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ABSTRACT

MODULI SPACE FOR INVARIANT SOLUTIONS OF SEIBERG-WITTEN

EQUATIONS

UĞUZ, MUHİDDİN

Ph. D., Department of Mathematics

Supervisor: Prof. Dr. Turgut Önder

September 1999, 56 pages

In this work we study theG-invariant solutions of the Seiberg-Witten equations

when G is a cyclic group acting on a manifold M, preserving the metric and

the orientation. G is assumed to have a lift to principle Spinc bundle which

gives rise to Seiberg-Witten equations in question. It was shown that when

the dimension bG+ of the G-fixed points of harmonic two forms is positive,

for a generic choice of an element in this fixed point set, the moduli space

of invariant solutions of Seiberg-Witten equations is a compact, smooth and

oriented manifold. In case bG+ is zero, it was shown that there exist a unique

singularity which has a compact neighborhood homeomorphic to a cone on a
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certain projective space. Using the latter case, a version of the theorem of

Fintushel and Stern which gives a necessary condition for a Seifert homology

3-sphere occurs as the boundary of a negative definite four manifold whose

first cohomology contains no 2-torsion, is proven.

Keywords: Equivariant Seiberg-Witten theory, Equivariant Seiberg-Witten

moduli space, Pseudofree orbifold, Seifert homology 3-spheres.
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ÖZ

SEIBERG-WITTEN DENKLEMLERİNİN SABİT ÇÖZÜM UZAYI

UĞUZ, MUHİDDİN

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Turgut Önder

Eylül 1999, 56 sayfa

Bu çalışmada Seiberg-Witten denklemlerinin ölçümü koruyan bir devirli G-

grubu etkisi altında sabit kalan çözümlerinin oluşturduğu uzay incelenmekte-

dir. G-etkisinin, Seiberg-Witten denklemlerini yazıldığı uzayları veren, temel

Spinc(4) demetine genişletilebildiği kabul edilmiştir. G-etkisi altında sabit

kalan harmonik iki formların oluşturduğu uzayın boyutu, bG+, pozitif iken, bu

uzaydan seçilebilecek genel bir eleman için Seiberg-Witten denklemlerinin G-

etkisi altında sabit kalan çözümlerinin tıkız, yönlendirilebilir, düzgün bir mani-

fold oluşturduğu gösterilmektedir. bG+’nin sıfır olduğu durumda ise, bu uzayda

tek bir teklil noktasının olduğu ve bu noktanın bir projektif uzay uzerinde

koni yapısında olan tıkız bir komşuluğunun bulunduğu ispatlanmıştır. Bu ik-
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inci durumu kullanarak, Fintushel-Stern’ün Seifert homology 3-kürelerinin ne

zaman negatif definit ve birinci cohomolojisinde 2-torsion bulunmayan bir 4-

boyutlu manifoldun sınırı olabileceği hakkında gerekli şartları veren teoreminin

bir versiyonu ispatlanmıştır.

Anahtar Kelimeler: İnvariyant Seiberg-Witten Teorisi, İnvariyant Seiberg-

Witten modül uzayı, Yalancı serbest orbifold, Seifert homoloji 3-küreleri.
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CHAPTER I

Introduction

In 1949 Whitehead [3] classified simply connected closed oriented 4-manifolds

up to orientation-preserving homotopy equivalence by their intersection form.

A proof of this theorem is given in [8], page 103. Later on M. Freedman in 1982

gave homeomorphism classification of closed, simply connected 4-manifolds

[7]. His results were expressed in terms of intersection forms. However the

classical tools, like intersection forms, were not enough to detect differential

structures. During the 1980’s, Simon Donaldson used the Yang-Mills equa-

tions to study the differential topology of four-manifolds. Using moduli space

of connections on an SU(2) bundle, he introduced an invariant which detects

differential structures. However, due to the nonlinearity of Yang-Mills equa-

tions, to make explicit computations was not easy and substantial analysis was

needed. Sometimes, instead of using this invariant, mere use of moduli space

of Gauge equivalence classes of connections on an SU(2) or SO(3) bundle itself

led to important results. One of these was a well known theorem of Donaldson

which states that the only negative definite, unimodular form, represented by a
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closed, smooth, simply connected four manifold, is the negative of the standard

(diagonal) form.(e.g. see S.Donaldson and P.B. Kronheimer, The geometry of

four manifolds and Freed-K. Uhlenbeck)

In the fall of 1994, Edward Witten introduced a set of equations which give

the main results of Donaldson Theory in a much simpler way. These equations

are now known as the Seiberg-Witten equations. These equations were associ-

ated to a Spinc(4) structure on the manifold in question and they were invariant

under the group of bundle automorphisms of the determinant line bundle as-

sociated to this Spinc(4) structure. This group is called Gauge group. As

in Donaldson theory gauge equivalence classes of solutions of Seiberg-Witten

equations forms a moduli space and gives important information about the dif-

ferential topology of the manifold. In fact, a diffeomorphism invariant, called

Seiberg-Witten invariant, is introduced using this moduli space(see [9], [13],

[4] ).

The moduli space of Gauge equivalence classes of the solutions of the per-

turbed Seiberg Witten equations is compact and in some cases, for a generic

perturbation, it is a zero dimensional manifold and hence consists of finitely

many points. In this case, Seiberg-Witten invariant is defined to be the al-

gebraic sum of the points in the moduli space counted with the multiplicities

according to the orientation.

As in the case of Donaldson Theory, sometimes one can make use of the

singularities instead of trying to eliminate them. For instance just by using

Seiberg-Witten moduli space (and not Seiberg-Witten invariant) a much sim-

pler proof of the theorem of Donaldson mentioned above can be given(e.g.see
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[9] for such a simple proof). In this work, following a similar idea, we shall

first construct the moduli space of solutions of Seiberg-Witten equations that

are invariant under certain cyclic group action. We shall study the mani-

fold structure and the special structure near singularities, and using this we

shall give a version of well known result of Fintushel and Stern which gives

a necessary condition for a Seifert homology 3-sphere occurs as the boundary

of a negative definite four manifold whose first cohomology contains no 2-

torsion, [5]. In their proof, Fintushel and Stern used moduli space of invariant

Yang-Mills equation. The use of the moduli space of invariant Seiberg-Witten

equations brings some simplification. For instance, instead of dealing with an

SO(3)-vector bundle E, we have a line bundle L, here. This makes counting

the singularities problem unnecessary. In fact, in Seiberg-Witten case, for each

perturbation there is a unique singularity. In [11] Ruan also considered a mod-

uli space of gauge equivalence classes of invariant solutions of Seiberg-Witten

equations. His aim was to obtain an invariant.

Let G be a cyclic group of order α. Suppose G acts to preserve orientation

on a closed, oriented four dimensional manifold. Choose a G-invariant Rieman-

nian metric and a characteristic G line bundle L. Let us denote the associated

principal U(1)-bundle of L by PL and the associated principal SO(4)-bundle

of T ∗M by PSO(4). Let PSpinc(4) be the associated principal Spinc(4)-bundle

whose determinant bundle is L. Assume G action on PSO(4) × PL lifts to a

G action on PSpinc(4). Let D/A denote the Dirac operator associated to this

Spinc(4)-structure. Since D/ is shown to be equivariant, the map D/G which is

the restriction to the G-fixed point set of the domain of D/ makes sense. For
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a Seifert homology 3-sphere Σ(a), in Chapter V, an invariant S(a) of Σ(a) is

defined.

Main theorems of this thesis are the following.

Theorem : If bG+ ≩ 0, then for a generic perturbation ϕ in ΩG
+, the moduli

space MG
ϕ of Seiberg-Witten equations perturbed by ϕ is an oriented smooth

manifold of dimension dG = ind(D/GA)− bG
+ − 1.

Theorem : If bG+ = 0, then for a generic ϕ ∈ Ω+
G, MG

ϕ is a smooth manifold

away from a unique singularity defined by Gauge class of a reducible element.

This singularity has a compact neighborhood which is a cone on CPk−1 where

k is the complex index of D/GA.

Theorem : Let Σ(a) be a Seifert homology 3-sphere oriented as the boundary

of C = Σ(a) ×S1 D2 where C is positive definite. If S(a) > 0 then Σ(a) can

not bound a negative definite 4-manifold V whose first homology contains no

2-torsion.

This number S(a) is computable by Atiyah-Singer index theorem and Lef-

schetz fixed point formulas using fixed point data.

The first two theorems are proved in Chapter IV, as Theorems IV.6 and

IV.7 The last theorem is proven in Chapter V, as Theorem V.10.

The organization of this thesis is as follows:

In Chapter II, the preliminaries about ordinary Seiberg-Witten theory is

presented.

In Chapter III, we prove that, under certain conditions on the given group

action on the base manifold, Seiberg-Witten equations are invariant, and mod-

uli space of these invariant solutions is constructed.
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In Chapter IV, The compactness of this moduli space, manifold structure

and the structure near singularities are studied.

In Chapter V, the results of Chapter IV is applied to Seifert homology

spheres to give another version of Fintushel and Stern’s result mentioned above.
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CHAPTER II

Preliminaries

II.1 Bundle Theory

In this Chapter, we will mainly follow the settings in Chapter 1 of [9].

Definition II.1 Let G be a Lie group. A principal G-bundle is a triple

P (M,G, π) where P is a smooth manifold on which G acts from the right

freely, and around each point of the smooth manifold M = P/G there exists

a neighborhood U so that, for the projection π : P → P/G = M, P |U =

π−1(U) ∼= U × G isomorphic as G-spaces. P is called the total space, M is

called the base space and G is called the structure group.

Theorem II.2 Isomorphism classes of principal G-bundles over M are in one

to one correspondence with the elements of H1(M ;G) and also with the el-

ements of [M,BG], that is, homotopy classes of the maps from M to the

classifying space BG.

Definition II.3 Let F be a smooth manifold on which G acts from left. Then

given a principal G-bundle P (M,G, π) over M , we define PF = (P × F )/ ∼
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where (p, f) ∼ (p · g, g−1 · f). PF →M is called a fiber bundle associated to P

with fiber F.

