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Signature :

iii



Abstract

SCALAR MULTIPLICATION ON ELLIPTIC CURVES

Oğuz YAYLA

M.Sc., Department of Cryptography

Supervisor: Prof. Dr. Ersan AKYILDIZ

August 2006, 63 pages

Elliptic curve cryptography has gained much popularity in the past decade and

has been challenging the dominant RSA/DSA systems today. This is mainly

due to elliptic curves offer cryptographic systems with higher speed, less memory

and smaller key sizes than older ones. Among the various arithmetic operations

required in implementing public key cryptographic algorithms based on elliptic

curves, the elliptic curve scalar multiplication has probably received the maximum

attention from the research community in the past a few years. Many methods for

efficient and secure implementation of scalar multiplication have been proposed by

many researchers. In this thesis, many scalar multiplication methods are studied

in terms of their mathematical, computational and implementational points.

Keywords: Elliptic Curves, Group Law, Endomorphisms, NAF, Scalar Multi-

plication.
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Öz

ELİPTİK EĞRİLER ÜZERİNDE KATSAYI ÇARPIMI

Oğuz YAYLA

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi: Prof. Dr. Ersan AKYILDIZ

Ağustos 2006, 63 sayfa

Geçen 10 yıllık sürede eliptik eğri kriptosistemleri önemli ölçüde yaygınlaştı ve

artık RSA/DSA sistemlerine meydan okur hale geldi. Bunun nedeni, eliptik

eğri kriptosistemlerinin diğerlerine oranla daha yüksek hızda, daha düşük hafıza

isteyen ve daha düşük anahtar boyunda kriptosistemleri gerçekleştirebilme-sidir.

Eliptik eğri kriptosistemlerinde gereksinim duyulan aritmetik işlemler ara-sında,

araştırmacılar nezdinde son bir kaç yıldır en çok ilgi çeken katsayı çarpımı ol-

muştur. Etkili ve güvenli katsayı çarpım metodları araştırmacılar tarafından

önerilmiştir. Bu tezde, bir çok katsayı çarpımı metodu matematiksel, sayısal ve

uygulamaya dönük çalışılmıştır.

Anahtar Kelimeler: Eliptik Eğriler, Grup Kuralları, Endomorfizmalar, NAF,

Katsayı Çarpımı.

v



To Saniye and to My Parents...

vi



Acknowledgments

I acknowledge financial support from TÜBİTAK-BAYG through my undergrad-
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Chapter 1

Introduction

In a few decades ago, cryptography was known to be the study of providing

secure communications over an insecure channel, so that only a set of intended

recipients can understand the message. However, from the todays’ point of view,

the definition of cryptography needs to be extended as designing of algorithms,

protocols and systems which are used to protect information against threats.

Information protection mainly consists of privacy (confidentiality), data integrity,

authentication, verifiability and non-repudiation, which are also known as main

goals of cryptography.

In order to satisfy privacy, one needs to convert the information (message,

plaintext) to some unintelligible language (cryptogram, ciphertext, codeword)

by using some secret data (cryptographic key), which is so called encryption

operation. Receiver of the ciphertext takes it back to a plaintext only by correct

secret key, which is so called decryption operation.

Algorithms, protocols and systems satisfying cryptographic encryption-de-

cryption operations are called cryptosystems. There are two types of cryptosys-

tems: private-key cryptosystems and public-key cryptosystems.

In private-key cryptosystems, it is computationally easy to obtain decryption

key from encryption key. They are also called symmetric type of cryptosystems.

It is divided into two main categories: block ciphers and stream ciphers. Former

encrypt the message in fixed length strings (blocks) at a time (eg. DES, IDEA,

AES, etc). Latter, on the other hand, operate on a single bit of the message at a

time (eg. RC4, A5, etc.).

Secondly, in public-key cryptosystems, it is computationally difficult to recover
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decryption key from encryption key or vice-versa. It is also called the asymmetric

type of cryptosystems. Public-key cryptosystems are mainly designed by some

trap door one-way functions that are infeasible to be inverted in a time for to-

day’s technology; but easy to be inverted with the help of some extra information.

There are many mathematical problems that serve us trap door one-way func-

tions. First, integer factorization problem depends on computationally difficulty

of finding a non-trivial factor of a given integer(eg. RSA is a designed cryptosys-

tem depending on this problem.). Second, subset sum problem depends on filling

a given empty bag with some pre-defined packages (eg. Knapsack is a designed

cryptosystem depending on this problem.). Third, discrete log problem depends

on computationally infeasibility of finding the exponent with respect to the some

pre-defined base of a given element in a group G (eg. El-Gamal Encryption,

Diffie-Helmann(DH) Key Exchange and Digital Signature Algorithm(DSA) are

examples depending on this problem when G = F ∗
q ). In particular, one can study

discrete logarithm problem on the group of points on an elliptic curve over a fi-

nite field, for which finding the scalar multiplied with a pre-defined element of the

curve with a resultant curve point that is also given is computationally difficult.

