2

]
(3.68)

∂gn
∂f

=
−Tn
σ2

[
∂σ
∂f

[(1− f)2 + (lnf)2/3] + σ[−2(1− f) + 2
3
lnf 1

f
]

[(1− f)2 + (lnf)2/3]2

]
(3.69)

∂gn
∂δpn

=
∂gn
∂f

∂f

∂δpn
=
∂gn
∂f

(1− f)

h
(3.70)

∂σ

∂δpn
=
∂σ

∂f

∂f

∂δpn
=
∂σ

∂f

(1− f)

h
(3.71)

Following the steps in section 3.4.1, the derivative ∂Tn/∂δn for the Jacobian can be

found. Take derivative of (3.55) and (3.53) with respect to δn. We get,

∂Hn

∂δn
=
∂Tn
∂δn
− En + En

∂δpn
∂δn

= 0 (3.72)

∂F

∂δn
=
∂σ

∂δpn

∂δpn
∂δn

+
∂σ

∂Tn

∂Tn
∂δn

= 0 (3.73)
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Here, there are two unknowns,
∂Tn
∂δn

and
∂δpn
∂δn

, and two equations. Solving the system,

we find,

∂Tn
∂δn

=
− ∂σ
∂δpn

gn −
∂σ

∂δpn

1

En

(3.74)

3.4.3 Mode II using plasticity formulation

In this subsection, the formulation used for mode-I loading in previous subsection is

repeated for mode-II loading. Equations to be satisfied in the next increment,

F = σ − σy = 0 (3.75)

Gt = ∆δpt −∆µ
∂σ

∂Tt
= 0 (3.76)

Ht = Tt + ∆Tt − Et(|δt + ∆δt| − δpt −∆δpt ) = 0 (3.77)

Unknowns: ∆δpt , ∆Tt, ∆µ where σ := σ(δpt , Tt)

Use Newton-Raphson’s algorithm,


∆δpt

∆Tt

∆µ


n

=


∆δpt

∆Tt

∆µ


n−1

−



∂Gt

∂δpt

∂Gt

∂Tt

∂Gt

∂µ
∂Ht

∂δpt

∂Ht

∂Tt

∂Ht

∂µ
∂F

∂δpt

∂F

∂Tt

∂F

∂µ



−1

n−1


Gt

Ht

F


n−1

Derivatives are given by,

∂Gt

∂δpt
= 1−∆µ

∂
(
∂σ
∂Tt

)
∂δpt

,
∂Gt

∂Tt
= −∆µ

∂2σ

∂T 2
t

,
∂Gt

∂µ
= − ∂σ

∂Tt
(3.78)

∂Ht

∂δpt
= Et,

∂Ht

∂Tt
= sign(Tt),

∂Ht

∂µ
= 0 (3.79)

∂Ft
∂δpt

=
∂σ

∂δpt
,

∂Ft
∂Tt

=
∂σ

∂Tt
,

∂Ft
∂µ

= 0 (3.80)
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Letting
∂σ

∂Tt
= gt, we have,


∆δpt

∆Tt

∆µ


n

=


∆δpt

∆Tt

∆µ


n−1

−


1−∆µ

∂gt
∂δpt

−∆µ
∂gt
∂Tt

−gt

Et sign(Tt) 0

∂σ

∂δpt
gt 0



−1

n−1


Gt

Ht

F


n−1

σ =

[
3T 2

t

(1− f)2

] 1
2

=

√
3|Tt|

(1− f)
(3.81)

df = dδpt
2
√
f

l
(3.82)

dh = −dδpt
h

a
(3.83)

dδt = dδet + dδpt (3.84)

Evolution of f and h was found in (3.31), but here δpt is used.

fn+1 =

(√
fn +

(∆δpt )
2

l2
+

∆δpt
l

)2

(3.85)

hn+1 =
hn

1 +
∆δpt√
f0l

(3.86)

Derivatives,

gt =
∂σ

∂Tt
=

3Tt
σ(1− f)2

(3.87)

∂gt
∂Tt

=
3

(1− f)2

(σ − Ttgt)
σ2 (3.88)

∂σ

∂f
=

1

2σ

[
6T 2

t

(1− f)3

]
(3.89)

∂gt
∂f

=
−3Tt
σ2

∂σ

∂f

1

(1− f)2
+

3Tt
σ

2

(1− f)3
(3.90)

∂gt
∂δpt

=
∂gt
∂f

∂f

∂δpt
=
∂gt
∂f

2
√
f

l
(3.91)

∂σ

∂δpt
=
∂σ

∂f

∂f

∂δpt
=
∂σ

∂f

2
√
f

l
(3.92)
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Similarly, the derivative ∂Tt/∂δt can be found. Take derivative of (3.77) and (3.75)

with respect to δt. We get,

∂Ht

∂δt
=
∂Tt
∂δt
− Et + Et

∂δpt
∂δt

= 0 (3.93)

∂F

∂δt
=
∂σ

∂δpt

∂δpt
∂δt

+
∂σ

∂Tt

∂Tt
∂δt

= 0 (3.94)

Here, there are two unknowns,
∂Tt
∂δt

and
∂δpt
∂δt

, and two equations. Solving the system,

we find,

∂Tt
∂δt

=

− ∂σ
∂δpt

gt −
∂σ

∂δpt

1

Et

(3.95)

3.4.4 Mixed-mode using plasticity formulation

Finally, similar to pure mode-I and mode-II cases, the iteration scheme is applied for

mixed-mode loading. Equations to be satisfied in the next increment,

F = σ − σy = 0 (3.96)

Gn = ∆δpn −∆µ
∂σ

∂Tn
= 0 (3.97)

Gt = ∆δpt −∆µ
∂σ

∂Tt
= 0 (3.98)

Hn = Tn + ∆Tn − En(δn + ∆δn − δpn −∆δpn) = 0 (3.99)

Ht = Tt + ∆Tt − Et(|δt + ∆δt| − δpt −∆δpt ) = 0 (3.100)

Unknowns: ∆δpn, ∆δpt , ∆Tn, ∆Tt, ∆µ where σ := σ(δpn, δ
p
t , Tn, Tt)

50



Using Newton-Raphson’s algorithm,



∆δpn

∆δpt

∆Tn

∆Tt

∆µ


n

=



∆δpn

∆δpt

∆Tn

∆Tt

∆µ


n−1

−



∂Gn

∂δpn

∂Gn

∂δpt

∂Gn

∂Tn

∂Gn

∂Tt

∂Gn

∂µ
∂Gt

∂δpn

∂Gt

∂δpt

∂Gt

∂Tn

∂Gt

∂Tt

∂Gt

∂µ
∂Hn

∂δpn

∂Hn

∂δpt

∂Hn

∂Tn

∂Hn

∂Tt

∂Hn

∂µ
∂Ht

∂δpn

∂Ht

∂δpt

∂Ht

∂Tn

∂Ht

∂Tt

∂Ht

∂µ
∂F

∂δpn

∂F

∂δpt

∂F

∂Tn

∂F

∂Tt

∂F

∂µ



−1

n−1



Gn

Gt

Hn

Ht

F


n−1

Derivatives are given by,

∂Gn

∂δpn
= 1−∆µ

∂
(
∂σ
∂Tn

)
∂δpn

,
∂Gn

∂δpt
= −∆µ

∂
(
∂σ
∂Tn

)
∂δpt

,

∂Gn

∂Tn
= −∆µ

∂2σ

∂T 2
n

,
∂Gn

∂Tt
= −∆µ

∂2σ

∂Tt∂Tn
,

∂Gn

∂µ
= − ∂σ

∂Tn

∂Gt

∂δpn
= −∆µ

∂
(
∂σ
∂Tt

)
∂δpn

,
∂Gt

∂δpt
= 1−∆µ

∂
(
∂σ
∂Tt

)
∂δpt

,

∂Gt

∂Tn
= −∆µ

∂2σ

∂Tt∂Tn
,

∂Gt

∂Tt
= −∆µ

∂2σ

∂T 2
t

,
∂Gt

∂µ
= − ∂σ

∂Tt
∂Hn

∂δpn
= En,

∂Hn

∂δpt
= 0,

∂Hn

∂Tn
= 1,

∂Hn

∂Tt
= 0,

∂Hn

∂µ
= 0

∂Ht

∂δpn
= 0,

∂Ht

∂δpt
= Et,

∂Ht

∂Tn
= 0,

∂Ht

∂Tt
= 1,

∂Ht

∂µ
= 0

∂F

∂δpn
=

∂σ

∂δpn
,

∂F

∂δpt
=

∂σ

∂δpt
,

∂F

∂Tn
=

∂σ

∂Tn
,

∂F

∂Tt
=

∂σ

∂Tt
,

∂F

∂µ
= 0
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Letting
∂σ

∂Tn
= gn and

∂σ

∂Tt
= gt, we have,

[An] =



∆δpn

∆δpt

∆Tn

∆Tt

∆µ


n

, [An−1] =



∆δpn

∆δpt

∆Tn

∆Tt

∆µ


n−1

, [Cn−1] =



Gn

Gt

Hn

Ht

F


n−1

[Bn−1] =



1−∆µ
∂gn
∂δpn

−∆µ
∂gn
∂δpt

−∆µ
∂gn
∂Tn

−∆µ
∂gn
∂Tt

−gn

−∆µ
∂gt
∂δpn

1−∆µ
∂gt
∂δpt

−∆µ
∂gt
∂Tn

−∆µ
∂gt
∂Tt

−gt

En 0 1 0 0

0 Et 0 1 0

∂σ

∂δpn

∂σ

∂δpt
gn gt 0


n−1

Iterate by,

[An] = [An−1]− [Bn−1]−1[Cn−1] (3.101)

σ =

[
T 2
n

(1− f)2 + (lnf)2/3
+

3T 2
t

(1− f)2

] 1
2

(3.102)

df = dδpn
(1− f)

h
+ dδpt

2
√
f

l
(3.103)

dh = dδpn − dδ
p
t

h

a
(3.104)

dδn = dδen + dδpn (3.105)

dδt = dδet + dδpt (3.106)
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Update of f and h for mixed-mode was found in (3.35). Here, δpn and δpt are used.

fn+1 =

(
∆δpt
l

+

√
(∆δpt )

2

l2
+

(∆δpn)2

h2
n+1

+ fn +
∆δpn
hn+1

(fn + 1)

)2

(
1 +

∆δpn
hn+1

)2 (3.107)

hn+1 =
hn + ∆δpn

1 +
∆δpt√
f0l

(3.108)

Derivatives,

gn =
∂σ

∂Tn
=

Tn
σ[(1− f)2 + (lnf)2/3]

(3.109)

gt =
∂σ

∂Tt
=

3Tt
σ(1− f)2

(3.110)