Definition II.4 As a special case of fiber bundle, defined above, if we take F

to be a vector space V and via a representation ρ : G → GL(V ), define a left

action of G by (g, v) 7→ ρ(g)(v). Then the fiber bundle (P × V )/ ∼ we get is

called a vector bundle modeled on V and denoted by P ×ρ V

Theorem II.5 Again as a special case of fiber bundle, take F = H another

Lie group with a group homomorphism ρ : G → H. Define a left action of G

on H by : g · h = ρ(g)h. Then PH = P ×ρ H is a principal H-bundle over M

Definition II.6 Given two principal bundles P1(M1, G1, π1) , P2(M2, G2, π2)

and a Lie group homomorphism γ : G1 → G2, a map φ : P1 → P2 is called a

bundle map if φ(p · g1) = φ(p) · γ(g1). Note that φ induces a map on the base

spaces φ̃ :M1 →M2, and we have φ(p1) ∈ π−1
2 (φ̃(π1(p1))) for all p1 ∈ P1.

Given γ : G1 → G2 and a bundle map φ : P1 → P2, consider the map

P1 ×γ G2 → P2 defined by [p1, g2] 7→ φ(p1) · g2. Since [p1 · h1, γ(h1)−1g2] →

φ(p1 · h1) · (γ(h1)−1g2) = φ(p1) · γ(h1) · γ(h1)−1 · g2 = φ(p1) · g2, the above

bundle map is well defined and hence we have P2 is isomorphic to P1 ×γ G2.

Notation II.7 Γ(E) denotes the space of smooth sections of the bundle: p :

E →M. That is, a smooth map ψ ∈ Γ(E) if ψ :M → E satisfies p◦ψ(x) = x

for all x ∈M. We usually write Γ(M) for Γ(TM).

II.2 Connection and Curvature

Definition II.8 A connection on a vector bundle p : E →M is a map

7



∇ : Γ(M)× Γ(E) → Γ(E)

(X, σ) 7→ ∇Xσ = ∇(X, σ)

which satisfies the following properties:

• ∇X(fσ + τ) = (Xf)(σ) + f∇Xσ +∇Xτ

• ∇fX+Y (σ) = f∇Xσ +∇Y σ

where (Xf)(p) = X(p)f is the directional derivative.

An equivalent way of defining a connection on a vector bundle p : E →M

is using the isomorphism

Γ(T ∗M ⊗ E) ∼= Γ(Hom(TM,E)) ∼= HomC∞(M)(Γ(TM),Γ(E));

It is a map

dE : Γ(E) → Γ(T ∗M ⊗ E) such that;

dE(fσ + τ) = (df)⊗ σ + fdEσ + dEτ.

Note that, after choosing a local trivialization (Uα, gαβ) such that over Uα

the bundle is trivial,i.e. E|Uα = Uα × Rm, any connection restricted to Uα is

of the form dE|Uα(σα) = dσα + wασα where σα is a section over Uα and wα is

a m×m matrix of one forms on M. That is

dE



σ1

σ2

:

σm


=



dσ1

dσ2

:

dσm


+



w1
1 w1

2 . . w1
m

w2
1 w2

2 . . w2
m

: : : : :

wm1 wm2 . . wmm





σ1

σ2

:

σm


.
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Notation II.9 Ωk(E) = Γ(Λk(T ∗M)⊗ E).

We may extend the definition of connection dE to a R-linear map

dE : Ωk(E) → Ωk+1(E)

by tensoring with de Rham complex. For, define

dE(σ1 ∧ σ2) = dσ1 ⊗ σ2 + (−1)kσ1 ∧ dEσ2

where σ1 ∈ Ωk, σ2 ∈ Ω0(E).

Definition II.10 Curvature of a connection dE : Ω0(E) → Ω1(E) on E is

defined to be the C∞(M)-linear tensor dE ◦ dE : Ω0(E) → Ω2(E).

Again, over Uα, we have d
E ◦dE(σα) = (dwα+wα∧wα)(σα) = Ωασα, where

Ωα is a matrix of two forms.

One final remark about connection and its curvature is about how they

transform from Uα to Uβ. In order these locally defined connections and their

curvature to be well defined globally, on Uα ∩ Uβ, we must have:

wα = gαβdg
−1
αβ + gαβwαβg

−1
αβ and

Ωα = gαβΩβg
−1
αβ .

Theorem II.11 (Hodge’s Theorem): Every de Rham cohomology class on a

compact oriented Riemannian manifold M possesses a unique harmonic rep-

resentative. Thus

Hp(M ;R) ∼= Hp(M).

Moreover, Hp(M ;R) is finite dimensional and Ωp(M) possesses direct sum

decompositions

Ωp(M) = Hp(M)⊕∆(Ωp(M)) = Hp(M)⊕ d(Ωp−1(M))⊕ δ(Ωp(M)).

9



II.3 The Groups SO(4), Spin(4) and Spinc(4)

Following [9], we shall consider the quaternions H as 2×2 complex matrices of

the form Q =

 t+ iz −x+ iy

x+ iy t− iz

 =

 w −v̄

v w̄

 .With this identification,

we have:

1̃ =

 1 0

0 1

 ; ĩ =

 i 0

0 −i

 ; j̃ =

 0 −1

1 0

 ; k̃ =

 0 −i

−i 0

 ,

Q =

 t+ iz −x+ iy

x+ iy t− iz

 = t1̃ + zĩ+ xj̃ − yk̃

and the matrix multiplication agrees with the quaternion multiplication.

Since det Q = t2+x2+y2+z2 = ⟨Q,Q⟩-Euclidean dot product, regarding

(t, z, x, y) ∈ R4 as t+ iz + jx− ky ∈ H, we can identify the unit sphere in R4

with the special unitary group

SU(2) = {Q ∈ H ⟨Q,Q⟩ = 1} =


 w −v̄

v w̄

 ; det Q = 1

 .

Definition II.12 Spin(4) = SU+(2)× SU−(2), where SU−(2) and SU+(2) are

copies of SU(2).

Definition II.13 SO(4) = (SU+(2)× SU−(2))/Z2.

A typical element of Spin(4) will be represented by (A+, A−). We have

special orthogonal representation ρ : Spin(4) → SO(4) = (SU(2) ×

SU(2))/Z2 ρ(A+,A−)(Q) = [A+,A−](Q) = A−QA+
−1. In fact ρ is surjec-

tive and since both SO(4) and Spin(4) are compact Lie groups, it induces
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an isomorphism in the level of Lie algebras and hence Spin(4) → SO(4) is a

covering space(double cover).

Elements of Spin(4) can also be represented by the 4 × 4 matrices A+ 0

0 A−

. This representation suggests that we can also consider Spin(4)

as a subgroup of Spinc(4), where;

Definition II.14 Spinc(4) =


 λA+ 0

0 λA−

 ; λ ∈ U(1) = S1

 , which

also can be defined as Spinc(4) =
Spin(4)× U(1)

Z2

, where Z2 acts diagonally.

We have representation

ρc : Spinc(4) → GL(H)

ρc

 λA+ 0

0 λA−

 (Q) = (λA−)Q(λA+)
−1.

We also have a group homomorphism:

π : Spinc(4) → U(1), given by;

π

 λA+ 0

0 λA−

 = λ2.

II.4 SO(4), Spin(4) and Spinc(4) Structures on a Manifold

M

Definition II.15 SO(4) structure is a collection {(Uα, gαβ); α, β ∈ Λ} where

Uα is an open cover of orientable 4 manifold M , gαβ : Uα ∩ Uβ → SO(4),

satisfying the cocycle condition gαβ gβγ = gαγ. An alternative way of defining

SO(4) structure is specifying a map f0 :M → BSO(4).

11



Definition II.16 An associated Spin(4) structure to SO(4) structure is a col-

lection {(Uα, ¯gαβ)}, where ¯gαβ : Uα∩Uβ → Spin(4) satisfying cocycle condition

and ρ ◦ ¯gαβ = gαβ, where ρ : Spin(4) → SO(4). Alternatively, an associ-

ated Spin(4) structure to SO(4) structure is a lifting of f0 : M → BSO(4) to

f̃0 :M → BSpin(4).

From the obstruction theory, we know that the only obstruction for the exis-

tence of this lifting, that is, for the existence of Spin(4) structure, i.e. a bundle

with structure group Spin(4), associated to the given SO(4) structure on the

tangent bundle T (M), is w2(TM) ∈ H2(M,Z2).

Let W+ and W− be two copies of C2. Consider the representations ρ+, ρ−

given by

ρ±

 A+ 0

0 A−

 (w±) = A±w±.

Definition II.17 Given a Spin(4) structure, using the above representations

ρ+, ρ− , we can define new transition functions ρ± ◦ ¯gαβ : Uα ∩ Uβ → SU±(2),

to get two new complex bundles also denoted by W+ and W−, called Spinor

bundles and the relation between these bundles and TM is TM ⊗ C ∼=

Hom(W+,W−).

Therefore a Spin structure determines TM⊗C ∼= Hom(W+,W−). Moreover if

we also have a line bundle L, TM ⊗C ∼= Hom(W+⊗L,W−⊗L), since L⊗L∗

is the trivial bundle.

Given a Spin(4) structure {(Uα, ¯gαβ)}, if we have a line bundle L with tran-

sition functions hαβ : Uα ∩ Uβ → U(1) then we can define a Spinc(4)structure
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with the transition functions hαβ ∗ ¯gαβ : Uα ∩ Uβ → Spinc(4), where for

x ∈ Uα ∩Uβ if ¯gαβ(x) =

 A+ 0

0 A−

 and if hαβ(x) = λ then hαβ ∗ ¯gαβ(x) =

 λA+ 0

0 λA−

 . Note that these maps also satisfy the cocycle condition.

More generally a Spinc(4) structure can be defined as

˜gαβ : Uα ∩ Uβ → Spinc(4)

with cocycle condition. That is we don’t need to have a Spin(4) structure or

a line bundle in the fist place. Combining this with π we get a complex line

bundle, denoted by L2. Finally, given a Spinc(4) structure, associated to it we

can define two bundlesW+⊗L andW−⊗L although Lmay not exist. W±⊗L is

the bundle whose transition data is ρc± ◦ g̃± where ρc±

 λA+ 0

0 λA−

 (w±) =

λA±w±. Note that TM ⊗ C = Hom(W+ ⊗ L,W− ⊗ L).