For instance, given a pair P, Q on the elliptic curve and if it is known that Q

is a scalar multiple of P, finding that scalar is one of the most computationally

difficult problem in mathematics.

Table 1.1 makes a comparison of some commonly used cryptosystems in terms

of their security strength according to today’s knowledge. For instance, systems

using 80 bits of AES key, 1024 bits RSA key and 160 bits elliptic curve DSA key

have the same security strength. The reader may consult to [Kob94], [MOV96],

[Sch96], [Sti02] for more about cryptography.

How can one use elliptic curve discrete log problem and construct a cryptosys-

tem? The answer is the following. Firstly, two parties A and B, not necessarily

to be persons, choose a secure elliptic curve that is publicly known. Next, for a

given message element M, A converts it to an element on the elliptic curve: P.

A calculates G=rK for a pseudo-random integer r and a pre-defined point K on

the elliptic curve. Additionally, H = rE is calculated by A where E is the public

2



Table 1.1: Security Strength Comparison

AES Key Size RSA and DH Key Size Elliptic Curve DSA Key Size
(bits) (bits) (bits)

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

encryption key of the receiver, B(it is only known by B that E = dK). Next, A

calculates T = P + H. Finally, (T, G) pair is sent to B. B recovers P as

T - dG = P where d is the secret decryption key of B. The system is known as El-

liptic Curve El-Gamal Encryption Scheme. The reader may consult to [HMV04],

[Men93] for more about elliptic curve cryptosystems.

As it is seen from previous paragraph, the operations rK and dG are performed

for each message element. That type of operations are called scalar multiplication

or point multiplication. Scalar multiplication is the most commonly operated

calculation in an elliptic curve cryptosystem. Hence, it should be defined and

implemented correctly in an elliptic curve cryptosystem.

The contribution of this thesis is to discuss the theoretical issues of elliptic

curves and to analyze the scalar multiplication methods. Chapter 2 gives a brief

introduction to elliptic curves and chapter 3 concentrates on the scalar multipli-

cation methods, their algorithms and their analysis.
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Chapter 2

Introduction to Elliptic

Curves

Not only mathematicians, but also cryptographers have been dealing with the

theory of elliptic curves since [Kob87] and [Mil85], independently, presented the

use of elliptic curves in cryptosystems in mids of 1980s. History of the theory of

elliptic curves reaches to approximately two centuries before. Even Carl Frederic

Gauss had studied on counting the number of elements of elliptic curves on finite

fields. One comes across with elliptic curves when (s)he deals with congruent

number problem, square pyramid problem, Fermat’s last Theorem, etc. For more

detailed information in elliptic curves see [Was03], [BSS99], [Sil86], [Enge99].

2.1 Preliminaries

For cryptographic purposes, we will study elliptic curves on finite fields in this

thesis. So, in order to define an elliptic curve on a finite field, we need to give

some preliminary definitions and facts.

Definition 2.1. A set G is a group with respect to a well-defined binary operation

+ if

• G is associative, i.e. for all x, y, z in G, x + (y + z) = (x +y) + z holds,

• G contains identity element 0, i.e. 0 satisfies a + 0 = a for all a in G,

• Every element in G has an inverse in G, i.e. for each x ∈ G there exists

x′ ∈ G satisfying x + x′ = 0.
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A group is called commutative group if it has the property that

x + y = y + x, for all x, y ∈ G.

C, R, Q, Z are examples of group with respect to usual addition.

Definition 2.2. A set K is a field with respect to well-defined binary operations

+ and · where + is additive operation and · is multiplicative operation on G if

• F forms a commutative group with respect to +,

• K∗ = K\{0} forms a commutative group with respect to ·,

• Distributivity law holds in K, i.e. x · (y + z) = (x · y) + (x · z) for all x,

y, z in K.

C, R, Q are examples of field with respect to usual addition and usual multi-

plication.

Any field having only finitely many elements is called finite field or Galois

Field . Some of the basic facts about finite fields are given below. For more on

the theory of finite fields, one may consult to [LiNi93].

Lemma 2.3. A finite field K has exactly pn elements where p is a prime number

and n ≥ 1 integer. Then, p is known as the characteristic of K. Moreover, this

K is usually represented as GF (pn).

Lemma 2.4. For any finite field K, K∗ is cyclic.

Now, it is time to define elliptic curve and concentrate on its properties.