∂gn
∂Tn

=
1

[(1− f)2 + (lnf)2/3]

(σ − Tngn)

σ2 (3.111)

∂gn
∂Tt

=
Tn

[(1− f)2 + (lnf)2/3]

(−gt)
σ2 (3.112)

∂gt
∂Tn

=
3Tt

(1− f)2

(−gn)

σ2 (3.113)

∂gt
∂Tt

=
3

(1− f)2

(σ − Ttgt)
σ2 (3.114)

∂σ

∂f
=

1

2σ

[
−T 2

n [−2(1− f) + 2
3
lnf 1

f
]

[(1− f)2 + (lnf)2/3]2
+

6T 2
t

(1− f)3

]
(3.115)

∂gn
∂f

=
−Tn
σ2

[
∂σ
∂f

[(1− f)2 + (lnf)2/3] + σ[−2(1− f) + 2
3
lnf 1

f
]

[(1− f)2 + (lnf)2/3]2

]
(3.116)

∂gn
∂δpn

=
∂gn
∂f

∂f

∂δpn
=
∂gn
∂f

(1− f)

h
(3.117)

∂gn
∂δpt

=
∂gn
∂f

∂f

∂δpt
=
∂gn
∂f

2
√
f

l
(3.118)

∂gt
∂f

=
−3Tt
σ2

∂σ

∂f

1

(1− f)2
+

3Tt
σ

2

(1− f)3
(3.119)

∂gt
∂δpn

=
∂gt
∂f

∂f

∂δpn
=
∂gt
∂f

(1− f)

h
(3.120)

∂gt
∂δpt

=
∂gt
∂f

∂f

∂δpt
=
∂gt
∂f

2
√
f

l
(3.121)
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∂σ

∂δpn
=
∂σ

∂f

∂f

∂δpn
=
∂σ

∂f

(1− f)

h
(3.122)

∂σ

∂δpt
=
∂σ

∂f

∂f

∂δpt
=
∂σ

∂f

2
√
f

l
(3.123)

The Jacobian,
∂∆Ti
∂∆δj

, is needed in finite element framework. As it was noted in sec-

tion 3.4.1 it can be derived from the fact that ∆Tn,∆Tt,∆δ
p
n,∆δ

p
t ,∆µ are functions

of ∆δn and ∆δt. Following, take derivative of equations (3.96), (3.97), (3.98), (3.99)

and (3.100) with respect to ∆δn and ∆δt. Applying chain rule,

Gn = ∆δpn −∆µ
∂σ

∂Tn
= 0 where

∂σ

∂Tn
= gn = gn(δpn, δ

p
t , Tn, Tt)

∂Gn

∂∆δn
=
∂∆δpn
∂∆δn

− ∂∆µ

∂∆δn
gn −∆µ

∂gn
∂∆δpn

∂∆δpn
∂∆δn

−∆µ
∂gn
∂∆δpt

∂∆δpt
∂∆δn

−∆µ
∂gn
∂∆Tn

∂∆Tn
∂∆δn

−∆µ
∂gn
∂∆Tt

∂∆Tt
∂∆δn

= 0

(3.124)

∂Gn

∂∆δt
=
∂∆δpn
∂∆δt

− ∂∆µ

∂∆δt
gn −∆µ

∂gn
∂∆δpn

∂∆δpn
∂∆δt

−∆µ
∂gn
∂∆δpt

∂∆δpt
∂∆δt

−∆µ
∂gn
∂∆Tn

∂∆Tn
∂∆δt

−∆µ
∂gn
∂∆Tt

∂∆Tt
∂∆δt

= 0

(3.125)

Gt = ∆δpt −∆µ
∂σ

∂Tt
= 0 where

∂σ

∂Tt
= gt = gt(δ

p
n, δ

p
t , Tn, Tt)

∂Gt

∂∆δn
=
∂∆δpt
∂∆δn

− ∂∆µ

∂∆δn
gt −∆µ

∂gt
∂∆δpn

∂∆δpn
∂∆δn

−∆µ
∂gt
∂∆δpt

∂∆δpt
∂∆δn

−∆µ
∂gt
∂∆Tn

∂∆Tn
∂∆δn

−∆µ
∂gt
∂∆Tt

∂∆Tt
∂∆δn

= 0

(3.126)

∂Gt

∂∆δt
=
∂∆δpt
∂∆δt

− ∂∆µ

∂∆δt
gt −∆µ

∂gt
∂∆δpn

∂∆δpn
∂∆δt

−∆µ
∂gt
∂∆δpt

∂∆δpt
∂∆δt

−∆µ
∂gt
∂∆Tn

∂∆Tn
∂∆δt

−∆µ
∂gt
∂∆Tt

∂∆Tt
∂∆δt

= 0

(3.127)

Hn = ∆Tn − En(∆δn −∆δpn) = 0
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∂Hn

∂∆δn
=
∂∆Tn
∂∆δn

− En + En
∂∆δpn
∂∆δn

= 0 (3.128)

∂Hn

∂∆δt
=
∂∆Tn
∂∆δt

+ En
∂∆δpn
∂∆δt

= 0 (3.129)

Ht = ∆Tt − Et(∆δt −∆δpt ) = 0

∂Ht

∂∆δn
=
∂∆Tt
∂∆δn

+ Et
∂∆δpt
∂∆δn

= 0 (3.130)

∂Ht

∂∆δt
=
∂∆Tt
∂∆δt

− Et + Et
∂∆δpt
∂∆δt

= 0 (3.131)

F = σ − σy = 0 where σ = σ(δpn, δ
p
t , Tn, Tt)

∂F

∂∆δn
=

∂σ

∂∆δpn

∂∆δpn
∂∆δn

+
∂σ

∂∆δpt

∂∆δpt
∂∆δn

+
∂σ

∂∆Tn

∂∆Tn
∂∆δn

+
∂σ

∂∆Tt

∂∆Tt
∂∆δn

= 0 (3.132)

∂F

∂∆δt
=

∂σ

∂∆δpn

∂∆δpn
∂∆δt

+
∂σ

∂∆δpt

∂∆δpt
∂∆δt

+
∂σ

∂∆Tn

∂∆Tn
∂∆δt

+
∂σ

∂∆Tt

∂∆Tt
∂∆δt

= 0 (3.133)

Equations (3.124)-(3.133) represent a system of linear equations with 10 equations

and 10 unknowns;(
∂∆δpn
∂∆δn

,
∂∆δpn
∂∆δt

,
∂∆δpt
∂∆δn

,
∂∆δpt
∂∆δt

,
∂∆Tn
∂∆δn

,
∂∆Tn
∂∆δt

,
∂∆Tt
∂∆δn

,
∂∆Tt
∂∆δt

,
∂∆µ

∂∆δn
,
∂∆µ

∂∆δt

)

It can be solved by using simple Gauss elimination or by taking the inverse of a 10

by 10 matrix. In the implementation LAPACK (Linear Algebra Package) library’s

DGESV subroutine is used to solve the system. It is highly efficient, and it is in-

cluded in the Intel Fortran Compiler libraries. DGESV uses LU decomposition to

solve the system. The matrix form of equations is given below. Solving it, the re-

quired unknowns
∂∆Tn
∂∆δn

,
∂∆Tn
∂∆δt

,
∂∆Tt
∂∆δn

,
∂∆Tt
∂∆δt

are obtained for the Jacobian. For the

variables in these system of equations, the last obtained values from iteration equation

(3.101) are used.
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[A][B] = [C], [B] = [A]−1[C], Jacobian, [J ] =


∂∆Tt
∂∆δt

∂∆Tt
∂∆δn

∂∆Tn
∂∆δt

∂∆Tn
∂∆δn



Unknowns, [B] =



∂∆δpn
∂∆δn
∂∆δpn
∂∆δt
∂∆δpt
∂∆δn
∂∆δpt
∂∆δt
∂∆Tn
∂∆δn
∂∆Tn
∂∆δt
∂∆Tt
∂∆δn
∂∆Tt
∂∆δt
∂∆µ

∂∆δn
∂∆µ

∂∆δt



, RHS, [C] =



0

0

0

0

En

0

0

Et

0

0


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[A
]= 
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E
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0
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0
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0
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0
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E
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∂
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∆
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∂
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∂
∆
δ
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0
g
n

0
g
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0
0

0

0
∂
σ

∂
∆
δ
pn

0
∂
σ

∂
∆
δ
pt

0
g
n

0
g
t

0
0 

The implementation of mixed-mode UEL is very lengthy. Every combination of con-

tact, unloading/reloading, elastic/plastic loading is considered separately. Therefore,
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algorithm for mixed-mode will be explained mostly with words.
–Contact cases, δn 6 0

Tn = Enδn, Dnn = En, Dnt = 0

if |δt| > δt,max and f < 1 (Tt loading) then

if σ < σy (Elastic) where σ = σ(Tt, δ
p
t ) then

Tt = Et(|δt| − δpt )sign(δt), Dtt = Et, Dtn = 0

else if σ > σy (Plastic) then
Iterate using mode-II plasticity formulation. Find ∆δpt ,∆Tt,∆µ

Dtt = Found using variables from last iteration, Dtn = 0

end

else if |δt| < δt,max and f < 1 (Tt unloading) then
Tt = Et(δt,max − δpt )

|δt|
δt,max

sign(δt), Dtt =

Et(δt,max − δpt ) 1
δt,max

, Dtn = 0

else if f > 1 (Failure) then
Tt = 0, Dtt = 0, Dtn = 0

end

–Separation cases, δn > 0

if |δt| > δt,max and δn > δn,max and f < 1 (Tt, Tn loading) then

if σ < σy (Elastic) where σ = σ(Tt, Tn, δ
p
t , δ

p
n) then

Tt = Et(|δt| − δpt )sign(δt), Dtt = Et, Dtn = 0

Tn = En(δn − δpn), Dnn = En, Dnt = 0

else if σ > σy (Plastic) then
Iterate using mixed-mode plasticity formulation.