Definition II.18 We will give the definition of an associated Spinc(4) struc-

ture to SO(4) and U(1) structure in three equivalent settings;

i- Given an SO(4) structure on T (M) and U(1) structure, i.e, a complex

structure, on line bundle L over M , an associated Spinc(4) structure

is a principal Spinc(4) bundle P → M such that the associated frame

bundles satisfy PSO(4)(TM) = P ×ρc SO(4) and PS1(L) = P ×πS
1, where

ρc[A+, A−, λ](Q) = [A+, A−](Q) = A−QA+
−1 and π[A+, A−, λ] = λ2.

ii- Given two maps f0 : M → BSO(4) and f1 : M → BU(1) = BSO(2)

an associated Spinc(4) structure is a lift of the map f = (f0, f1) : M →

BSO(4)× BU(1) to f̃ :M → BSpinc(4).
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iii- Given a collection {(Uα, gαβ, hαβ); α, β ∈ Λ} where Uα is an open cover of

orientable 4 manifoldM , gαβ : Uα∩Uβ → SO(4), hαβ : Uα∩Uβ → U(1),

both satisfying the cocycle condition, an associated Spinc(4) structure

is a collection {(Uα, sαβ); α, β ∈ Λ}, where sαβ : Uα ∩ Uβ → Spinc(4),

such that sαβ is mapped to (gαβ, hαβ) under the map Z2 → Spinc(4) →

SO(4)× U(1).

From the obstruction theory, we know that these liftings exist when L is a

characteristic line bundle, i.e, c1(L) ≡ w2(TM) mod 2, as the only obstruction

for these liftings to exist is w2(TM ⊗ L) ≡ c1(L) + w2(TM) ∈ H2(M,Z2).

Note that the assumption M is compact oriented smooth 4 manifold guar-

antees the existence of Spinc(4) structure. Also the assumption that M is

simply connected ensures that the liftings considered above are unique.

II.5 Clifford Algebra and the maps ρ and σ

Let W = W+ ⊕ W−. An element of H can be considered as an element of

End(W). Consider the map

Definition II.19

ρ : H → End(W) defined by,

ρ(Q) =

 0 −Q̄t

Q 0

 .
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Since  0 −Q̄t

Q 0


 w+

0

 =

 0

Qw+

 and

 0 −Q̄t

Q 0


 0

w−

 =

 −Q̄tw−

0

 ,

we have ρ(Q) : W± → W∓.

The identity:

ρ2(Q) =

 0 −Q̄t

Q 0


 0 −Q̄t

Q 0

 =

 −Q̄tQ 0

0 −QQ̄t

 = −⟨Q,Q⟩I

gives the Clifford Algebra structure. For this reason (End(W), ρ) is called the

Clifford Algebra of (H⊗C, ⟨, ⟩). Matrix multiplication is the Clifford multipli-

cation, and dim (End(W)) = 16.

Another way of constructing Clifford Algebra is by defining a basis for it.

Consider the following matrices:

e1 =



0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


=

 0 −1̃

1̃ 0

 , e2 =



0 0 i 0

0 0 0 −i

i 0 0 0

0 −i 0 0


=

 0 ĩ

ĩ 0

 ,

e3 =



0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


=

 0 j̃

j̃ 0

 , e4 =



0 0 0 i

0 0 i 0

0 i 0 0

i 0 0 0


=

 0 k̃

k̃ 0

 ,

In fact e1 = ρ(1̃), e2 = ρ(̃i), e3 = ρ(j̃), e4 = ρ(k̃), where ρ : H → End(W)
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defined above. These matrices satisfy the following identities:

ei · ej = −ej · ei, ei
2 = −1

and the set

{I , ei , ei · ej; i < j , ei · ej · ek; i < j < k , e1 · e2 · e3 · e4}

form a basis for End(W). Thus we get

End(W) = (∧0(H)⊗C)⊕(∧1(H)⊗C)⊕(∧2(H)⊗C)⊕(∧3(H)⊗C)⊕(∧4(H)⊗C)

That is, we have the isomorphism End(W ) ∼= ∧∗(H) ⊗ C of vector space.

To have a Clifford Algebra isomorphism, we define a new multiplication on

∧∗(H) ⊗ C; that is for w ∈ ∧∗(H) ⊗ 1, define ei ∗ w = ei ∧ w − ı(ei)w where

interior product ı(ei) : Λ
k(H) → Λk−1(H) is defined by ⟨ı(ei)w, θ⟩ = ⟨w, ei∧θ⟩.

In particular we have a vector space isomorphism ∧2(H)⊗C →The subspace

of End(W) generated by ei · ej , i < j; defined by (ei ∧ ej)⊗ 1 7→ e1 · e2.

Write ∧2(H) = ∧2
+(H)⊕ ∧2

−(H) where,

∧2
+(H) = ⟨ e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 + e2 ∧ e3 ⟩.

Since all the basis elements are trace-free and skew hermitian (i.e. A = −Āt),

and since both are 3 dimensional, ∧2
+(H) ⊗ C is just su(2) - traceless skew

hermitian endomorphisms of W, that is Lie algebra of SU(W ). So we have:

∧2
+(H)⊗ C ∼= su+(2)

∧2
−(H)⊗ C ∼= su−(2)
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In terms of Akbulut’s [1] setup, that is let P be a principal Spinc(4) bundle,

so that

T ∗M = P ×H/(p, v) ∼ (p̃, A+vA
−1
− ) where p̃ = p · [A+, A−, λ] and

W+(M) = P × C2/(p, v) ∼ (p̃, A+vλ
−1),

on the level of bundles, ρ takes the form

ρ : Λ+
2 (M) −→ SU(W+)

[p, v1 ∧ v2] 7−→ ρ([p, v1 ∧ v2])

where ρ([p, v1 ∧ v2])([p, x]) = [p, Im(v2v̄1)x].

Definition II.20 For ψ =

 ψ1

ψ2

 ∈ W+, we define

σ : W+ → ∧2
+(H)

σ(ψ) = 2i Trace free part of


 ψ1

ψ2

(
ψ̄1 ψ̄2

)
That is:

σ(ψ) = 2i

 |ψ1|2 − |ψ1|2+|ψ2|2
2

ψ1ψ̄2

ψ2ψ̄1 |ψ2|2 − |ψ1|2+|ψ2|2
2



= i

 |ψ1|2 − |ψ2|2 2ψ1ψ̄2

2ψ2ψ̄1 |ψ2|2 − |ψ1|2

 .

In fact

σ(ψ) = − i

2

∑
i<j

⟨ψ , eiej ψ⟩ei · ej

= − i

2
[⟨ψ, e1e2ψ⟩(e1e2 + e3e4) + ⟨ψ, e1e3ψ⟩(e1e3 + e4e2) +

⟨ψ, e1e4ψ⟩(e1e4 + e2e3)] ∈ ∧2
+,
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and satisfies

|σ(ψ)| = [
1

2
tr (σ(ψ) ¯σ(ψ)

t
)]1/2 = |ψ|2.

Again, in terms of bundles, σ takes the form:

σ : W+ −→ Λ+
2 (M)

[p, x] 7−→ [p, 1
2
(xix̄)].

We have adjoint action of Spin(4) and Spinc(4) on End(W );

Ad

 λA+ 0

0 λA−

 (T ) =

 λA+ 0

0 λA−

 T

 (λA+)
−1 0

0 λA−
−1

 .

Note that these actions preserve the decomposition of

End(W) =
∑

i=1
4 Ωi(M)⊗ C.

Definition II.21 A Spin connection on W is a connection which can locally

be expressed as dAσ = dσ + ϕασ, where ϕα are 1-forms taking values in the

Lie algebra of Spin(4).

Now since Spin(4) = SU+(2)⊕ SU−(2) and Lie algebra su±(2) = Ω±
2(M)⊗ C,

we have Lie Algebra of Spin(4), that is:

spin(4) = Ω2(M)⊗ C = ⟨ ei · ej; i < j ⟩.

Therefore ϕα should be of the form ϕα =
∑

i<j ϕαijei · ej where ϕαij are skew

symmetric ordinary 1-forms, that is ϕαij = −ϕαji since ei · ej = −ej · ei.

Using this connection, we can define a new connection on End(W) by

(dA
Homw)(σ) = dA(wσ)− wdAσ for w ∈ Γ(End(W)) , σ ∈ Γ(W).

Hence, given connection on L, using the Levi-Civita connection on TM ,

induces a connection on the Spinc(4) bundle PSpinc(4). Also, any connection dA
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on the bundle W , induces a connection d
End(W )
A on the bundle End(W) which

in turn restricts to an orthogonal connection d
End(W )
A |TM⊗C on the tangent

bundle TM ⊗ C ⊂ End(W).

Finally, before defining the Seiberg-Witten equations and the moduli space,

we introduce the Gauge group.

II.6 Gauge Group

Definition II.22 A gauge transformation on a line bundle L is a bundle ho-

momorphism h : L → L commuting with the action of the structure group

U(1). That is h(g · a) = g · h(a) ∀g ∈ U(1).

The set of all gauge transformations of L form a group, denoted by G(L), under

composition. This group can be considered as maps f : M → S1, see Section

1.7 of [9] for details. Hence we have G(L) ∼= Map(M, S1).

We define an action of the gauge group G(L) on A(L) by g ·dA = dA+gdg
−1

which can also be expressed as g ◦ dA ◦ g−1. Action of G(L) on Γ(W+) is just

complex multiplication.

Note that if we regard G(L) as Map(M, S1) then, since M is simply

connected, any g ∈ G(L) = Map(M, S1) can be written as g = eiu for

some u : M → R. According to this representation, g · (dA0 − ia, ψ) =

(dA0 − i(a+ du), eiuψ).

Fix a base point P0 ∈M and define G0(L) = {g ∈ G(L); g(P0) = 1}.

We have the isomorphism G(L) → G0(L) × S1 defined by h 7→ (s−1h, s)

where s = h(P0) ∈ S1 ; h ∈ Map(M, S1) = G(L).
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Note that G0(L) acts freely onA(L) since dA+gdg
−1 = dA means gdg−1 = 0

that is dg−1 = 0 which holds if and only if g =constant. Elements of S1 are

constant functions M → S1. Hence S1 acts trivially on A(L), whereas it acts

freely on (Γ(W+)− 0) as complex multiplication.