Definition 2.5. An elliptic curve E over a field K is defined by a non-singular

projective plane curve over the algebraic closure K of K by the affine equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (2.1.1)

where a1, a2, a3, a4, a6 are elements of K. Non-singularity of a curve is known

to be no multiple tangent lines at any point of the curve exist.
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Let E ′ be a non-singular plane affine curve defined over K by

E ′ : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where a1, a2, a3, a4, a6 are elements of K. Then E = E ′ ∪ {∞} where

∞ = [0, 1, 0] is a point in projective space and it is called as point at infinity.

Moreover, if L is any extension of K then

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6} ∪ {∞}

is defined as the set of L-rational points on E. In fact, E(L) where L is a finite

field is the group which is used in cryptosystems.

Note that E = E(K) and E(L) = E ′(L) ∪ {∞}.

Equation 2.1.1 is named as generalized Weierstrass equation and it has

the following descriptive quantities

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = d2
2 − 24d4

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

j(E) = c3
4/∆

The quantity ∆ is called the discriminant of E, while j(E) is called the j-

invariant of E.

Example 2.6. y2 + xy + 3y = x3 + 1
3
x2 + 1

2
x + 1/R,

y2 = x3 + 5x + 25/F29,

y2 = x3 − 25x/R
are examples of elliptic curve.
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Definition 2.7. [Enge99] Let E1 and E2 be two elliptic curves over a field K.

Then E1 and E2 are isomorphic over K if there exist u, r, s, t in K, u 6= 0 with

change of variables

(x, y) 7−→ (u2x + r, u3y + u2sx + t)

changing equation E1 to equation E2.

Equivalently, matrix version is given as

(
x

y

)
7−→

(
u2 0

u2s u3

)(
x

y

)
+

(
r

t

)

This transformation is called admissible change of variables.

The following theorems explains the relation between ∆ and non-singularity

of elliptic curve, and between j-invariant and isomorphism of elliptic curves.

Theorem 2.8. [Sil86] The elliptic curve E is non-singular if and only if ∆ 6= 0.

Theorem 2.9. [Sil86] If two elliptic curves E1/K and E2/K are isomorphic over

K, then j(E1) = j(E2). The converse is also true if K is an algebraically closed

field.

Let K be a finite field with char(K) = p. Then, an elliptic curve E over K

consisting a point of order p is called supersingular curve, otherwise it is called

non-supersingular curve. In particular, for p = 2 or 3, E is supersingular if

and only if j(E) = 0. Supersingular elliptic curves are not used in cryptosystems

due to the fact that they are highly vulnerable to MOV attack [MOV93].

Theorem 2.10. [Was03] Let E1 : y2
1 +a1x1y1 +a3y1 = x3

1 +a2x
2
1 +a4x1 +a6 and

E2 : y2
2 + A1x2y2 + A3y2 = x3

2 + A2x
2
2 + A4x2 + A6 be two elliptic curves over K

with j-invariant j1 and j2. If j1 = j2, then there exists µ 6= 0 in K (algebraic

closure of K) such that Ai = µiai for i = 1, 2, 3, 4, 6. Moreover, E1 is isomorphic

to E2 by the admissible change of variables

x2 = µ2x1, y2 = µ3y1.
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Proof : See section 2.6 of [Was03].

However, if we work on a field K that is not algebraically closed, then it is

possible to find two elliptic curves with the same j-invariant that is not isomorphic

to each other over K.

Example 2.11. E1 : y2 = x3 − 25x and E2 : y2 = x3 − 4x over Q have the same

j-invariant = 1728. It can be shown that E1(Q) = < (−4, 6) > which has infinitely

many elements, but E2(Q) = {(2, 0), (−2, 0), (0, 0),∞}; hence one cannot find an

admissible change of variables over Q transforming E1 to E2. However, if one

works over Q(
√

10) instead of Q. Then,

(x, y) 7−→ (µ2x, µ3y)

where µ =
√

10/2 transforms E1 to E2, namely E1(Q(
√

10)) ∼= E2(Q(
√

10)).

Finally, two elliptic curves E1 and E2 defined over a field K with the same

j-invariant are called twists of each other because of the fact that there exists F

an extension field of K such that E1(F ) ∼= E2(F )

2.2 Simplified Weierstrass Equations

It is possible to transform the generalized Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 /K

to simple forms by using admissible change of variables with appropriate u,r,s,t

candidates in K so that resultant equation of E is as simple as possible. We have

three different cases as they are stated in [Sil86]:

1. char(K) 6= 2 or 3: The admissible change of variables1

(x, y) 7−→ ((x− 3a2
1 − 12a2)/36, (y − 3a1x)/216− (a3

1 + 4a1a2 − 12a3)/24)

1The choice for the admissible change of variables is given in details in section 2.1 of [Was03];
in deed, it is not hard to imagine
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transforms E to the curve with equation

y2 = x3 + ax + b

where a, b ∈ K. The discriminant of the simplified equation is

−16(4a3 + 27b2) and j(E) = 1728
4a3

4a3 + 27b2

2. char(K) = 2:

• a1 6= 0: The admissible change of variables

(x, y) 7−→ (a2
1x + a3/a1, a

3
1y + (a2

1a4 + a2
3)/a

3
1)

transforms E to the curve with equation

y2 + xy = x3 + ax2 + b

where a ∈ K and b ∈ K∗ see section 2.7 of. ∆ = b, j = 1/b. So, this

type of curves are non-supersingular.