Find ∆δpt ,∆δ
p
n,∆Tt,∆Tn,∆µ

Dtt,tn,nt,nn = Found using variables from last iteration

end
else if |δt| < δt,max and δn > δn,max and f < 1 (Tt unloading, Tn loading)

then
Tt = Et(δt,max−δpt )

|δt|
δt,max

sign(δt), Dtt = Et(δt,max−δpt ) 1
δt,max

, Dtn = 0

if σ < σy (Elastic) where σ = σ(Tt, Tn, δ
p
n) then

Tn = En(δn − δpn), Dnn = En, Dnt = 0

else if σ > σy (Plastic) then
Iterate using mode-I plasticity formulation. Find ∆δpn,∆Tn,∆µ

Dnn = Found using variables from last iteration, Dnt = 0

end
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else if |δt| > δt,max and δn < δn,max and f < 1 (Tt loading, Tn unloading)

then
Tn = En(δn,max − δpn) δn

δn,max
, Dnn = En(δn,max − δpn) 1

δn,max
, Dnt = 0

if σ < σy (Elastic) where σ = σ(Tt, Tn, δ
p
t ) then

Tt = Et(|δt| − δpt )sign(δt), Dtt = Et, Dtn = 0

else if σ > σy (Plastic) then
Iterate using mode-II plasticity formulation. Find ∆δpt ,∆Tt,∆µ

Dtt = Found using variables from last iteration, Dtn = 0

end

else if |δt| < δt,max and δn < δn,max and f < 1 (Tt, Tn unloading) then
Tt = Et(δt,max−δpt )

|δt|
δt,max

sign(δt), Dtt = Et(δt,max−δpt ) 1
δt,max

, Dtn = 0

Tn = En(δn,max − δpn) δn
δn,max

, Dnt = 0, Dnn = En(δn,max − δpn) 1
δn,max

else if f > 1 (Failure) then
Tt = 0, Tn = 0, Dtt = 0, Dtn = 0, Dnt = 0, Dnn = 0

end
Algorithm 3: Evaluation of tractions and derivatives of tractions for mixed-mode

implementation.

In Figs. 3.10 and 3.11 traction-separation results are presented, where the one element

FE model (Figs. 3.4 and 3.6) used to test the uncoupled and incremental implemen-

tation is employed again with the mixed-mode implementation using different elastic

slopes. It is observed that the results are the same if the elastic slope is high enough.

However, the error grows with decreasing elastic slope and results in divergence if

the slope is too small.

We want to analyze the mixed mode behavior, for example, obtain traction surfaces

as a function of normal and tangential separation, or find the change in fracture en-

ergy based on mode mixity. Unlike potential based cohesive zone models, there is not

an explicit expression for the tractions, so traction surfaces cannot be readily plotted.

Instead, there is a system of non-linear equations that can be solved with a numer-

ical iteration scheme. Because of this nature, the micromechanics based cohesive

zone model is intrinsically path-dependant. Meaning, the same traction will not be

obtained at a given normal and tangential separation if different paths are taken to

get to those separations. Note that this path dependency can be physically motivated.

Bosch et al. [79] point out that different amounts of energy would be dissipated in an
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Figure 3.10: Traction versus displacement response to mode-I loading/unloading us-

ing mixed-mode implementation.
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Figure 3.11: Traction versus displacement response to mode-II loading/unloading

using mixed-mode implementation.

60



idealized rough interface depending on path, and an irreversible damage process of

the interface is expected to be path-dependent. Hence, there is not a single traction

surface for this model. However, it is possible to get an idea by trying proportional

loading cases. Let α = tan−1

(
δn
δt

)
be the proportionality ratio. If α = 0o, load-

ing is Mode-II, or if α = 90o, it is Mode-I loading. Values in between correspond to

mixed-mode loading with different mixity ratios (See Fig. 3.12). A MATLAB script

δ
n

δ

t
δ

α

o

0<α<90
o oα=0

α=90
o

Figure 3.12: Proportional loading of cohesive element where α is proportionality

ratio.

is used to solve mixed-mode numerical scheme at a single material point. Separation

is applied such that the proportionality ratio changes from 0o to 90o, and resulting

traction surfaces are plotted in Fig. 3.13 for normal traction and Fig. 3.14 for tangen-

tial traction. Effect of mixed-mode can be observed, where the decrease in tractions

depend strongly on the proportionality ratio.

Moreover, the work of fracture is calculated using these traction surface data. Work

of fracture can be expressed as,

Wf = Wn +Wt (3.134)

where Wn is work due to normal separation and Wt is work due to tangential separa-

tion. Hence,

Wf =

∫ δ

0

Tn(δsinα, δcosα)sinαdδ +

∫ δ

0

Tt(δsinα, δcosα)cosαdδ (3.135)

In Fig. 3.15 change of normal work, tangential work and total work with respect

to proportionality ratio is presented. With the given MBCZM parameters, mode-II

work is less than mode-I work. This can be altered by changing the parameters. For

example, h0 changes Wn without affecting Wt. Similarly, l has the opposite effect.

This is demonstrated in Fig. 3.16.
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Figure 3.13: Normal traction surface for proportional loading from different view

angles. MBCZM model parameters are: σy=50 MPa, h0=0.1 mm, f0=0.1, l=1 mm,

En=700 GPa, Et=70 GPa
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Figure 3.14: Tangential traction surface for proportional loading from different view

angles. MBCZM model parameters are: σy=50 MPa, h0=0.1 mm, f0=0.1, l=1 mm,

En=700 GPa, Et=70 GPa
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Figure 3.16: Effect of h and l is shown on work of fracture. h0 = 0.1mm, l = 3mm

(top), h0 = 0.2mm, l = 1mm (bottom)
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CHAPTER 4

DUCTILE FRACTURE MODELLING USING MBCZM

In this chapter, numerical simulations are done for mode-I, mode-II, and mixed-mode

specimens using the MBCZM implemented as a UEL subroutine in Abaqus software.

For the mode-I CT specimen example, the analytical implementation scheme given

in Chapter 3 is used. For mode-I, mode-II, mixed-mode SEN specimen examples,

mixed-mode implementation scheme is used. Some of the results presented in this

chapter for the CT specimen have already been discussed in Yalçinkaya et al. [3].

It is important to note that the dimension of cohesive parameters and numerical mod-

els in the subsequent sections are on the order of millimeters. This length scale is not

suitable considering that the cohesive zone model was derived based on pore growth

where the size is on the order of micrometers. However, this is not a problem because

the purpose here is not to make realistic comparisons with experiments, but to under-

stand the behavior and the effect of the parameters present in the MBCZM and test the

implementation. The traction separation laws are size-independent since separations

are normalized in the model, i.e., they exist as δn/h or δt/l. Therefore, conclusions

obtained about the cohesive zone model with macro specimens are relevant in the

micro-sized specimens.

An interesting application of the developed MBCZM is the prediction of microme-

chanics based intergranular cracking in polycrystalline plasticity, which is more suit-

able considering the length-scale of the problem and the cohesive zone model. We

have conducted an extensive study of this problem by combining a strain gradient

crystal plasticity framework (see Yalcinkaya et al. [98], Klusemann and Yalcinkaya

[99], Klusemann et al. [100]) with the MBCZM relations, which shows clearly the in-

fluence of the microstructural parameters on the toughness of the material. The work
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has recently been submitted for a journal publication (see Yalcinkaya et al. [101]),

and the fundamental observations are presented in the next chapter.

4.1 Material

In this section, the developed model’s performance is tested through numerical simu-

lations conducted in Abaqus software for the SS316 austenitic steel presented in Fig.

4.1. For the bulk response, isotropic elasticity and von Mises (J2) plasticity are used,

while cohesive zone elements are inserted ahead of the notch. A curve fit of the ex-

perimental true stress-strain data is used for hardening. The material parameters for

bulk material and cohesive zone model are given below. Note that various sets from

the given cohesive parameters are chosen in the simulations.

For the bulk material :

E = 210[GPa], ν = 0.3, Plastic data in Fig. 4.1

For the cohesive zone :

f0 = 0.05− 0.1− 0.2 h0 = 0.05− 0.1− 0.2 [mm]

l = 0.25− 0.5− 1− 2 [mm] σy = 100− 300− 500 [MPa]

En = 70− 700 [GPa] Et = 70 [GPa]

4.2 CT Specimen for Mode-I Ductile Failure Analysis

The specimen is prepared according to ASTM-E1820 standards [102], which is used

for fracture toughness calculations experimentally, see Fig. 4.2. It has dimension

W = 100mm. Since the width of the specimen, W/2, is sufficiently large, plane

strain elements are used for the bulk, and cohesive elements are inserted ahead of

the initial crack. Boundary conditions and mesh of the FE model are given in Fig.

4.2 where red crosses are cohesive elements. The bottom hole is not allowed to move

while the top hole is given an upwards displacement, allowing the crack to open up. In

66



0 0.05 0.1 0.15 0.2

11
 - true

0

100

200

300

400

500

1
1
 -

 t
ru

e

SS316 austenitic steel

True Stress vs True Strain data

Curve fit

Figure 4.1: True stress-strain data for SS316LN steel.

the FE model, there is a reference point at the center of each hole, which is coupled to

the hole surface, and the boundary conditions are applied at this reference point. The

mesh shown in Fig. 4.2 contains 52163 nodes, 51135 CPE4 quadrilateral elements,

90 cohesive elements, and the approximate global element size is 0.5mm. In order

to check if the results are mesh dependant, a finer mesh with an approximate global

element size equal to 0.3 is used, and it is concluded that mesh size is adequately

small.
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Figure 4.2: ASTM-E1820 CT Specimen and the FE model with W = 100mm.
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4.2.1 Mode-I Loading

In Fig. 4.3 the effect of the initial porosity ahead of the crack tip is illustrated in the

CT specimen. Stress contours are shown just before the crack starts to propagate,

which corresponds to the moment at which the specimen carries the highest load, the

peak points in Fig. 4.4. It can be seen that for higher initial pore fraction values,

the specimen’s stress carrying capacity reduces, and the maximum stress magnitude

drops. This is also related to the fact that the crack propagation occurs earlier for the

higher initial porosity values.
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Figure 4.3: Stress contours for different initial pore fractions are shown, where the top

row is the von Mises stress and the bottom row is the normal stress in the y-direction.

Similar conclusions can be obtained from the load-displacement curve presented in

Fig. 4.4. The maximum stress gets smaller for higher porosity cases, and softening is

observed at an earlier global strain level. Additionally, the toughness of the specimen

reduces with higher initial pore fraction. Note that a finer mesh result is also shown

in the same figure, and results are almost the same. In cohesive zone modelling,

when cohesive elements are not small enough, a numerical instability can be observed

that results in an oscillating force-displacement curve. This was observed during

simulations, but it is not included here.
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Figure 4.4: Force-LLD response for constant h0, and changing f0.

The effect of f0 on ductility can be observed in Fig. 4.5, where distributions are shown

at the same time increment. For the same global displacement, the crack propagates

more for higher pore fraction, which can also be seen in Fig. 4.4. Therefore, when

the initial pore fraction is smaller, the material is more ductile, and it can sustain more

damage. Similarly, in Fig. 4.6, the equivalent plastic strain distribution is shown, and

it is higher for lower initial pore fraction, which is a sign of ductility as well.

The effect of initial pore height, h0, in the RVE is presented in Fig. 4.7 where the

rate of softening is changed. For the low pore height, the speed at which traction

carrying capacity drops is increased (see Fig. 2.3b or d). Remember the relation,

df/(1−f) = dh/h, to see the effect of initial pore height. The smaller the height, the

faster the pore fraction grows. Therefore, the failure occurs at an earlier time leading

to lower toughness, which is similar to the effect of higher pore fraction. Physically,

this is related to the pore shape effect. If h0 is small, pore is crack-like and grows

faster under normal loading.