Definition II.23 The Dirac operator is the map

D/A : Γ(W ⊗ L) → Γ(W ⊗ L)

ψ 7→ D/Aψ =
∑

i=1

4
ei · dAψ(ei) =

∑
i=1

4
ρ(ei)(∇eiψ),

where dA : Γ(W ⊗ L) → Γ(T ∗M ⊗ (W ⊗ L)) ∼= HomC∞(M)(TM,W ⊗ L),

ei ∈ TM ⊗ C ⊂ End(W ⊗ L) and ei ∈ T∗M⊗ C are orthonormal basis, ∇ei is

the covariant derivative along ei.

II.7 Seiberg-Witten Equations

Let M be oriented, Riemannian 4-manifold with a Spinc(4) structure. We

consider the pairs (dA, ψ) where dA is a connection on L2 and ψ ∈ Γ(W+⊗L).

Let A = {(dA0 − ia, ψ)} denote the configuration space. Recall the maps

ρ : Λ+
2 (M) → SU(W+)

σ : Γ(W+) → Ω2
+(M)

D/+A : Γ(W+ ⊗ L) → Γ(W− ⊗ L)

We set

D/+Aψ = 0

F+
A = iσ(ψ)

where F+
A ∈ Γ(Ω2(T ∗M ⊗ iR)) = Ω2(M).
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Notation II.24 B(L) = (A(L)⊕ Γ(W+ ⊗ L))/G(L).

Notation II.25 B∗(L) = (A(L)⊕ Γ(W+ ⊗ L))/G(L)− {[A, 0]}.

Notation II.26 M̃(L) denotes the moduli space of G0(L) equivalence classes

of the solutions of the Seiberg-Witten equations.

Notation II.27 M(L) denotes the moduli space of gauge equivalence classes

of the solutions of the Seiberg-Witten equations. That is

M(L) = {(A,ψ) ∈ A(L)×Γ(W+⊗L); D/+Aψ = 0 and F+
A = iσ(ψ)}/G = M̃(L)/S1.

Sometimes we will need to define the perturbed Seiberg-Witten equations and

perturbed moduli space. These are the equations

D/+Aψ = 0

F+
A = iσ(ψ)− ϕ

Notation II.28 Mϕ(L) denotes the moduli space of gauge classes of the so-

lutions of the Seiberg-Witten equations. That is

Mϕ(L) = {(A,ψ) ∈ A(L)× Γ(W+ ⊗ L); D/+Aψ = 0 and F+
A = iσ(ψ)− ϕ}/G.
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CHAPTER III

Moduli Space of Invariant Solutions of

Seiberg-Witten Equations

In this chapter we shall consider a certain cyclic group G acting onM and will

show that under certain conditions on M and on this action, Seiberg-Witten

equations are invariant.

Given a smooth closed 4-manifold M with a Riemannian metric on it and

a characteristic line bundle L over M . Let G be a compact Lie group acting

on the base manifold M to preserve the inner product and orientation, also

acting on the characteristic line bundle L, commuting with the base projection

and mapping fibers directly to fibers as a complex linear map. That is, let L

be a G-line bundle. We will also assume that the G-action on L lifts to the

associated Spinc(4) bundle whose determinant line bundle is L. We will take

G a cyclic group of order α. Furthermore, we will also assume that M/G has a

positive definite intersection form, and that H1(M/G;R) = 0. Note that since

G is finite and preserves the orientation, M/G is a real homology manifold,
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that is M/G satisfies Poincare duality with coefficients in R. Hence M/G has

a well defined intersection form over R.

We have the following actions:

• G acts on A(L)-space of connections on L:

For g ∈ G and dA ∈ A(L) we define g · dA = gdAg
−1,

• G acts on Γ(W ⊗ L):

For g ∈ G and ψ ∈ Γ(W ⊗ L) we define g · ψ = gψg−1,

• G acts on G(L):

For g ∈ G, h ∈ G we define g · h = ghg−1,

• G acts on T (M) and hence on Ω∗(M):

For g ∈ G and v ∈ T (M) we define g · v = dg(v).

Note that the curvature map F : A(L) → Ω2(End(L)), defined by F (dA) =

dA ◦ dA = FA, is equivariant with respect to both G and G(L) actions. That is

g · FA = Fg·A and h · FA = Fh·A for all g ∈ G and h ∈ G(L).

Theorem III.1 Seiberg Witten equations are invariant under G-action.

Proof : First consider

ρ : Λ+
2 (M) −→ SU(W+)

[p, v1 ∧ v2] 7−→ ρ([p, v1 ∧ v2])

where ρ([p, v1 ∧ v2])([p, x]) = [p, Im(v2v̄1)x].
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For any g ∈ G, it satisfies

ρ(g · [p, v1 ∧ v2])([g · p, x]) = ρ([g · p, v1 ∧ v2])([g · p, x])

= [g · p, Im(v2v̄1)x]

= g · [p, Im(v2v̄1)x]

= g · ρ([p, v1 ∧ v2])[p, x]

= g ρ([p, v1 ∧ v2])g−1 [g · p, x]

= (g · ρ([p, v1 ∧ v2])) [g · p, x].

hence

g · ρ(−) = ρ(g · −); that is ρ commutes with G-action.

Now consider,

σ : W+ −→ Λ+
2 (M)

[p, x] 7−→ [p, 1
2
(xix̄)]

For any g ∈ G, we have

σ(g · [p, x]) = σ([g · p, x]) = [g · p, 1
2
(xix̄)] = g · [p, 1

2
(xix̄)] = g · σ([p, x]).

Hence

g · σ(−) = σ(g · (−)); that is σ commutes with G-action.

Thus

F1 : A(L)× Γ(W+) −→ Ω+
2 (M)

(A,ψ) 7−→ F+
A − iσ(ψ, ψ)

is equivariant under the G-action.

Finally the Dirac operator

D/ : A(L)× Γ(W+) −→ Γ(W−)

(A,ψ) 7−→ D/Aψ = ρ(▽Aψ)
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is also equivariant under the action of the group G. This is because

g · (D/(A,ψ)) = g · D/Aψ = g(ρ(▽Aψ))g−1 = ρ(g ▽Aψ g−1), since ρ is G equiv-

ariant. On the other hand, D/(g · (A,ψ)) = ρ(▽gAg−1gψg−1). Since ρ is an

isomorphism, all we need to show is

g ▽Aψ g−1 = ▽(gAg−1)gψg
−1

Here ∇ is the Levi-Civita connection on TM , A is a connection on L and ∇A

is the induced connection on W+. This statement is not only true for the

induced connection but also true for any connection. That is, we claim that:

For all A ∈ A(L), g ∈ G, ψ ∈ Γ(W+), we have: (gAg−1)(gψg−1) = g(Aψ)g−1 .

Note that this claim finishes the proof of the theorem. For the proof of the

claim, we will show that (gAg−1)(gψg−1)(x)(v) = g(Aψ)g−1(x)(v) ∀x ∈ M

and v ∈ TxM ;

Let γ : [0, 1] → M be a curve with γ(0) = x and γ̇(0) = v. Now since

W+ = (P × C2)/ ∼, we can write gψg−1 ∈ Γ(W+) as (gψg−1)|g−1γ(t) =

[(̃g−1γ)(t), ζ(t)] where (g−1γ)(t) is a lifting of (g−1γ)(t) to P using the given

connection, and ζ(t) is a curve in C2. Thus

(gψg−1)(g−1γ)(0) = [(̃g−1γ)(0), ζ(0)]

This gives an explicit formula for the left side of the expression in the claim

above. That is

(gAg−1)(gψg−1)(x)(v) = g · [(̃g−1γ)(0), ζ ′(0)] = [g · (̃g−1γ)(0), ζ ′(0)] (action is

on P ).
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Now let’s write down an explicit formula for the right side of the claim:

g(Aψ)g−1 ∈ Γ(Hom(TM,W+))

(g(Aψ)g−1)(x)(v) = g · (Aψ)(g−1x)(v) = g · (Aψ)(g−1x)(g−1v) ∈ W+. The last

equation follows from the following fact:

For all f : Tg−1M → W+
(g−1x)

g · f : Tx → W+
x is defined by (g · f)(v) = g · f(g−1 · v)

In our case

(Aψ)(g−1x) : Tg−1M → W+
(g−1x)

g · (Aψ)(g−1x) : Tx → W+
x

Hence we have

(g(Aψ)g−1)(x)(v) = g(Aψ)(g−1x)(g−1v) Now since γ was chosen to be an

integral curve of v ∈ TxM , g−1γ : [0, 1] → M satisfies g−1γ(0) = g−1(x) and

d
dt
(g−1γ)(t) |t=0= g−1(v). That is g−1γ is an integral curve of g−1(v). Therefore

ψ((g−1γ)(t)) = [(̃g−1γ)(t), ζ(t)] giving (Aψ)(g−1x)(g−1v) = [(̃g−1γ)(0), ζ ′(0)].

Thus

(g(Aψ)g−1)(x)(v) = [g · (̃g−1γ)(0), ζ ′(0)].

Hence

(gAg−1)(gψg−1)(x)(v) = [g · (̃g−1γ)(0), ζ ′(0)] = (g(Aψ)g−1)(x)(v)

Since all the maps involved areG-equivariant, the Seiberg-Witten equations

are invariant under G-action. This completes the proof. 2

Now for the map

F : A(L)× Γ(W+) −→ Γ(W−)× Ω+
2 (M)

(A,ψ) 7−→ (D/Aψ , F+
A − iσ(ψ, ψ))

26



the induced G-actions on the corresponding spaces are equivariant. That is

g · F (−) = F (g · −)

Finally, before defining the G-invariant moduli space, we recall, Definition

2.22, the gauge group G(L) = G0(L)× S1 and the action of G on this group.

Consider the fixed points of this action. GG(L) = (GG0(L)×S1)G = G0
G(L)×

(S1)G = GG0(L)× S1.

Now we can define the induced map on the fixed point set

FG : A(L)G × (Γ(W+)G − 0) −→ Γ(W−)G × Ω+
2 (M)G

(A,ψ) 7−→ (D/Aψ, F
+
A − iσ(ψ, ψ))

We will consider the G-fixed gauge class of the solution space of FG. Let

M(L)G = M̃(L)G/S1 denote the GG classes of G-invariant solution space,

where M̃(L)G is the space of GG0-invariant solutions.