There are several methods to quantify the resistance of a structure to crack growth.

For example, in Linear Elastic Fracture Mechanics (LEFM), the stress intensity factor,

K, or energy release rate, G, and their material-specific critical values can be used.

In LEFM the plastic deformation is confined to a small zone ahead the crack tip.

Therefore, the phenomenon is widely known as small scale yielding (SSY). And the

stress intensity factor, K, can be used. However in the current work, the problems
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Figure 4.5: Stress distributions at the same time increment for different initial pore

fractions. Load line displacement is 2 mm (top) and 4 mm (bottom).

include plasticity spread in a wide area of the specimen and this is called large scale

yielding (LSY) phenomenon. In such cases path independent J-integral is introduced

[103]. Path independence is lost if significant energy is spent to plastically deform

material at the crack tip, as is the case in ductile fracture. A common observation is

that J integral grows as the crack propagates, and when plotted versus crack extension,

it can quantify resistance to crack growth [104]. This is the so-called crack growth

resistance curve, R-curve or J-R curve. It is commonly used to characterize fracture

toughness in ductile materials and represents fracture resistance behavior. Hence, it

will be used here.

J-integral and crack extension ∆a need to be calculated numerically to obtain the

J-R curve. J-integral can easily be calculated in Abaqus by specifying its path, but

calculating ∆a is not straightforward with cohesive elements. In a cohesive zone

model, crack propagation, and the fracture process zone is represented with a finite

cohesive zone, and in this zone the crack tip location is not clear (Fig. 1.1). Li and

Chandra [87] makes a discussion about this issue and identifies three points on the

traction-separation law. Point A where traction becomes zero and complete material
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Figure 4.6: Equivalent plastic strain distributions for different initial pore fractions.
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Figure 4.7: Force-LLD response for constant f0, and changing h0.

separation is achieved, point C where separation initiates, or point B where maximum

traction is reached, Fig. 4.8. The region from point C to B is named as the forward

region, and the region from B to A is named as wake region. They state that selecting

point C implies absorbtion of entire cohesive energy by CZM, which excludes various

plastic processes, e.g., cavitations damage, occurring in the immediate vicinity ahead

of the crack tip in the wake region. On the other hand, selecting point A implies all of

the energy required for the decohesion is absorbed by the fully separated crack with

no active wake behind the crack tip. However, Ritchie [105, 106] showed that the

micromechanical processes are active and consume energy both in the forward and

wake regions of the crack. Therefore, they conclude that crack tip should be located

at point B based on physical reasoning, so that will be followed.

71



T

δ

ABC

Figure 4.8: Potential points on TSL for crack tip.

With the crack tip selected, a Python script is written to calculate crack extension

from Abaqus results. The separation at point B can be found by using,

δn,cr =
Tn,max
En

.

In the script, the separation between each coincident node of a cohesive element is

checked at every iteration. If this separation exceeds δn,cr, then it is assumed that the

crack tip has extended beyond this node couple. Then, separation in the neighboring

coincident node couple is calculated where δn,cr is not exceeded yet. Linear interpo-

lation is used to determine the crack tip location between these two node couples, and

crack extension is calculated.

Figure 4.9: Paths used to calculate J integral. Innermost (blue) and outermost (red)

paths are shown in the figure.

As mentioned before, J integral is path dependant in ductile fracture, and its path

should be selected carefully. It should enclose any plastic deformation due to crack

formation, the plastic zone at the crack tip. Since crack is propagating, this zone also

moves and extends. Fig. 4.9 shows the innermost and outermost paths chosen in
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Figure 4.10: Path dependence of J integral for elasto-plastic models. σy = 500 MPa,

f0 = 0.1, h0 = 0.1 mm.

Abaqus for J integral calculation with symmetry, and there are 14 paths in between,

16 in total.

Fig. 4.10 shows the resulting J integrals versus crack extension, where path depen-

dence can be seen. J integral stops increasing when the crack grows outside of the

region enclosed by J integral path. For this reason, the outermost path will be used to

draw J-R curves.

Fig. 4.11 shows the change in resistance curve with initial porosity, f0. Note that ∆a

has a maximum limit in plots according to ASTM-E1820 standards, and the J integral

is only the initial region of J integral in Fig. 4.10. It can be seen that when f0 is

smaller, resistance to crack is higher, and this resistance increases faster. Initially, the

energy required to grow the crack increases rapidly. Then as the crack propagates,

the increase reaches a steady state.

In Fig. 4.12, h0 is varied while f0 is constant. Similar to force-displacement curves,

h0 has an opposite effect. However, there is a difference compared to Fig. 4.11 at

the very beginning. The crack starts to grow at the same J value independent of h0,

while f0 affects this critical J. This is because of the fact that crack starts to grow

when maximum traction in the traction-separation law of MBCZM is reached, and

maximum traction is a function of f0 and σy, but not h0.
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J-R curve variation with σy is shown in Fig. 4.13. Similar to f0, both the J required to

initiate crack growth and the subsequent increase in resistance is affected. As it can

be seen, σy had a much bigger impact on the J-R curve. When σy = 100 MPa, the

resistance curve is almost flat, indicating that there is almost no ductile deformation.

Note that the preliminary results of this chapter is published in a conference proceed-

ing (Yalcinkaya et al. [3]). The work is extended here using another CT specimen and

by conducting a more through investigation including J-R curve analysis.
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Figure 4.11: J-R curve for constant h0, and changing f0.
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4.3 SEN Specimen for Mixed-Mode Ductile Failure Analysis

In this section, a Single Edge Notch (SEN) specimen is used as a test specimen

in FE simulations to illustrate the performance of the developed micromechanics

based cohesive zone model under mode-I, mode-II and mixed-mode loading con-

ditions. The specimen’s material is the same as the previous CT specimen exam-

ple, the SS316 austenitic steel presented in Fig. 4.1. A schematic of the dimen-

sions of the SEN specimen is given in Fig. 4.14. The dimensions are as follows:

L = 100mm,h = 20mm, b = 20mm, a0 = 10mm. The holes are used to load the

specimen in an experimental setup, but they are included in the FE model for the sake

of accuracy.

Cohesive elements are placed ahead of the initial crack to simulate crack propagation.

L

a
o

h

b

Figure 4.14: Single edge notch (SEN) specimen geometry.

The micromechanics based cohesive zone model developed in the previous chapters

is used as the constitutive model of cohesive elements. Differently from the CT spec-

imen, mixed-mode implementation of the MBCZM is used instead of analytical im-

plementation.

In order to load the SEN specimen under mode-II and mixed-mode conditions, a test

apparatus developed by Davenport and Smith [4] is employed, see Fig.4.15. It is an

extension of the mode-II single punch shear test to the mixed-mode. When elastic-

plastic material is subjected to mode-II loading, plastic flow can be observed at the

crack tip, which may introduce a mode-I stress component. This effect can be reduced

by the constraints of the test apparatus, allowing pure mode-II loading. The appara-

tus clamps together around the specimen, completely surrounding it. The clamps

are tightened so that there is no relative movement between the apparatus and spec-
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imen. This configuration makes sure that the crack tip is at the center of the applied

load. With this apparatus, a conventional tensile test machine and a simple single

edge notch specimen are adequate to apply mode-I, mode-II and mixed-mode load-

ing. This is achieved simply by applying the load through holes, see Fig.4.15: Mode-I

-> 1, Mode-II -> 6, or Mixed-Mode -> 2-5. The mode mixity changes depending on

which hole is used between 2-5.

In this numerical study, the test setup is modeled as a 2D FE model, see Fig. 4.16.
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Mixed−mode

Mode−II
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Mode−I

Mode−II

Mixed−mode

Figure 4.15: Test apparatus used to load SEN specimen with mode-I, mode-II and

mixed-mode loading [4].

The outside apparatus is modelled with rigid elements, and for the SEN specimen,

plane strain elements are used since the width is sufficiently large. The clamping ef-

77



fect is achieved by defining a high friction coefficient, µ = 1.3., between the rigid

part and SEN, to prevent any slip (cast iron has a static friction coefficient of 1.1,

and for aluminum its between 1.05-1.35 [107]). There are also rigid parts in the SEN

specimen’s loading holes, whose movement are directly coupled with the rigid part

outside, so they must move together.

In Fig. 4.17, the mesh of the SEN specimen is shown. The crack tip’s close-up is

X

Y

Z

Figure 4.16: FE model of the test apparatus in Fig. 4.15.

shown in the same figure, where red crosses are cohesive elements. There are 47348

nodes and 46180 elements. A finer mesh is used near the crack region, and the ap-

proximate global element size is 0.1, while it is 0.5 in the outer region. In order to

study mesh dependency, the outer region size is reduced to 0.25, and crack region el-

ement size is reduced to 0.075. It is confirmed that there is not an essential difference

in results.

78



In the following subsections results for mode-I and mode-II loadings are presented.

Figure 4.17: Mesh of the SEN specimen and close-up view of crack tip region.

4.3.1 Mode-I Loading

The previously discussed SEN specimen is subjected to mode-I loading by using hole

number 1. Similar to the CT specimen, the effect of initial pore fraction f0 and initial

pore height h0 is investigated. It is also checked if the mode-II related pore spacing

parameter, l, has any effect on results.

The observations here are mostly similar to the Mode-I CT specimen example. This

example is included for the sake of variety, and it provides a different point of view.

In addition, detailed insights are included in the discussion.

In Fig. 4.18 force versus displacement curve is plotted for different initial pore frac-

tions. Force is the total reaction force in the x-axis obtained from hole 1 at one side

where the displacement boundary condition was given. Similarly, displacement is the

total displacement of holes in the x-axis. In order to check if there is any mesh de-
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Figure 4.18: Force displacement response under mode-I loading for changing initial

pore fraction, f0.

pendency, a finer mesh is used for the f0 = 0.1, h0 = 0.1 case to compare. It can be

seen that results are almost the same, so the mesh is sufficiently fine.

Next, Fig. 4.18 is analyzed in detail together with contour plots. At first glance, it

can be deduced that this is a ductile fracture force-displacement curve. Notice the

three main regions in the curves. First, there is a tiny linear elastic region at small

displacements. Next, there is a non-linear hardening region until the peak force is

reached. Finally, there is a softening and failure region.