Now we prove the following fact

Proposition III.2 Fix a connection A0 on L. Then each element of B̃G =

(A(L)G× (Γ(W+)G− 0))/GG0 , and hence each element of M̃(L)G has a unique

representation of the form (dA0 − ia , ψ) where a ∈ Ω1G with the property

δa = 0.

Proof :Recall the Gauge equivalence; (dA0 − ia, ψ) ∼ (dA0 − i(a+ du), eiuψ).

First we will show the existence

existence : It suffices to show that there exists u : M → R such that δ(a +

du) = 0 and eiu ∈ GG0 . That is δdu = −δa, i.e., ∆u = −δa. By Stoke’s Theorem,
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we have;
∫
M
∗δa = 0 (M is closed). So δa is orthogonal to constant functions,

i.e. to H0(M). Since by Hodge Theorem we have Ω0(M) = H0(M) ⊕ Im ∆,

we must have δa ∈ Im∆. This proves that there is u : M → R such that

∆u = −δa. Finally since the action of G commutes with both d and δ, and

since a ∈ Ω1G so is eiu. If necessary, after adding a constant to u, we may

assume that u(P0) = 1, that is eiu ∈ GG0 .

Next we prove the uniqueness

uniqueness : Assume ⟨dA0 − ia1, ψ1⟩ ∼ ⟨dA0 − ia2, ψ2⟩ and δa1 = 0 = δa2.

Then a1 − a2 = du for some u :M → R. Now taking the inner product in Ω1,

we get; ⟨a1 − a2, a1 − a2⟩ = ⟨du, a1 − a2⟩ = ⟨u, δ(a1 − a2)⟩. So a1 = a2. 2

As a result of above fact, instead of dealing with G0
G-classes of the solution

space of FG, we can add a new equation to the system; that is consider the

solution space of

D/+Aψ = 0

F+
A = iσ(ψ)

δa = 0

where a is the G-invariant one form representing the G-invariant connection

A.

Notation III.3 By M(L)Gϕ we denote the S1-classes of the G-invariant solu-
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tion of the perturbed SW -equations

D/+Aψ = 0

F+
A + ϕ = iσ(ψ)

δa = 0

where ϕ ∈ Ω2
+
G
.

That is, we define a new map and still denote it by FG

FG : (A(L)G
⋂
S)× (Γ(W+)G − 0)× Ω2

+
G −→ Γ(W−)G × Ω2

+
G

(A,ψ, ϕ) 7−→ (D/Aψ, F
+
A + ϕ− iσ(ψ, ψ))

where S = {A ∈ A(L); A = A0 + ia and δa = 0}.

With this new notation,

M(L)Gϕ = ( (FG)−1(0)
⋂

(A(L)G
⋂
S)× Γ(W+)G × {ϕ}) )/S1

= (FG
ϕ )

−1(0)/S1

= ((FG)−1(0)
⋂
(pr3)

−1(ϕ))/S1

Where

pr3 : (A(L)G ∩ S)× (Γ(W+)G − 0)× Ω2
+
G → Ω2

+
G

(A,ψ, ϕ) 7→ ϕ

is the projection onto the third component. That is, for each perturbation

ϕ, the G-invariant Seiberg Witten moduli space is a quotient of a slice of

(FG)−1(0) by S1.

From now on we will assume that all the spaces we are working on are

completed with appropriate Sobolev norms as in Chapter 3 of [9].
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CHAPTER IV

Topology of Moduli Space of Invariant

Solutions of Invariant Seiberg-Witten

Equations.

In this chapter we shall study compactness and the manifold structure on

the moduli space, whenever this structure exists, as well as the topology near

singularities.

Theorem IV.1 IfM is simply connected, then for every choice of G-invariant

self dual form ϕ, the moduli space M̃G
ϕ (L) is compact.

Proof : We know that every sequence of G0 classes of solutions to the per-

turbed Seiberg Witten equations has a convergent subsequence. A detailed

proof is given in section 3.3 of [9]. Using Proposition III.2, and the continuity

of the G-action, we can identify M̃G
ϕ (L) with a closed subspace of M̃ϕ(L).

Being a closed subspace of a compact space, M̃G
ϕ (L) is also compact.

We have the following G-invariant version of the lemma in [9]:
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Lemma IV.2 For a generic choice of G-invariant connection A, if the index

of the operator D/+A
G
: (Γ(W+ ⊗ L))G → (Γ(W− ⊗ L))G is nonnegative then

D/+A
G
is surjective.

Proof :

Let (A,ψ) be a solution of G-invariant Seiberg-Witten Equations. Then at

the points ψ ̸= 0, the map Ω1 → Γ(W− ⊗ L), defined by a 7→ a · ψ = ρ(a)(ψ),

is injective: a · ψ = 0 ⇒ a · a · ψ = 0 ⇒ −||a||2ψ = 0 ⇒ ||a|| = 0, since

ψ ̸= 0. Moreover, since dimC(Γ(W
− ⊗ L)) = 2× 1 = 2, dimR(Γ(W

− ⊗ L)) =

4 = dimR(T
∗M), this map Ω1

∼=−→ Γ(W− ⊗ L) is an isomorphism. In fact, we

have this isomorphism on the G-invariant spaces. To see this: take a ∈ Ω1G,

then g · (ρ(a)(ψ)) = (ρ(g · a)(ψ)) = (ρ(a)(ψ)) for all g ∈ G. That is, this map

takes G-invariant elements to G-invariant elements. Now take any element of

Γ(W−⊗L)G, say ρ(a)(ψ). We claim that a ∈ Ω1G. For, using the isomorphism

ρ, all we need to show ρ(g · a) = ρ(a), that is ρ(g · a)(ψ) = ρ(a)(ψ) for all ψ ∈

Γ(W− ⊗ L)G. But ρ(g · a)(ψ) = g · ρ(a)(ψ) = ρ(a)(ψ), since ρ commutes with

G action. Hence we have Ω1G
∼=−→ Γ(W− ⊗ L)G.

Recall the map D/+
G : AG(L) × Γ(W+ ⊗ L)G → Γ(W− ⊗ L)G defined by

D/+
G(A,ψ) = D/+A

G
ψ. We have d(A,ψ)D/+

G(a, ψ′) = D/+A
G
ψ′ − a ·ψ. First we claim

that at a irreducible, i.e. G-invariant solution (A,ψ) of the Seiberg-Witten

equations with (ψ ̸= 0), d(A,ψ)D/+
G : (Ω1)G × Γ(W+ ⊗ L)G → Γ(W− ⊗ L)G

is surjective. To prove this, let U be a an open set on which ψ is never

zero. Since ψ is not identically zero, and continuous, we can find such an

open set. On U we have the isomorphism a 7→ a · ψ, as proven above. If
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σ ∈ Γ(W−⊗L)G is orthogonal to Im d(A,ψ)D/+
G, that is if ⟨D/+

G(ψ′)−a·ψ, σ⟩ = 0

for all ψ′ ∈ Γ(W+ ⊗ L)G, a ∈ Ω1G, then:

• for ψ′ = 0 ∈ Γ(W+ ⊗ L)G, we have ⟨a · ψ, σ⟩ = 0 for all a ∈ Ω1G that

is ⟨τ, σ⟩ = 0 for all τ ∈ Γ(W− ⊗ L)G, by the above isomorphism. Hence

σ = 0 on U.

• for a = 0 ∈ Ω1G, we have ⟨D/+
G(ψ′), σ⟩ = 0 = ⟨ψ′, D/−

Gσ⟩ for all

ψ′ ∈ Γ(W− ⊗ L)G. That is D/−
Gσ = 0 on U. But then, by the Unique

Continuation Theorem [2], we get σ = 0 on M.

Hence d(A,ψ)D/+
G : (Ω1)G × Γ(W+ ⊗ L)G → Γ(W+ ⊗ L)G is surjective for

irreducible G invariant solutions (A,ψ).

Now, by Implicit Function Theorem, we have:

N = {(a, ψ); D/+A
G
(ψ) = 0, ψ ̸= 0}

is a submanifold of AG(L) × Γ(W+ ⊗ L)G. It’s tangent space T(A,ψ)N =

Ker d(A,ψ)D/+
G = {(a, ψ′); D/+A

G
ψ′ − a · ψ = 0}. Consider the projection

pr1 : N → Ω1G; (A,ψ) 7→ A. We have d(A,ψ)pr1(a, ψ
′) = −a, which is Fred-

holm and has index greater than or equal to the index of D/+A
G
. To see this,

consider

• (a, ψ′) ∈ Ker (d(A,ψ)pr1) ⇔ (D/+A
G
ψ′ = 0 and a = 0) ⇔ (ψ′ ∈ Ker D/+A

G

and a = 0). So:

Ker (d(A,ψ)pr1) = {(0, ψ′); ψ′ ∈ Ker (D/+A
G
)} ∼= Ker D/+A

G

• b ∈ Im (d(A,ψ)pr1) ⇔ there is (a, ψ′) such that a = b and D/A
+Gψ′ =

−b · ψ ⇔ b ∈ Ω1G, b · ψ ∈ Im D/A
+G. So dim(Im (d(A,ψ)pr1)) ≥
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dim(Im (D/+A
G
)). Hence:

codim (Im (d(A,ψ)pr1)) = dim (Ω1G)− dim (Im (d(A,ψ)pr1))

≤ dim (Γ(W− ⊗ L))− dim (Im(D/A
+G))

= dim coker (D/A
+G).

Thus, since D/+A
G

is Fredholm, so is pr1. And index of pr1 is as large as the

index of D/+A
G
.

Now let A be a regular value of pr1. Then pr−1
1 (A) is a submanifold of

dimension larger than or equal to the ind D/+A
G
. Note that pr−1

1 (A)∪{0} is the

solution space of D/+A
G
ψ = 0. Finally, to finish the proof, we have two cases to

consider:

- The case of Ker D/+A
G
= 0 :

Then ind D/+A
G
= −dim (coker D/+A

G
). Since by the assumption ind D/+A

G ≥

0, we have coker D/+A
G
= 0 and hence D/+A

G
is surjective.

- The case of Ker D/+A
G ̸= 0 :

Then there is ψ ̸= 0, whereas D/+A
G
ψ = 0. To prove D/+A

G
is surjective, we

take any ψ0 ∈ Γ(W− ⊗ L)G and show it is in the image. Since in this

case, we know that d(A,ψ)D/+
G is surjective, there exists (a′, ψ′) such that

d(A,ψ)D/+
G(a′, ψ′) = D/+A

G
(ψ′) − a′ · ψ = ψ0. Since D/

+
A

G
is linear, all we

need to prove is a′ · ψ ∈ Im D/+A
G
. But a′ ∈ Ω1G = Im d(A,ψ)pr1 = {a ∈

Ω1G; a·ψ ∈ ImD/+A
G}. So there is ψ′′ ∈ Γ(W+⊗L)G withD/+A

G
(ψ′′) = a0·ψ

and hence ψ0 = D/+A
G
(ψ′ − ψ′′).

This completes the proof of D/+A
G
is surjective. 2
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Lemma IV.3 The cohomology groups of the G-equivariant fundamental el-

liptic complex:

0 −→ ΩG
0 (M)

d−→ ΩG
1 (M)

d+−→ ΩG
+(M) −→ 0

are

H0(M)G, H1(M)G and H+
2 (M)G

of dimensions b0
G, b1

G and b+2
G
.

Proof :

- To compute the cohomology group at the first stage, take f ∈

ΩG
0 (M)

⋂
Ker d. Then df = 0 = δf. Hence f ∈ H0(M)G

- To compute the cohomology group at the second stage, take w ∈

ΩG
1 (M)

⋂
Ker dG+

⋂
(Im dG)⊥. Then

∀η 0 = ⟨w, dη⟩ = ⟨δw, η⟩, therefore δw = 0.

Now by the Stoke’s Theorem, we have

∥dw∥2 =
∫
M

dw ∧ dw =

∫
M

d(w ∧ dw) =
∫
∂M=∅

w ∧ dw = 0

This tells us that d+w = 0 ⇔ d−w = 0 giving w ∈ H1(M)G

- To compute the cohomology group at the third stage, take w ∈

ΩG
+(M)

⋂
(Im d+)

⊥
. Then
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⟨w, d+η⟩ = 0 ∀η ∈ Ω1

⇒ ⟨w, d+η ⊕ d−η⟩ = 0 sincew ∈ Ω+
2

⇒ ⟨w, dη⟩ = 0 ∀η ∈ Ω1

⇒ ⟨δw, η⟩ = 0 ∀η ∈ Ω1

⇒ δw = 0

On the other hand

dw = − ∗ δ ∗ w = − ∗ δw since w ∈ ΩG
+

= 0

Therefore w ∈ (Im d+)⊥ ⇒ dw = 0 = δw ⇔ w ∈ H2
+(M)G-self dual, G-

invariant harmonic 2 forms. 2

Lemma IV.4 If L is a complex line bundle over a closed, oriented Riemannian

4 manifold, then any ϕ ∈ Ω2
+(M)G can be realized as a curvature of some

unitary G-invariant connection A if and only if ϕ ∈ ΠG = Im dG+ an affine

subspace of Ω2
+(M)G of codimension bG+.

Proof : Choose a G-invariant base connection A0 on L. We have in the

general case, hence in the G-invariant case that, for any unitary G- invariant

connection A on L, FA − FA0 = da where a is a real valued G-invariant one

form on M . Now we define ΠG as

ΠG = Im


Ω1 d+−→ Ω+

2

a −→ F+
A0

+ (da)+


G

= Im


Ω1G

dG+−→ Ω+
2
G

a −→ F+
A0

+ (da)+


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That is ΠG = Im dG+, where d
G
+ is just d+ defined on the invariant setting.

Hence codim(ΠG) = dim(Ω+
2
G
/Im dG+) = bG+, as is shown above in Lemma

IV.3. 2

Theorem IV.5 LetM be a closed, simply connected smooth 4-manifold with

a Spinc-structure. Suppose that if bG+ = 0 then ind (D/+A
G
) ≥ 0. Then for

a generic choice of G-invariant self-dual two form ϕ, M̃G
ϕ (L) is an oriented

smooth manifold of dimension dG = indR(D/
G
A)− bG+.

Proof : Recall the map

FG : (A(L)G
⋂

Ker d∗)× Γ(W+ ⊗ L)G × Ω2
+
G −→ Γ(W− ⊗ L)G × Ω2

+
G

(A,ψ, ϕ) 7−→ (D/Aψ, F
+
A + ϕ− iσ(ψ, ψ)).

Differential of FG at (A,ψ, ϕ) is given by:

dFG
(A,ψ,ϕ)(a, ψ

′, ϕ′) = (D/+Aψ
′ − ia · ψ , (da)+ − σ(ψ, ψ′)− σ(ψ′, ψ)− ϕ′).

Now, we note that for the irreducible solutions (A,ψ, ϕ) with ψ ̸= 0, of

FG = 0, dFG
(A,ψ,ϕ) is surjective. Because, we already know that the first

component is surjective when ψ ̸= 0 as shown in the proof of Lemma IV.2. For

the second part, take a and ψ′ to be zero and let ϕ′ vary to cover {0} × ΩG
+.

Thus dFG
(A,ψ,ϕ) is surjective on each component. To be able to say that it

is surjective to the product, since the map under consideration is linear, all

we need to show is, after fixing one element from one of the component, say

ϕ′ = 0, dFG
(A,ψ,ϕ) is surjective onto Γ(W−)G. But we have proven this before.

Let U = {ϕ ∈ Ω2
+
G
, ϕ = F+

A−curvature of some connection A ⇒

D/+A
G
is surjective}. We have two cases to consider:
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In the case bG+ > 0: by Lemma IV.4 we know that U is open and dense.

For the case bG+ = 0: by the assumption that ind D/+A
G ≥ 0, again as before,

we get U is open and dense.

Hence in each case we have U is open and dense. On the other hand for

ϕ ∈ U, dFG
(A,ψ,ϕ) is surjective even if ψ = 0. Now, by the Implicit Function

Theorem, we have:

N = {(A,ψ, ϕ); ϕ ∈ U, FG(A,ψ, ϕ) = 0}

is a submanifold with

T(A,ψ,ϕ)N = Ker dFG
(A,ψ,ϕ)

= {(a, ψ′, ϕ′);D/+A
G
ψ′ = ia · ψ′, δa = 0,

d+a = σ(ψ, ψ′)− σ(ψ′, ψ)− ϕ′}

= {(a, ψ′, ϕ′);L(a, ψ′) = (0, 0, ϕ′)},

where L(a, ψ′) = (D/+A
G
ψ′ − ia ·ψ, δa, d+a− σ(ψ, ψ′)− σ(ψ′, ψ)). is an elliptic

operator from Γ(W+⊗L)G⊕Ω1G to Γ(W−⊗L)G⊕Ω̃0
G
⊕Ω2

+
G
where Ω̃0

G
denotes

the space of smooth functions on M which integrate to zero. (f ∈ Ω̃0
G

⇒∫
M
fdV ol = 0 ⇒

∫
M
f(∗1) = 0 ⇒ ⟨f, 1⟩ = 0 ⇒ f ∈ (H0G)⊥ ⇒ f ∈ Im δ,

by Hodge Theorem, and f ∈ Ω̃0
G

= Im δ ⇒ there exist w ∈ Ω1G with

f = δw ⇒
∫
M
fdV ol =

∫
M
f(∗1) = ⟨f, 1⟩ = ⟨δw, 1⟩ = ⟨w, d1⟩ = 0.)

Finally we claim that

pr3 : N → Ω2
+
G

pr3(A, ψ, ϕ) = ϕ
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is Fredholm. In fact: (dpr3)(a,ψ,ϕ)(a, ψ
′, ϕ′) = ϕ′. Hence

Ker (dpr3)(a,ψ,ϕ) = {(a, ψ′, 0) ∈ T(A,ψ,ϕ)N}

= {(a, ψ′, 0);L(a, ψ′) = (0, 0, 0)}

= Ker L.

Im (dpr3)(a,ψ,ϕ) = {ϕ′ ∈ Ω2
+
G
;L(a, ψ′) = (0, 0, ϕ′) for some

(a, ψ′) ∈ Ω1G ⊕ Γ(W+ ⊗ L)G}

= Im (L) ∩ ({0} ⊕ {0} ⊕ Ω2
+
G
).

Also note that, since (Γ(W−⊗L)⊕Ω̃0
G
⊕0)∩(Im L)⊥ = 0, coker (dpr3)(a, ψ, ϕ)

has the same dimension as coker L, and since L is Fredholm, so is pr3 and

hence, using the fact that U is open and dense, as proved above, and applying

the Sard’s Theorem to the map pr3 : N → Ω2
+
G
, for ϕ a regular value of pr3,

we get the slice (pr3)
−1(ϕ) is a submanifold of N of dimension equal to the

index of pr3 that is equal to the index of L which in turn ,using the homotopy

Lt(a, ψ
′) = (D/+A

G
ψ′ − ita ·ψ, δa, d+a− it(σ(ψ, ψ′) + σ(ψ′, ψ))), is equal to the

index of L0, where L0 = D/+A
G ⊕ δ ⊕ d+.

Finally, since ind(d+) = dim(ker d|+kerd∗) − dim(coker d|+kerd∗) = bG1 − bG+ =

−bG+, we get dG = indR(D/
G
A)− bG+.

As for the orientation, the fact that M̃G
ϕ (L) is orientable can be proven

by making obvious modifications in non-equivariant case, see page 79 of

[9]. We have Ker LG(A,ψ) = T(A,ψ)(M̃G
ϕ (L)) as we have seen in the pre-

vious transversality arguments. Hence, if d is the dimension of the mod-

uli space, we have det (LG) = ∧dKer (LG) = ∧d(M̃G
ϕ (L)) where det (LG)
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denotes the determinant line bundle of the family of Fredholm operators

LG(A,ψ) : p 7→ LG(A,ψ)(p). Thus a nowhere zero section of det (LG) will give

an orientation of M̃G
ϕ (L). For the family of operators Lt, for t ∈ [0, 1], defined

by Lt(a, ψ
′) = (D/+A

G
ψ′ − ita · ψ, δa, d+a − 2tσ(ψ, ψ)), the determinant line

bundle det (LGt ) is defined for every t and depends continuously on t. Thus the

bundles det (LGt ) are all isomorphic and it suffices to construct a nowhere zero

section of det (LG0 ), where L0 = D/+A
G ⊕ δG ⊕ d+

G
. On the other hand we have

det (LG0 ) = det (D/+A
G
) ⊗ det (δG ⊕ d+

G
). Now, det (D/+A

G
) has a nowhere zero

section which comes from the orientations of the kernal and cokernal of D/+A
G

defined by complex multiplication, and det(δG⊕ d+
G
) inherits a nowhere zero

section from an orientation of HG
+(M). Thus detL0 is trivialized, finishing the

proof. 2

IV.1 Smooth Case

The aim of this section is to prove the following theorem

Theorem IV.6 LetM be a closed, simply connected smooth 4-manifold with

a Spinc-structure. If bG+ > 0 then for a generic choice of G-invariant self-

dual two form ϕ, M(L)Gϕ is an oriented smooth manifold of dimension dG =

indR(D/
G
A)− bG+ − 1.