In the non-linear hardening region, ductile deformation occurs in the specimen, and

the size of this region is bigger if the initial pore fraction f0 is smaller, meaning duc-

tility is increased. This is supported by Fig. 4.19, where equivalent plastic strain

contours are plotted at the final time increment. It is evident from contours, even visi-

ble to the naked eye that permanent deformation increases with decreasing initial pore

fraction because accumulated plastic strain increases. Why this behavior occurs, why

there is a ductile deformation region? It is known that there are cohesive elements

ahead of the crack, and their faces separate under loading similar to a crack. How-

ever, this separation does not initiate if maximum traction is not reached at a cohesive

element. Moreover, this maximum traction is determined by the traction-separation

80



(Avg: 75%)
PEEQ

0.000
0.017
0.033
0.050
0.067
0.083
0.100
0.117
0.133
0.150
0.167
0.183
0.200
0.399

X

Y

Z

(Avg: 75%)
PEEQ

0.000
0.017
0.033
0.050
0.067
0.083
0.100
0.117
0.133
0.150
0.167
0.183
0.200
0.217

X

Y

Z

(Avg: 75%)
PEEQ

0.000
0.017
0.033
0.050
0.067
0.083
0.100
0.117
0.133
0.150
0.167
0.183
0.200

X

Y

Z

Figure 4.19: Equivalent plastic strain after failure. f0’s are equal to:

0.05 (top), 0.1 (middle), 0.2 (bottom).
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law of cohesive element, which is dependant on the initial pore fraction, f0. If co-

hesive faces cannot separate, then the deformation is carried by the specimen, and if

maximum traction is high enough so that the yield stress of bulk material is exceeded

at a point in the specimen, plastic deformation occurs. This behavior is consistent

with a physical pore. If the initial pore size is small, then more deformation would

be required to grow the pores until coalescence and failure, which in turn results in a

more ductile material.

Going back to Fig. 4.18, notice the peak force points. It is clear that the maximum

force reached is higher for smaller f0 values. This means that with smaller initial

pore fraction, not only ductility but also the strength of the material increases, which

again agrees with the physical pore growth-coalescence mechanism. This observa-

tion is supported by Figs. 4.20 and 4.21, where von Mises stress and normal stress in

loading direction contours are plotted at the peak force point of Fig. 4.18. It can be

observed that there is barely any crack propagation, and the stresses at the crack tip

are higher for smaller f0, which is a sign of strength.
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Figure 4.20: Von Mises stress contours just before softening begins.

f0’s are equal to: 0.05 (top), 0.1 (middle), 0.2 (bottom).
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Figure 4.21: Sxx stress component, just before softening begins. f0’s

are equal to: 0.05 (top), 0.1 (middle), 0.2 (bottom).
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Figure 4.22: Von Mises stress at the same displacement, 1mm. f0’s

are equal to: 0.05 (top), 0.1 (middle), 0.2 (bottom).
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Since the strength and ductility of the material increased, it may be said that tough-

ness is increased as a consequence. This can be measured by the area under force-

displacement curves in Fig. 4.18. Also, in Fig. 4.22, von Mises stress is plotted at

the same displacement value, 1mm. Notice that the case with f0 = 0.05 is still un-

dergoing plastic deformation and hardening, in f0 = 0.1 case, crack is propagating

and there is softening, and finally, in f0 = 0.2 case, the crack fully propagated, and

the specimen has lost its stress carrying capacity. This is a sign of increased strength,

ductility, and toughness of the material with smaller initial pore fraction.

Next in Fig. 4.23, force versus displacement curve is plotted for different initial pore

heights. It can be seen that the change in behavior is very similar to Fig. 4.18.

Strength, ductility and toughness increase with higher pore cavity height. The in-

crease in strength is visible in Fig. 4.24 von Mises contour plot, and ductility increase

is clear in Fig. 4.25 equivalent plastic strain contours. However, what does initial

pore height mean, and why does it have such an effect?

Back in Chapter 2, pore height h is defined as the height of the cylindrical cavity in a

cylindrical RVE. Under mode-I loading, this cavity grows both in circumference and
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Figure 4.23: Force displacement response under mode-I loading for changing initial

pore height, h0.

in height. Of course, this is an idealization of the real case. In reality, it is generally

assumed that physical pores initially have a spherical shape. However, when they

grow under plastic deformation, they also change their shape depending on loading

mode and triaxiality [108]. They may become more like an ellipsoid shape with a

longer major axis and shorter minor axis in 2D. In our model here, pore height h is an

idealized way to represent this ellipsoid shape of a growing pore. During derivation,

eventually, the evolution equation df = dh(1− f)/h was obtained for mode-I, which

translates to accelerated growth of pore fraction f for smaller pore height h. Thinking

physically, if the pore height is small, it has a crack like shape, and it would be easier

to grow it under mode-I loading. As this initial height increases, it starts to hinder

growth in that direction. So, naturally this h0 parameters has an opposite effect of f0

parameters since it directly affects pore growth, the evolution of f .

Why does the strength increase while maximum traction is not affected by h0?. This

may be the case for a single cohesive element, but there are multiple cohesive el-

ements in this example, each in a different situation. Even though the maximum

traction does not increase, the range of displacement corresponding to high tractions

increases depending on h0, see Fig. 2.3. This, together with the fact that there are

multiple elements, result in a change in strength.

In Fig. 4.26, the effect of pore spacing l on mode-I force-displacement curve is in-
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Figure 4.24: Von Mises stress contours just before softening begins.

h0’s are equal to: 0.05 (top), 0.1 (middle), 0.2 (bottom).
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Figure 4.25: Equivalent plastic strain after failure. h0’s are equal to:

0.05 (top), 0.1 (middle), 0.2 (bottom).
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Figure 4.26: Force displacement response under mode-I loading for changing pore

spacing, l.

vestigated. It is expected to have no effect on a pure mode-I loading since it is related

to mode-II fracture energy. The expectations are met, and this is evidence that the

loading is indeed pure mode-I.

Notice that in Figs. 4.18, 4.23 and 4.26, the force does not reach zero, but it goes

to zero asymptotically at infinite displacement. This is a shortcoming of the derived

model under pure mode-I loading. Full failure cannot be modelled, as evidenced by

the normal traction figure 2.3. As it will be seen in the next section, this is not the

case under mode-II loading.

In Fig. 4.27, variation of σy parameter on force-displacement curve is shown. This

σy is a parameter in the cohesive zone model, not to be confused with material’s yield

strength, and it affects maximum tractions. Decreasing σy decreases the maximum

tractions in CZM, hence reduces the maximum hardening achievable by the material.

Therefore, when σy is small, the problem becomes a small scale yielding problem

since fracture starts without plastic zone spreading throughout the specimen resulting

in elastic fracture. From this point of view, it has the opposite effect of a material

yield point. For example, when σy = 100MPa, the ductile deformation zone is non-

existent in Fig. 4.27. Similarly, there is no plastic deformation in Fig. 4.28, and brittle

fracture is observed.
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Figure 4.27: Force displacement response under mode-I loading for changing yield

stress, σy.
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Figure 4.28: Equivalent plastic strain after failure. σy’s are equal to:

100 MPa (top), 300 MPa (middle), 500 MPa (bottom).
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4.3.2 Mode-II Loading

Next, the SEN specimen is subjected to mode-II loading by using hole number 6.

Similarly, the effect of initial pore fraction f0 and pore spacing l is investigated. In

addition, it is checked if the mode-I related initial pore height parameter, h0, has any

effect on results.

In Fig. 4.29 force versus displacement curve is plotted for different initial pore frac-

tions. Force is the total reaction force in the y-axis obtained from hole 6 at one side

where the displacement boundary condition was given. Similarly, displacement is the

total displacement of holes in the y-axis.

Compared to mode-I loading, similar deductions can be made for mode-II loading
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Figure 4.29: Force displacement response under mode-II loading for changing initial

pore fraction, f0.

in terms of strength, ductility, and toughness evolution with changing initial pore

fraction, f0, see Fig 4.29, i.e., they all increase with decreasing initial pore fraction.

However, there are some differences. Firstly, unlike pure mode-I, the force can be-

come zero after a finite displacement, and this failure separation is dependant on the

initial pore fraction. Secondly, as f0 gets smaller, its effect on macroscopic behavior

is less effective. For example, the change in strength is smaller when f0 goes from 0.1
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Figure 4.30: Von Mises stress contours just before softening begins.

f0’s are equal to: 0.05 (top), 0.1 (middle), 0.2 (bottom).
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to 0.05 compared to going from 0.2 to 0.1, which was not the case for mode-I load-

ing. The reason can be found in traction-separation relations for mode-I and mode-II.

Remember maximum traction equations, 3.16, from Chapter 2,

Tn,max = σy

[
(1− f0)2 +

(
1√
3
ln

1

f0

)2
] 1

2

and Tt,max =
σy√

3
[1− f0]

Notice that if f0 goes to zero, Tn,max becomes infinity, whereas Tt,max has a finite

value. Therefore, there is a limit to the effect of the initial pore fraction for mode-II

loading. Still, with the value given here, the difference in strength is visible with

stress contours in Figs. 4.30, 4.31 and 4.32, von Mises stress, normal stress and shear

stress respectively. Also, the change in ductility can be seen in Fig. 4.33 with equiv-

alent plastic strain. Note that in Fig. 4.31 there is a stress concentration at the bottom

tip of the right half of the SEN specimen. This happens because the right half of the

outer mechanism pulls the specimen upwards while the other half pulls it downwards.

In Fig. 4.34, von Mises stress is given at the same displacement, 0.5mm. All of the

cases are in the softening region, f0 = 0.2 barely resist load while f0 = 0.1 and
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Figure 4.31: Syy stress component, just before softening begins. f0’s

are equal to: 0.05 (top), 0.1 (middle), 0.2 (bottom).
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Figure 4.32: Sxy, stress component, just before softening begins.

f0’s are equal to: 0.05 (top), 0.1 (middle), 0.2 (bottom).
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Figure 4.33: Equivalent plastic strain after failure. f0’s are equal to:

0.05 (top), 0.1 (middle), 0.2 (bottom).
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Figure 4.34: Von Mises stress at the same displacement, 0.5mm.

f0’s are equal to: 0.05 (top), 0.1 (middle), 0.2 (bottom).
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f0 = 0.05 cases still carry some load, where the latter does so more. At this point,

crack is propagating to cause full fracture eventually.
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Figure 4.35: Force displacement response under mode-II loading for changing pore

spacing, l.