Proof : The existence of a reducible solution in M̃G
ϕ (L), which causes singu-

larity in M(L)Gϕ , depends on the condition that c1(L) contains a connection

with F+
A = 0, in turn which occurs only if ϕ ∈ ΠG-a subspace of ΩG

+ of codi-

mension bG+. Since, by the assumption bG+ > 0, these singularities are avoidable.
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Hence S1 ⊂ G acts freely on M̃G
ϕ (L). Therefore M(L)Gϕ is an oriented smooth

manifold with dim (M(L)Gϕ ) = dim (M̃G
ϕ (L)) − 1 = indR(D/

G
A) − bG+ − 1. The

orientation of M(L)Gϕ is induced from the orientation of M̃G
ϕ (L). 2

As a final remark, as in Section 3.6 of [9], the moduli space M(L)ϕ
G de-

pends on the choice of G-invariant Riemannian metric and G-fixed perturba-

tion ϕ. In the case bG+ ≥ 2, we can combine the two choices of G-fixed pertur-

bations by a curve in ΩG
+ without passing through the subspace ΠG mentioned

in Lemma IV.4. Hence, using Smale’s infinite-dimensional generalization of

transversality theorem [12], we get MG
ϕ1
(L) and MG

ϕ2
(L), are cobordant man-

ifolds. Similarly, changing the G-invariant Riemannian metric on M yields

cobordant moduli spaces.

IV.2 Singular Case

The aim of this section is to investigate the topological structure of the moduli

space MG
ϕ (L) for the case bG+ = 0.

Lemma IV.7 When bG+ = 0 and H1(M,R)G = 0, for each w ∈ ΩG
+, there is

unique A ∈ Ω1G with d+A = w and d∗A = 0.

Proof : First we will prove the existence:

Recall the G-equivariant fundamental elliptic complex

0 −→ ΩG
0 (M)

d−→ ΩG
1 (M)

d+−→ ΩG
+(M) −→ 0

Since by the assumption bG+ = 0, we have d+(Ω1)G = ΩG
+. That is for any

w ∈ ΩG
+ there exits A ∈ Ω1G with d+A = w.
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Now pick any such A. By the Hodge Theorem we have A = h + df + (d+)∗α

where h is a G invariant harmonic one form, f is a function (uniquely deter-

mined up to a constant) and α ∈ ΩG
+. Consider A− df = h+ (d+)∗α ∈ Ω1G

Note that d+(A− df) = d+A− d+(df) = w (since −pr+d
2f = 0)

and d∗(A− df) = d∗(h+ (d+)∗α) = d∗h+ d∗(d+)∗α = 0.

Therefore for any w ∈ ΩG
+ there exists one form B = A − df ∈ Ω1G with

d+B = w and d∗B = 0.

Next, we will prove the uniqueness:

Since H1G = H1(M,R)G = 0 by the assumption, from the above elliptic

complex we conclude that Ker d+ = 0 i.e. d+ is one to one. 2

Theorem IV.8 When bG+ = 0, H1(M,R)G = 0 and ind (D/+A
G
) > 0, the mod-

uli space Mϕ
G(L) is non-empty smooth manifold away from the unique sin-

gularity defined by Gauge class of a reducible element. This singularity has a

neighborhood which is a cone on CPk−1 where k is the complex index of D/+A
G
.

Proof : Fix a G-invariant base connection A0. For any other G-invariant

connection A, we have A−A0 = ia for some a ∈ Ω1G and FA = FA0 + ida. So

we can identify any G-invariant connection A with a ∈ Ω1G and F+
A with d+a.

Now after fixing a G-invariant base connection A0 that corresponds to a one

form a satisfying d∗a = 0 and using this identification, we see that

M(L)Gϕ = M̃G
ϕ (L)/S

1 = {(A,ψ); d∗A = 0, D/Aψ = 0, F+
A = σ(ψ, ψ) + ϕ}G/S1

= {(a, ψ); d∗a = 0, D/A0+ia
ψ = 0, d+a = σ(ψ, ψ) + ϕ− F+

A0
}G/S1.

Now for (a, ψ) with ψ = 0, i.e. for any reducible element of M̃G
ϕ (L), we have

d∗a = 0 and d+a = ϕ − FA0

+ which is invariant. Above, in Lemma IV.7, we
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showed that there exist a unique such a ∈ Ω1G for any fixed w ∈ Ω+. Therefore

M̃(L)ϕ
G
contains a unique reducible solution.

Thus M(L)Gϕ is generically a non-empty dG-dimensional manifold away

from the unique singular point.

As for the structure of M(L)Gϕ around the unique singular point [(A, 0)],

recall that FG(A,ψ) = (D/GAψ , F+
A − σ(ψ, ψ)) and M(L) = (FG)−1(0)/G(L),

where d∗A = 0. It’s linearization is

dFG
(A,ψ)(a, ψ

′) = (D/GAψ
′ − a · ψ , d+a− σ(ψ, ψ′)− σ(ψ′, ψ)),where d∗a = 0

= DG +QG

where

DG
(A,ψ)(a, ψ

′) = (D/GAψ
′ , d+a) : Ker d∗ → Γ(W−)

G × ΩG
+

QG
(A,ψ)(a, ψ

′) = (−a · ψ , −σ(ψ, ψ′)− σ(ψ′, ψ)).

The formal tangent space at a reducible invariant solution (A, 0) is given by

T = {(a, ψ′); D/GAψ
′ = 0 and d+a = 0} = (DG +QG)−1

(A,0)(0, 0)

= (DG)−1
(A,0)(0, 0)

But, by Lemma IV.7, there is a unique a ∈ Ω1G with d+a = 0 = d∗a, that

is a = 0. Hence

T = {(0, ψ′); D/GAψ
′ = 0} = Ker D/GA

This has even dimension (because D/GA : Γ(W+ ⊗ L)
G → Γ(W− ⊗ L)

G
is a map

between complex spaces and Dirac operator is elliptic, so Fredholm, and hence

has finite dimensional kernel and cokernel), say 2k.
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Note that, using the assumptions: H1(X)G = 0 = H+(X)G, we get

Ω2
+
G
/Im d+

G ∼= H+
2(M)G = 0, giving d+

G
is onto, i.e. Coker d+

G
= 0, and

also that H1(X)G ∼= H1(X)G = 0 = Ker d+
G

= {a ∈ Ω1G ; d+
G
a = 0 = d∗a}.

That is, we get Ker d+
G
= 0 = Coker d+

G
.

Now we have the restriction of the Kuranishi map to the Ker DG :

KG : Ker DG → Coker DG. More explicitly

KG :


 a

ψ′

 such that d+
G
a = 0 = D/+A

G
ψ′


G

→ Coker d+
G ⊕ CokerD/+A

G

That is

KG :


 0

ψ′

 such that D/+A
G
ψ′ = 0


G

→ Coker D/+A
G

KG : Ker D/+A
G → Coker D/+A

G
= 0 ( since D/+A

G
is onto by Lemma IV.2).

Hence KG ≡ 0 and around the singular point (A, 0), structure of M̃G(L)

is given by (KG)−1(0) that is Ker D/+A
G
.

Then MG(L) = M̃G(L) /S1 ∼= Ker D/+A
G
/S1 ∼= Ck/S1, which is a cone

on CPk−1. 2

Remark IV.9

The condition ind (D/+A
G
) > 0 is equivalent to the condition ind (D/+A

G
) > 1.

Because in case ind (D/+A
G
) = 1, the component ofMG(L) containing the unique

reducible solution (A, 0) is one dimensional and since MG(L) is compact, it

must be a closed interval and hence has a boundary, giving a contradiction.

Remark IV.10 In the case ind (D/+A
G
) = 0 again by the compactness,

M̃G(L) consists of finitely many points and since S1 acts freely on the smooth
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points, there can not be any smooth point. Hence both M̃G(L) and MG(L)

consist of single point.
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CHAPTER V

An Application to Homology 3-Spheres

In this chapter we will give an alternative theorem and proof, using the topol-

ogy of the invariant Seiberg-Witten moduli space, to the theorem of Fintushel-

Stern [5]. First we introduce the terminology. For more details see Chapter 8

and 9 of [10] and also [5].

Definition V.1 A Pseudofree S1-action is a smooth S1-action on a smooth

(2n + 1) manifold such that the action is free except for finitely many excep-

tional orbits S1zi; i = 1 · · ·n with isotropy groups Gi at zi are Za1 , · · · ,Zan

where a = a1, · · · , an are pairwise relatively prime. The total isotopy is the

product α = a1 · · · an.

Definition V.2 A Pseudofree S1 manifold Q is an odd dimensional smooth

manifold with pseudofree S1 action.

Definition V.3 A Pseudofree orbifold X = Q5/S1 is the quotient of the

smooth 5-manifold Q5 by a pseudofree S1-action.

Note that the neighborhoods of the isolated singularities of X are cones on
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lens spaces L(ai, bj) where bj = α/aj.

Notation V.4 DX = X − ∪ni=1int(cL(ai, bj)).

Since S1-action on DX is free, it is classified by an Euler class e ∈ H2(DX,Z).

Consider

0 → H2(DX, ∂DX,Z) j∗−→ H2(DX,Z) i∗−→ H2(∂DX,Z) = Zα

Since tubular neighborhood of an exceptional orbit S1zi with isotropy Zai in

Q5 is D4 ×Zai
S1 which is diffeomorphic to D4 × S1, the part of Q5 over each

L(ai, bj) is just S
3 × S1. Hence i∗(e) is unit in Zα. Here S1-action on the tube

D2 × D2 × S1 of the exceptional orbit S1zi is t · (z, w, s) = (ztri , wtsi , stai)

where ri and si are relatively prime to ai. Note that

(D2 ×D2 × S1)/S1 = (D2 ×D2)/Zai = cL(ai; ri, si) = cL(ai, bi)

where risi
−1 ≡ bi( mod ai).