In Fig. 4.35, the effect of pore spacing, l, is checked. This parameter is effective

only on mode-II traction-separation law. It does not affect maximum traction, but it

affects final failure separation. Hence, it naturally affects mode-II fracture energy, the

area under the traction-separation curve. This effect is translated into macroscopic

force-displacement behavior. Similar to the effect of h0 on the mode-I case, l affects

the specimen’s strength even though it does not change maximum traction. Again,

this is due to the fact that the interactions are more complex with multiple cohesive

elements, and the range of separation where tractions are high is bigger if l is bigger,

see Fig. 2.6 in Chapter 2. The increase in toughness observed with bigger l may be

imagined physically. So in a real material, ductile fracture happens by the nucleation,

growth and coalescence of pores. If the distance between different pores is increased,

which is like increasing pore spacing l, then it would take more plastic deformation

for coalescence to occur. Hence, strength, ductility and toughness increase. Figs. 4.35

and 4.36 support this discussion. However, as can be seen in the force-displacement

curve and plastic strain contours in Fig. 4.37, the effect of l on ductility is not as
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Figure 4.36: Von Mises stress contours just before softening begins.

l’s are equal to: 0.25 (top), 0.5 (middle), 1 (bottom).
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strong as f0. Like h0 for mode-I, l parameter heavily affects the softening region’s

shape and controls mode-II fracture energy.

Finally, in Fig. 4.38, the effect of initial pore height h0 on mode-II loading is shown.

Remember that normally, this parameter only affects mode-I traction-separation law.

The small change in the force-displacement curve’s softening region suggests that

there is a small mode-I loading included. The plastically deformed region may be

subject to some mode-I loading due to the rotation of elements. However, this effect

is minimal, as evidenced by Fig. 4.38, and the example is very close to a pure mode-

II. This also indicates that mixed-mode formulation is working as intended.

In Fig. 4.39, variation of σy parameter on force displacement curve is shown. The

observations in mode-I apply to mode-II. When σy = 100MPa, brittle failure is

observed, see Fig. 4.40.
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Figure 4.37: Equivalent plastic strain after failure. l’s are equal to:

0.25 (top), 0.5 (middle), 1 (bottom).
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Figure 4.38: Force displacement response under mode-II loading for changing initial

pore fraction, h0.

94



0 0.5 1 1.5

Displacement [mm]

0

500

1000

1500

2000

2500

3000

F
o
rc

e 
[N

]

SEN Specimen Mode-II, 
y
 variation

y
=100 MPa

y
=300 MPa

y
=500 MPa

Figure 4.39: Force displacement response under mode-II loading for changing yield

stress, σy.
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Figure 4.40: Equivalent plastic strain after failure. σy’s are equal to:

100 MPa (top), 300 MPa (middle), 500 MPa (bottom).
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4.3.3 Mixed-Mode Loading

SEN specimen is loaded with mixed-mode by using holes 2 through 5. Please refer

to Fig. 4.15 to check the meaning of hole numbers. As a reminder, the mechanism

with holes surrounding the SEN specimen allows us to simulate mode-I, mode-II,

or mixed-mode loading by changing loading direction. Let Ux be the displacement

boundary condition which is normal to crack path, Uy is the displacement boundary

condition tangential to crack path, and α = tan−1(Uy/Ux) is the ratio of these dis-

placements, also named as proportionality ratio in Chapter 3, see below. Table 4.1

gives the boundary condition applied at each hole. They are equal to, Ux = 5sinα and

Uy = 5cosα, where U =
√
U2
x + U2

y = 5.

Similar to previous sections, the effect of f0, h0 and l is investigated by changing

δ
n

δ

t
δ

α

o

0<α<90
o oα=0

α=90
o

Figure 4.41: Proportional loading of cohesive element where α is proportionality

ratio.

Hole 1 Hole 2 Hole 3 Hole 4 Hole 5 Hole 6

Mode-I Mode-II

α[o] 90 72 54 36 18 0

Ux[mm] 5.0 4.7553 4.0451 2.9389 1.5451 0.0

Uy[mm] 0.0 1.5451 2.9389 4.0451 4.7553 5.0

Table 4.1: Displacement boundary conditions at each hole and the angle of loading

direction.

one parameter while keeping others constant. This is repeated for holes 2, 3, 4 and 5,

and the effect of mode-mixity is observed in this way.

In Fig. 4.42, f0 is taken as 0.05 and 0.2 for holes 2 to 5. Dotted lines, f0 = 0.2,
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Figure 4.42: Force displacement response under mixed-mode loading for changing

initial pore fraction, f0.

represent low energy, whereas filled lines, f0 = 0.05, represent high energy. As al-

ways, smaller f0 means higher strength and toughness, but these qualities decrease

from hole 2 to hole 5 loading cases, i.e., when mode-II becomes more dominant than

mode-I. This is expected because with the current material parameters, f0, h0, l, σy,

pure mode-II fracture energy is smaller than pure mode-I fracture energy. This de-

pendency will be discussed later on.

To understand the effect of f0 with changing mode-mixity in a qualitative manner, the

area under the force-displacements curves is calculated. Note that some of the anal-

yses are not fully converged, so full softening could not be observed in some cases.

Hence, the area calculated is actually the area until the maximum force is reached.

Since softening curves are of similar shape and proportion, this should not pose a

problem. The calculated areas represent the trend in fracture energy. The energies are

compared between two different f0 values for each hole, and the percentage increase

from the smaller area to the bigger area is shown in Table 4.2. It can be seen that

the effect of f0 fades when mode-II becomes dominant. As it was discussed in pure

mode-II section, the reason is the fact that maximum mode-II traction obtainable with

decreasing f0 has a limit, so this is the expected response in mixed-mode.
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Figure 4.43: Force displacement response under mixed-mode loading for changing

initial pore height, h0.

In Fig. 4.43, same study is repeated for initial pore height, h0. Increasing the pore

height increases strength and toughness. This effect is expected to diminish towards

mode-II loading, and indeed this is the case seen in Table 4.2.

Fig. 4.44 shows the change with changing pore spacing, l. Strength and toughness

behavior is as expected, but this time the effect is expected to grow when mode-II

is dominant since l is mode-II related. This seems to be true in force-displacement

curves, and Table 4.2 confirms it.

% energy increase between

low-high energy cases Hole 2 Hole 3 Hole 4 Hole 5

% increase with changing f0 158.72 142.49 127.10 106.76

% increase with changing h0 117.25 102.68 85.13 53.97

% increase with changing l 26.95 45.30 59.00 88.82

Table 4.2: Changes in fracture energy with loadings at different holes for changing

parameters.

These results indicate that mixed-mode implementation is working as intended. The
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Figure 4.44: Force displacement response under mixed-mode loading for changing

pore spacing, l.

response obtained with changing material parameters for different mode-mixity ratios

correlates with the derived model. It was stated that in the previous examples that

mode-I fracture energy is higher than mode-II fracture energy. Next, it is investigated

if the opposite is possible.

In Chapter 3 mixed-mode section, it was shown that work of fracture for pure mode-I

could be altered with h0, for pure mode-II with l, and f0 affects both mode-I and

mode-II (Figs. 3.15, 3.16). Let us select two sets of parameters, one favoring mode-I

other favoring mode-II. Using these parameters, traction-separation curves and work

of fracture versus proportionality ratio graph will be presented, which is for a sin-

gle material point. Then they will be compared with macroscopic SEN specimen

example. Selected parameter sets are given in Table 4.3, and corresponding traction-

separation curves without elastic region is given in Fig. 4.45.

Is the mode-II dominant case in Fig. 4.45 really mode-II dominant? Yes, the

dominant part is the area under the curves, i.e., work of fracture. However, maxi-

mum tangential traction Tt is smaller than normal traction Tn. Unfortunately, this is

a shortcoming of the derived model. Maximum tractions cannot be controlled sepa-

rately; they are both dependant on σy and f0. Furthermore, in most of the cases, maxi-
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σy[MPa] h0 f0 l

Mode-I dominant 500 0.2 0.2 0.25

Mode-II dominant 500 0.05 0.2 4

Table 4.3: Parameters to obtain mode-I or II dominant fracture energies.
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Figure 4.45: Traction separation curves for parameters in Table 4.3.

mum mode-I traction is higher than mode-II traction. Again, remember the maximum

traction equations,

Tn,max = σy

[
(1− f0)2 +

(
1√
3
ln

1

f0

)2
] 1

2

and Tt,max =
σy√

3
[1− f0]

Let us check how these maximum tractions change with σy and f0. Looking at Figs.

4.46 and 4.47, when f0 is constant and σy is changed, Tn is always bigger than Tt.

And, when σy is constant and f0 is changed, Tn is bigger most of the time until

f0 ≈ 0.6. After that Tt is bigger, but tractions are very small already. Moreover, se-

lecting an initial pore fraction bigger than 0.6 does not make much sense physically.

So, instead of maximum tractions, the focus was on work of fracture to make a mode

dominant.

Using the parameter set in Table 4.3, calculations are conducted for a single material
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Figure 4.47: Maximum traction depending on f0.

point in MATLAB. The work of fracture graphs for proportional loading is shown in

Fig. 4.48. Next, these parameters are used in the SEN specimen model using holes 2

to 5.

When the mode-I dominant parameter set is used, Fig. 4.49 is obtained. As in

Fig. 4.48, mode-I dominant case, total energy seems to decrease from mode-I to

mode-II loading. The areas under curves are calculated again for the SEN specimen

to compare with a single material point case. Naturally, the SEN specimen’s energy
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Figure 4.48: Work of fracture depending on loading angle α, for mode-I dominant set

(top) and mode-II dominant set (bottom).

magnitudes are a lot higher, so the energies are normalized with maximum energy in

the corresponding graph. The results are shown in Fig. 4.50. The behavior is quite

similar; there is a gradual decrease from mode-I fracture energy to mode-II fracture

energy.

If the mode-II dominant parameter set is used, Fig. 4.51 is obtained. Holes 1, 2

and 3 show similar responses, only the pure mode-I case, hole 1, is asymptotic. When

mode-II displacement starts to become dominant, holes 4, 5 and 6, behavior starts to

change. Strength and energy decrease until pure mode-II, hole 6, case. Some of the
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Figure 4.49: Force displacement response for loading through different holes.
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Figure 4.50: Comparison of fracture energy for SEN specimen and single material

point tests.

analyses did not complete; still areas under the curves can be calculated with certain

assumptions. Softening behavior is quite linear for mode-II dominated cases. There-

fore the last data point in the curves can be used to predict the remaining portions

with reasonable accuracy. When the fracture energies are calculated this way and

normalized with the maximum energy, Fig. 4.52 is obtained. Mode-II fracture energy
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Figure 4.51: Force displacement response for loading through different holes.
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Figure 4.52: Comparison of fracture energy for SEN specimen and single material

point tests.

is higher than mode-I fracture energy as expected, and the trend of SEN specimen

examples is similar to single material point tests.