An example of a pseudofree S1 manifold is Seifert fibered homology 3-sphere∑
(a) =

∑
(a1, · · · , an); which admits a pseudofree S1 action with exceptional

fibers with isotopy Za1 , · · · ,Zan ; and
∑

(a)/S1 = S2.

Let H ⊂ K ⊂ S1 = {z ∈ Z; ||z|| = 1} = {eiθ; θ ∈ [0, 2π]}.

Definition V.5

For n-tuple of relatively prime integers a1, a2, . . . , an; (ai, aj) = 1, we define

complex n-dimensional representation of H as:

H → Hom(Cn,Cn)

h 7→ ha1 + ha2 + · · ·+ han ,where;

(ha1 + ha2 + . . .+ han)(z1, z2, . . . , zn) = (ha1z1, h
a2z2, . . . , h

anzn).
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Notation V.6 K ×H D
4 denotes the orbit space of K ×D4 by the action of

H defined by h−c + ha + hb, where c is unit modulo |H|. That is:

K ×H D
4 = (K ×D4)/ ∼

= {[(k, d)]; k ∈ K, d ∈ D4}

= {[(k, z1, z2)]k ∈ K, z1, z2 ∈ C}

= {[(h−ck, haz1, hbz2)]k ∈ K, z1, z2 ∈ C}.

Let G be the group of αth root of unity.

Definition V.7 A restricted G-manifold is a smooth closed four dimensional

manifold M with a smooth G-action such that:

• Either MG is empty or each component has codimension 2.

• There are n orbits (called singular orbits) Gxi ∼= G/Gxi with {|Gxi |}

relatively prime and
∏n

i=1Gxi = |G| = α. Denote |Gi| = |Gxi | = ai.

• The action is free away from MG and ∪ni=1Gxi.

Note that, since M is a 4 dimensional manifold, we have

M = N ∪ (∪ni=1(G×Gi
D4)),

where N is the part ofM from which interiors of neighborhoods of the singular

orbits removed. Gi acts on G×D4 via h−c+ha+hb. Also note that MG ⊂ N.

Then:

M/G = X = DX ∪ (∪ni=1(G×Gi
D4)/G) = DX ∪ (∪ni=1D

4/Gi)
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where DX = N/G.

Finally, since ∂(DX) = ∪ni=1S
3/Gi, and since Gi acts freely on S3, we get

H2(∂DX) = ⊕n
i=1H

2(S3/Gi) = ⊕n
i=1Zai = Zα.

Since DX is a smooth manifold, complex line bundles over it are classified

by their Euler classes in H2(DX).

Definition V.8 A line bundle over DX is called restricted if the pull-back of

its Euler class under inclusion i : ∂DX ↪→ DX, that is i∗(e(L)) ∈ H2(∂DX) ∼=

Zα, is a generator.

Definition V.9 A restricted G-line bundle L over a restricted G-manifold M

is a G-line bundle L over M such that for x ∈M :

• If Gx = G, then Gx acts trivially on the fibers Lx.

• If Gx ̸= G, then Gx acts freely on SLx-fibers of the unit sphere bundle

of L.

Note that line bundles over S3/H correspond to elements in H2(S3/H) ∼=

Zm, where m = |H|. In addition to this, as the line bundles over G×H S
3 are

of the form G×H (S3×C), they extend uniquely to line bundles over G×HD
4,

that is G×H (D
4×C), (see page 103 of [10]). From this observation we conclude

that restricted G-line bundles over M are in one to one correspondence with

restricted line bundles over DX.

Let G be a subgroup of S1 generated by the Gi’s. In case of dimQ = 5,

there is a restricted G-manifold M ,section 3 of [5] with n singular orbits such
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that M/G = X = Q/S1 and

Q = O ∪ (∪ni=1S
1 ×Gi

D4)

M = N ∪ (∪ni=1G×Gi
D4),

where N/G = DX = Q/S1.

One example of pseudofree S1 manifolds is Q = SL/G where L is a re-

stricted G-line bundle over a restricted G-manifold. In this case Q/S1 =

M/G = X.

Note that in addition to the one to one correspondence mentioned above,

they in turn in one to one correspondence with pseudofree S1 manifolds with

orbit space X =M/G.

Let Σ be a Seifert homology 3-sphere, that is a pseudofree S1 homology

sphere whose orbit is S2. Then Σ×D2 is a pseudo S1 manifold of dimension 5,

where S1 acts on D2 as complex multiplication. The correspondence S1zi ↔

S1(zi, 0) is one to one between the singular fibers of Σ and Σ×D2.

Suppose that Σ(a) = ∂V 4 for some positive definite, smooth 4-manifold.

If necessary, after surgering out the the free part of H1(V,Z), we may assume

H1(V,Z2) = 0. Consider the space X = V ∪ (Σ×S1D2)-pseudofree S1 orbifold.

Note that (Σ×S1 D2) is a mapping cylinder of π : Σ → Σ/S1 = S2. Because:

Σ×S1 D2 = Σ×S1 (D2 − {0}) ∪ Σ×S1 {0}

= Σ× (0, 1] ∪ Σ×S1 {0}

= Σ× (0, 1]⨿(x,0)∼π(x) S
2

= C(π).
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There exists a G-manifold M with M/G = X and a restricted line bundle

L over M such that SL/G = Q and Q/S1 = X where G is the subgroup of S1

generated by the isotropy groups Gi’s, that is G = Zα-group of α-th roots of

unity(see [5]).

Consider the restricted line bundle L0 = C×S1 Q|DX over DX. Recall that

DX ↪→ (V ∪ C(π)) = V ∪ (Σ×S1 D2).

Note that S1 action on V is free, that is, the singularities are in the mapping

cylinder part C(π) , therefore we have V ↪→ DX from which we obtain the

restriction L0|V → V. But noting the fact that Q|DX = DX × S1, we see that

L0|V = C×S1 (V × S1) = V × C. Hence, we also have L0|Σ → Σ = ∂V is the

trivial bundle. Now since L0 is defined over the boundaries of DX, i.e. over

S3/Gi, we have the pullback bundle defined over the cylinder G×Gi
S3 in M.

And, since any line bundle over G×Gi
S3 is of the form G×Gi

(S3×C), we can

extend λ∗L0 to the inside the tube by defining G ×Gi
(D4 × C) → G ×Gi

D4.

This way we extend λ∗L0 to a restricted G-line bundle λ♯L0 all of M as a

G-bundle where λ :M →M/G is the projection.

Next we claim that the line bundle λ♯L0 over M is characteristic. That is

there is a Spinc(4) structure whose determinant line bundle is λ♯L0. In fact,

since by the assumption the first homology of V does not contain 2-torsion,

V is a Spin(4)-manifold. Thus there is a Spinc(4) bundle PSpinc(4) over V and

hence over Σ. LetW ′ be the complement of the interiors of the union of the slice

neighborhoods of the singular orbits and W = W ′/S1. Then (PSpinc(4)|Σ ×S1

D2)|W ′ is a bundle over (Σ×S1D2) away from the interiors of the neighborhoods
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of singular orbits, that is, over W. Now pull back this bundle by the map λ to

get a new G-bundle over (V × S1) ∪W ′ that is over M except the interiors of

the tubes. Now using the same technique as above, we extend this G-bundle

to all of M as a G-bundle.

Let D/GA be the Dirac operator associated to the Spinc(4) structure con-

structed above.

Theorem V.10 Let Σ(a) be a Seifert homology 3-sphere oriented as the

boundary of C = Σ(a) ×S1 D2 where C is oriented as to be positive defi-

nite. If Σ(a) bounds a negative definite 4-manifold V whose first homology

contains no 2-torsion then indC (D/GA) ≤ 1.

Proof :

Recall that:

G = G0 × S1,

B̃ = (Γ(W+ ⊗ L)⊕A(L))/G0, B̃∗ = B̃ − [(dA, 0)],

B = B̃/S1 = (Γ(W+ ⊗ L)⊕A(L))/G, B∗ = B − [(dA, 0)].

Let ∂V = Σ. Then we can form the space X = V ∪ (−C(π)) as mentioned

earlier. Let M be the smooth four manifold with M/G = X. λ♯L0 con-

structed on M is a characteristic line bundle. Since bG+(M) = dim H2
+(M)G =

dim H2
+(M/G) = dim H2

+(Q/S
1) = 0, by the Theorem IV.8, the G-invariant

perturbed moduli space MG
ϕ contains a unique singular point whose neigh-

borhood is a cone over CPk−1 where k is the complex index of D/GA. Thus if

indC(D/
G
A) > 1, since the moduli space is compact with boundary equal to

CPk−1, we obtain the fundamental class [CPk−1] = 0 ∈ H2k−2(B∗,Z).
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On the other hand, let E denote the associated vector bundle over B∗

corresponding to the S1 fiber bundle S1 → B̃∗ → B∗. Denote the pull back

of this bundle E over B∗ to the boundary CPk−1 ⊂ (M∗
ϕ)
G ⊂ B∗G ⊂ B∗ of

the neighborhood of the unique singular point by i∗(E). Since this is a Hopf

fibration

S1 → S2k−1 → CPk−1,

we see that c1(i
∗E) ̸= 0. Moreover, using the fact that the cohomology of

CPk−1 is truncated polynomial algebra, i.e. H∗(CPk−1,Z) ∼= P [c]
(ck−1)

, we see

that ⟨c1(i∗(E))k−1, [CPk−1]⟩ = ⟨i∗(c1(E))k−1, [CPk−1]⟩ =
∫
CPk−1 c1(E)

k−1 ̸= 0,

contradicting [CPk−1] = 0 ∈ H2k−2(B∗,Z). 2

indC(D/
G
A) can be computed by Atiyah-Singer Index theorem and by Lef-

schetz type of formula using fixed point data (see Chapter 14 of [6] about how

this computations should be carried out). Thus one gets some restrictions on

the characteristic classes of V and on the data ”a” to have ∂V = Σ(a).
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