Previous examples are intended to show that the mixed-mode implementation is work-

ing by showing the correlations with the derived model. The behavior of the model

shows logical connections to the physical phenomenon in the context of ductile frac-
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ture. However, the implementation has some downsides due to the nature of CZ ele-

ments employed in ductile fracture analysis. For example, it cannot predict the crack

path at the moment. This is a problem of the cohesive zone models, intrinsic cohesive

zone models in particular. Since the cohesive elements are pre-inserted, crack path

should be known beforehand. Extrinsic cohesive zone models bypass this by insert-

ing elements during analysis to wherever necessary, but still crack path is limited by

mesh. This capability is very relevant in ductile fracture since the crack path is likely

to change depending on loading or deficiencies. Indeed, in our mixed-mode loading

SEN specimen example, the crack may follow a diagonal path, instead of a vertical

one, when holes 2 to 5 are used. Sutton et al. showed crack growth path of 2024-T3

aluminum for various loading angles using Arcan test specimen [109]. Experiments

showed that the crack followed an almost straight path for mode-I/II loading, while

it followed an angled path for mixed-mode loading where the path angle depends on

loading angle.

To show if this is the case, a simple strategy is followed with our pre-inserted intrinsic

cohesive elements. In addition to the vertical path, cohesive elements are placed on a

diagonal angled path, see Fig. 4.53. The first five cohesive elements at the crack tip

for both paths are deleted because there is only one bulk element at the intersection

of paths, and this reduces accuracy. Note that this was tried with as many as 19

paths initially with no logical results. Predicting the crack path with pre-inserted

cohesive elements was found to be very challenging. The main drawback was the

fact that cracks can initiate anywhere when there are cohesive elements everywhere.

Therefore, such a simplified setting is preferred to illustrate the mix-mode failure

analysis.

X

Y

Z

Figure 4.53: 2 potential crack paths, one vertical and one diagonal.

With the two potential crack paths, depending on the loading direction imposed
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through certain holes, the diagonal crack path is expected to be followed, i.e., holes

2 to 5. In pure mode-I and mode-II loadings, the crack should still propagate at the

vertical path. So, this idea is tested by loading the SEN specimen at each hole. Fig.

4.54 shows the comparison of force-displacement responses with the original single

vertical path model. The figure is quite crowded, but notice that the curves’ shapes

are very similar for holes 1, 6, and 5, where hole 1 is pure mode-I and hole 6 is pure

mode-II loading. Forces are reduced in 2 path examples, possibly due to less number

of cohesive elements. On the other hand, for holes 2, 3 and 4, the shape of 2 path

curves is different compared to single path. As it can be guessed, in these mixed-

mode loading cases, crack propagated in the diagonal direction. Hole 5 loading is

very close to a mode-II loading, and the crack followed the vertical path in that case.

Von Mises stress distribution is shown in Fig. 4.55 at the maximum force point. There

0 1 2 3 4 5

Displacement [mm]

0

1000

2000

3000

4000

F
o
rc

e 
[N

]

SEN Specimen Mixed-Mode Crack Path

Hole 1

Hole 1 - 2 Path

Hole 2

Hole 2 - 2 Path

Hole 3

Hole 3 - 2 Path

Hole 4

Hole 4 - 2 Path

Hole 5

Hole 5 - 2 Path

Hole 6

Hole 6 - 2 Path

Figure 4.54: Force displacement response for loading through different holes.

Straight lines represent 1 crack path model, and dotted lines are for 2 crack paths

model.

is a clear change in stress concentration direction depending on the loading direction.

When the concentration is symmetric (hole 1) or has a vertical shape (holes 5 and 6),

crack follows the vertical path. When stress concentration has an angled shape (holes

2, 3 and 4), crack follows the diagonal path. In Fig. 4.56, stress contours at 1mm total
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displacement is shown. In this figure, crack paths can be seen clearly.
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Figure 4.55: Von Mises stress just before softening for different

loading holes in SEN specimen. From top to bottom holes 1 to 6

are used.
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Figure 4.56: Von Mises stress at total displacement 1mm for differ-

ent loading holes in SEN specimen. From top to bottom holes 1 to 6

are used.
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All in all, the current the chapter illustrates that the developed micromechanical model

performs well in the case of mode I, mode II and mixed-mode ductile fracture sim-

ulations using implemented UEL subroutines. The influence of microstructural pa-

rameters such as initial porosity, cavity height, cavity spacing on the ductile failure is

discussed in such a context first time in the open literature. As mentioned previously,

it is not a straightforward task to employ cohesive zone elements in mixed-mode crack

propagation studies. However in the simplified setting, the examples clearly show the

expected crack propagation phenomenon. In the next chapter, the performance of the

model is tested for intergranular cracking in a polycrystalline plasticity context.
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CHAPTER 5

MICROMECHANICAL APPLICATIONS

In the previous chapter, behavior and implementation of the derived micromechanics

based cohesive zone model was tested with commonly used ductile fracture speci-

mens in the literature. However, the length scale of these specimens are on the order

of millimeters. In this chapter, staying at the true to length scale of the derivation,

an application of MBCZM in a micro-sized polycrystal specimen is presented. The

initial modeling idea of this behavior is discussed in Yalçinka et al. [110] and the

results presented here are taken from an article that has been submitted recently for

publication [101].

In metallic materials, as the size gets smaller, deformation homogeneity is lost. A het-

erogeneous plastic strain evolution is obtained due to increased effect of grains and

grain boundaries. Thus, classical J2 plasticity theory cannot be used in this length

scale. Instead, crystal plasticity theories are employed which take into account the

influence of anisotropic plasticity evolution in the grains. In such a modeling ap-

proach, the plastic strains are obtained through a tensorial summation of the plastic

slips at each slip system, which evolve differently due to the orientation of the crys-

tal. Therefore, the grains deform differently and due to the orientation mismatch a

stress concentration occurs at the grain boundaries, which might be a serious problem

for metallic materials depending on the microstructure around the grain boundaries.

While in local crystal plasticity modeling approaches a sharp change develops at the

grain boundaries, the nonlocal crystal plasticity modeling handles the localization and

stress concentration in a more physical way. Moreover due to the incorporated length

scale parameter these models can predict the size dependent plasticity behavior as

well. In this context a strain gradient (non-local) crystal plasticity (SGCP) model
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(see e.g. Yalcinkaya et al. [111] [98]) is combined with the developed MBCZM for

the prediction of intergranular cracking occurring due to the stress arise at the grain

boundaries. SGCP is used for bulk plasticity behavior in the grains while MBCZM is

employed at the grain boundaries.

5.1 Intergranular Ductile Fracture in High Strength Aerospace Alloys

High strength aerospace aluminum alloys, e.g. 7xxxx series., suffer from loss of

fracture toughness due to the heat treatment leading to intergranular ductile fracture.

An important failure mechanism in these materials is encountered when the grain

boundaries are weakened by a specific state of precipitation around them but they

remain strong enough that the failure in the vicinity of the grain boundaries is ductile.

This mechanism is known as intergranular ductile fracture that is very well known in

aerospace aluminum alloys.

While after a fast quench there is no precipitation observed in these materials, they

appear during a subsequent aging treatment around the grain boundaries, which are

rather small in over-aged condition. After a slower quench the precipitates are present

largely at the grain boundaries which get bigger with slower quench rates (see the ob-

servations in e.g. Dumont et al. [112]). These precipitates are accompanied with the

precipitate free zones (PFZ) around the grain boundaries (see e.g. Unwin et al. [113];

Pardoen et al. [114]). The PFZ is naturally rather soft and deforms first plastically. In

this situation the elastic or harder grains impose a strong constraint on the PFZ involv-

ing large stress triaxiality. It is very well known now that the higher triaxiality values

give larger void growth rate leading to rapid coalescence of voids and the initiation

of related intergranular cracking. Another possibility is that the stress in the grains

can reach the yield stress before the onset of coalescence in the PFZ; the stress triax-

iality then drops in the PFZ then the transgranular fracture mechanism might occur

as well. The competition between these two failure mechanisms were studied in the

literature a very simplified definition of microstructure with various parameters that

gave certain conclusions about the loading and the microstructure on the initiation

of the cracks. However a realistic model with physics based plasticity and fracture

mechanics models considering the effect of different microstructural parameters of
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the intergranular failure behavior of these materials have never been addressed before

and it is the main objective of this chapter. Qualitative conclusions are obtained from

the numerical analysis of micron sized specimens, and some of them are presented

here.

5.1.1 The Numerical Model of the Polycrystalline Specimen

Simulations are run in Abaqus software for a cylinderical specimen with 25µm length

and 25µm diameter presented in Fig. 5.1. It consists of 100 grains randomly dis-

tributed using Voronoi tesselation, and each grain is randomly oriented. For bulk of

grains strain gradient crystal plasticity model is used while cohesive zone elements

are inserted at intergranular faces. In Fig. 5.1, the specimen and the boundary condi-

tions are shown, where γ represent the crystallographic slip value that can be specified

in SGCP framework, and u is the displacement. At the fixed surface displacements

u1,2,3 are zero, while at the free surface u1,2 are zero and u3 has a finite value. Slip

value γ is zero at both surfaces. No boundary condition is given at the lateral surface.
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Figure 5.1: The representation of the boundary value problem with 100 grains.

The previously developed cohesive zone elements are implemented currently in a 2D

setting. In the current example, 3D dimensional potential based cohesive zone ele-

ments (see e.g. Park et al. [82], Cerrone et al. [115]) are employed in a mixed-mode
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environment whose TSL are obtained from the micromechanical analysis presented in

Chapter 3. To realize this, traction-seperation relations obtained in Chapter 3, equa-

tions (3.13-3.14), are fitted with Park-Paulino-Roesler (PPR) CZM, which are char-

acterized by the following variables. φn, φt, normal and tangential fracture energies,

σmax, τmax normal and tangential cohesive strengths, α, β, shape parameters, λn, λt

normal and tangential initial slope indicators. Corresponding parameters in PPR are

obtained for given f0, h0, and l parameters in MBCZM. In the fits, it is made sure that

the two important parameters of a TSL are as close as possible. Namely, maximum

traction and fracture energy, i.e. the area under the curves as shown in Fig. 5.2. The

found parameters are given in Table 5.1. In this way, the effect of micromechanical

parameters is investigated with a polycrystal specimen.

Table 5.1: Corresponding parameters in PPR model for given h0, f0 and l = 1µm.

f0 for a constant Φn Φt σmax τmax α β λt λn

h0 = 0.1µm [N/m] [N/m] [MPa] [MPa]

f0 = 0.01 100.0 52.9 453.9 91.5 37.0 1.7 0.005 0.102

f0 = 0.05 80.0 41.8 315.7 87.8 26.9 1.9 0.005 0.092

f0 = 0.1 73.3 34.3 256.9 83.1 23.1 1.8 0.005 0.059

5.1.2 The effect of initial porosity f0 at the grain boundaries

In this section the numerical response of the MBCZM is illustrated very shortly

through a couple of examples. Please refer to the submitted article for the detailed

description of the numerical example and the formulation of the bulk crystal plasticity

model [101]. The purpose here is to give an example on the employment of the devel-

oped micromechanics based cohesive zone model in predicting the fracture initiation

and propagation at grain scale in micron sized specimens, hence the section is kept

quite short.

The initial example addresses the influence of porosity at the grain boundaries on both

macroscopic constitutive response and spatial stress and strain evolution. In order to

illustrate porosity effect on the fracture at the grain boundaries three different initial

porosity ratios are considered, i.e. f0 = 0.01, f0 = 0.05, f0 = 0.1 for a constant pore

114



0 0.5 1 1.5 2 2.5 3 3.5 4

 Displacement [ m]

0

100

200

300

400

500

 T
ra

c
ti
o
n
 [
M

P
a
]

T
n
 fitting, f

0
 different

PPR

PBCZM, f
0
=0.01, h

0
=0.1

PPR

PBCZM, f
0
=0.1, h

0
=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Displacement [ m]

0

20

40

60

80

100

 T
ra

c
ti
o
n
 [
M

P
a
]

T
t
 fitting, f

0
 different

PPR

PBCZM, f
0
=0.01, l=1

PPR

PBCZM, f
0
=0.1, l=1

Figure 5.2: Comparison of PPR and MBCZM traction-separation laws after fitting

for mode-I (top) and mode-II (bottom).

height h0 = 0.1. The stress-strain response of the specimen deformed under uniaxial

tension is presented in Fig. 5.3. At the hardening stage three specimens behave

identical behavior, however, as expected, the ones with higher porosity start softening

earlier due to their lower cohesive strengths. There is considerable reduction in the

toughness of the material with increasing grain boundary cavity ratio. Then contour

plots of stress and strain are illustrated at peak engineering stress, and at 5% global

strain state in Fig. 5.4 and 5.5 respectively. Fig. 5.4 shows that at peak stress state, the

case with lowest porosity reaches to highest stress at the grain boundaries and highest

strain in the grains. When the cracked specimens are analyzed in Fig. 5.5, the crack

initiation locations for high porosity grain boundary microstructure ( f0 = 0.05 and

f0 = 0.1) are identical. However, surprisingly, it is different for the lowest porosity

case, which means even though the initial cavity is distributed homogeneously at
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all grain boundaries the crack initiation location might depend on the level of the

porosity. Therefore the interaction between the orientation mismatch and the cavity

ratio influence both toughness and the crack path in the specimen. Moreover it is

important to note that, at the same deformation state with 5% global strain while

the specimens with f0 = 0.05 and f0 = 0.1 are almost stress free as shown in Fig.

5.5(a,b,c) the one with f0 = 0.01 has not failed and still caries load, which would

show the effect of initial pore fraction on ductility.
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Figure 5.3: Engineering stress vs. strain response of a polycrystalline cylindrical

specimen with 25µm diameter and 25µm length including 100 grains deformed under

tensile loading for variable initial pore fraction, f0 and constant initial pore height,

h0.

5.1.3 Grain orientation distribution

The next example studies the influence of grain orientations on both the macroscopic

and microscopic behavior of micron sized samples under uniaxial loading. Five dif-

ferent random orientation sets are assigned to the grains of the sample with 100 grains,

and the engineering stress-strain responses are plotted in Fig. 5.6 (top). There is no

substantial difference in the hardening region due to the high number of grains in
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Figure 5.4: Contour plots for the stress (σzz) (a, b, c) and strain (εzz) (d, e, f) at the

peak engineering stress increment in for different initial pore fractions, f0 = 0.01 (a,

d), f0 = 0.05 (b, e), f0 = 0.1 (c, f).

the specimen, which means the orientation influence of individual grains is almost

negligible and the extrinsic size effect does not exist. However the influence of dif-

ferent orientation sets is more visible at the peak stress and in the softening region.

The reason behind this difference can well be explained by the strain contour plots

presented in Fig. 5.7 at 8% global strain level where a complete failure is obtained

in each case. The figures show that the crack path is different for different orienta-

tion sets which is illustrated for sets 1, 4 and 5. This is an expected result since the

stress concentrations at the grain boundaries are purely orientation mismatch depen-

dent, which is distinct for different orientation distribution, inducing different traction

levels at the same locations for the same specimen. The influence of the grain ori-

entation on the micro crack formation and propagation has recently been discussed

by the authors through phenomenological traction separation relations as well (see

Yalcinkaya et al. [116]). It has been shown that even if the orientation set is iden-

tical, different random distribution in specimen results in similar observation where

the micro specimen with the same pole figure shows different fracture characteristics.
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Figure 5.5: Contour plots for the stress (σzz) (a, b, c) and strain (εzz) (d, e, f) at 5%

global strain for different initial pore fractions, f0 = 0.01 (a, d), f0 = 0.05 (b, e), f0 =

0.1 (c, f).

For comparison reason, another case with 10 grains is analyzed again under same

loading conditions for 5 different orientation sets and the results are presented in Fig.

5.6 (bottom). The macroscopic response shows a strong extrinsic size effect where

the orientation of individual grains dominate both hardening and softening regimes in

the constitutive response. Moreover the crack paths of the specimens with 10 grains

are also presented in the same figure which shows a strong orientation dependence as

well, which is also a valid observation for the material toughness.

The section presents a clear example on the employment of the cohesive zone model

developed and implemented in the current study, for a microplasticity related frac-

ture phenomenon that influence the service performance of certain aerospace alloys.

Even though such micromechanics models are quite demanding and difficult to im-

plement, they could give important conclusions of the microstructural parameters on

the degradation procedure of crucial aerospace materials.
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Figure 5.7: Contour plots for the strain (εzz) at 8% global strain level for different

orientation sets: set 1 (a), set 4 (b), and set 5 (c).
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CHAPTER 6

CONCLUSION

In this thesis, micromechanically motivated traction-separation relations based on the

growth of pores are derived to predict ductile fracture in metallic materials through

cohesive zone modelling for mode-I, mode-II and mixed-mode following the initial

studies in Yalçinkaya et al. [1] [2] [3]. Tractions are directly a function of pore frac-

tion, and micromechanical parameters like pore shape and spacing govern its evo-

lution together with separations. Due to the nature of the presented cohesive zone

model, tractions cannot be expressed explicitly in mixed mode. Instead, tractions,

separations, and micromechanical parameters constitute a yield function that should

be satisfied in case of crack opening similar to plasticity. Hence, an elastoplastic inte-

gration scheme is developed to solve the mixed-mode tractions iteratively. While the

derived traction-separation laws are originally extrinsic, an initial linear elastic region

is added to make the model intrinsic for the sake of more straightforward implemen-

tation. The model is implemented with a 4-noded linear cohesive element as a UEL

subroutine in Abaqus software to be used in numerical simulations. The model’s ca-

pability is tested with FE models of CT and SEN specimens for different modes in

the context of ductile fracture. Note that the purpose of the current work is to illus-

trate the influence of microstructural parameters on the ductile fracture phenomenon.

Comparison of the numerical simulations with the experiments is not done yet. Still,

promising results are obtained and the work can be extended in the future. The main

findings of the study are listed below.

• For the mixed-mode elastoplastic integration scheme, a small elastic slope causes

growth in error compared to pure-mode solutions and eventually leads to diver-

gence.
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• The model can successfully predict the expected effect of microstructural pa-

rameters such as f0, the initial porosity, h0 , the initial pore height, l, pore

spacing and σy, yield stress of the matrix surrounding the pore, on the failure

behavior of metallic materials. Where, h0 is meant to be an idealized represen-

tation of pore shape effect. A smaller cavity height means that the pore shape

is crack-like, and it can grow faster under mode-I loading.

• Under mixed-mode loading, crack propagation direction may change depend-

ing on the loading direction. It was shown that the present mixed-mode model

of MBCZM could model the change in the crack path. When both vertical and

diagonal path exists in an SEN specimen, the diagonal path is preferred for

crack propagation under mixed-mode loading.

• MBCZM is used together with a strain gradient crystal plasticity model in

the context of intergranular ductile fracture observed in various high strength

aerospace alloys. It was observed that, in addition to strength and toughness,

the crack path is affected by initial porosity in a polycrystal model with random

grain orientations.

It is clear that the connections between nucleation, growth, and coalescence of micro-

scopic voids leading to ductile failure are simplified in the proposed model. However,

as simple as it may be, it can correctly represent the effects of micromechanical pa-

rameters such as pore fraction, shape, and spacing on the macroscopic properties like

strength, ductility, and toughness. The traction-separation law’s main variables are

cohesive strength, cohesive energy, and critical separation in most of the cohesive

zone models in the literature. Unlike them, tractions are derived as a function of pore

fraction, and the main variables are pore related parameters which is considered to be

a novel approach. Another difference is that, due to the nature of the model, mixed-

mode relations are obtained in a way similar to a plasticity model. A nonlinear yield

function containing tractions and micromechanical parameters is solved using an im-

plicit numerical integration scheme.

The thesis presents an initial effort for the inclusion of micromechanical ductile frac-

ture parameters in cohesive zone finite element constitutive relations. It presents
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unique results for the literature, however it requires further investigation for the ex-

tension of the framework to capture the underlaying physics in a better way.

• Cohesive strength is a function of matrix yield stress, σy, and initial pore frac-

tion, f0, and it cannot be specified separately for mode-I and mode-II. There-

fore, mode-I strength is higher than mode-II strength in all logical cases, which

may not be the case in reality.

• Only the growth of a pore is considered during derivation, while it is accepted

that coalescence should occur after a specific porosity. This may be incorpo-

rated by acceleration pore evolution after a given porosity.

• A cylindrical void with the same height as the RVE is used for simplicity. A

spherical void centered inside the RVE may be considered for a better repre-

sentation of pore shape.

• Under mode-I loading traction goes to zero asymptotically, therefore a cutout

separation can be specified to make traction zero after a certain separation [88],

or a coalescence criteria can be introduced to accelerate pore growth.

• While it is technically challenging, an extrinsic implementation is more suit-

able for MBCZM since it does not have an elastic part originally. Such an

implementation would allow users to simulate dynamic crack propagation and

changes in crack path in a simpler way but it requires mesh manipulation and

insertion of cohesive elements during the analysis.

The current implementation of the cohesive zone elements is restricted to 2D case, yet

the extension to 3D is a straightforward task, which will be done in the near future.

The current version is ready to be used directly in the ductile fracture predications

in polycrystalline plasticity by combining with a 2D strain gradient crystal plasticity

framework (see e.g. [117]). Moreover, a porous plasticity model has recently been

developed considering the nucleation, growth, and coalescence of pores (see Yal-

cinkaya et al. [118] for a preliminary study) for the bulk plasticity response which

will be used together with the MBCZM presented in this thesis in order to have phys-

ically meaningful damage initiation and propagation. Finally it is important to note
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that the models require validation through experimental studies and microstructural

analysis for the identification of the parameters for more realistic simulations.
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