• a1 = 0: The admissible change of variables

(x, y) 7−→ (x + a2, y)

transforms E to the curve with equation

y2 + cy = x3 + ax + b

where a, b ∈ K and c ∈ K∗. ∆ = c4, j = 0. So, this type of curves are

supersingular.

3. char(K) = 3:

• a2
1 6= −a2: The admissible change of variables

(x, y) 7−→ (x +
a4 − a1a3

a2
1 + a2

, y + a1x + a1
a4 − a1a3

a2
1 + a2

+ a3)

9



transforms E to the curve with equation

y2 = x3 + ax2 + b

where a, b ∈ K∗. ∆ = −a3b and j = −a3/b. So, this type of curves

are non-supersingular.

• a2
1 = −a2: The admissible change of variables

(x, y) 7−→ (x, y + a1x + a3)

transforms E to the curve with equation

y2 = x3 + ax + b

where a ∈ K∗ and b ∈ K. ∆ = −a3 and j = 0. So, this type of curves

are supersingular.

2.3 Group Law

In this section, we will explain the group structure of the elliptic curve group

E(K) which is needed for the cryptosystems.

Theorem 2.12. (Bezout) Let C1 and C2 be two curves over an algebraically

closed field defined by the equations F(x,y)=0 and G(x,y)=0 respectively. Then,

the number of points counted with multiplicity in the set C1∩C2 := #(C1∩C2) =

degFdegG. In particular, let C1 = E, an elliptic curve, and C2 = l, a line, then

#(C1 ∩ C2) = 3.

Therefore, we can define the group operation of elliptic curves with the help

of Bezout’s Theorem as: Let E be an elliptic curve over K

• Take two point on the curve: P, Q ∈ E(K)\{∞}

• First, draw a line through P and Q: l

10



Figure 2.1: Point addition and point doubling on an elliptic curve.

• Then, l intersects the curve at a third point: T ∈ E(K)

• Then, reflect T with respect to x axis.

• Resultant point, R ∈ E(K), is the addition of P and Q.

Remark 2.13. One needs to take care of followings while adding points on an

elliptic curve:

• If P, Q ∈ E(K) then P + Q ∈ E(K).

• If P = Q, then the line joining P to Q is the tangent line of E at P.

• If l is a vertical line, then T = ∞.

• If T = ∞, then R = ∞, too.

• Point at infinity:= ∞ is the identity element of the group E(K).

It is easy to obtain algebraic formulas using easily remarks above as we will

do now:

11



Definition 2.14. Let E be an elliptic curve over a field K. Let P1 and P2 be

points on E(K). Define P3 = P1 + P2.

If P1 = ∞ or P2 = ∞, then P3 = P2 or P3 = P1, respectively.

Else let P1 = (x1, y1) and P2 = (x2, y2)

1. char(K) 6= 2 or 3.

• x1 = x2 but y1 6= y2: P3 = ∞.

• x1 = x2 and y1 = y2 and y1 = 0: P3 = ∞.

• x1 = x2 and y1 = y2 but y1 6= 0 and let P3 = (x3, y3):

x3 = m2 − 2x1 and y3 = m(x1 − x3)− y1

where m =
3x2

1 + a

2y1

.

• x1 6= x2 and let P3 = (x3, y3):

x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1

where m =
y2 − y1

x2 − x1

2. char(K) = 2:

• non-supersingular type:

– x1 = x2 and y2 = x1 + y1: P3 = ∞.

– x1 = x2 and y1 = y2 and let P3 = (x3, y3):

x3 = m2 + m + a = x2
1 + b/x2

1 and y3 = x2
1 + mx3 + x3

where m = x1 + y1/x1

– x1 6= x2 or y2 6= x1 + y1 and let P3 = (x3, y3):

x3 = m2 + m + x1 + x2 + a and y3 = m(x1 + x3) + x3 + y1

where m =
y2 + y1

x2 + x1
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• supersingular type:

– x1 = x2 or y1 = y2 + c: P3 = ∞.

– x1 = x2 and y1 = y2 and let P3 = (x3, y3):

x3 = m2 and y3 = m(x1 + x3) + y1 + c

where m = (x2
1 + a)/c

– x1 6= x2 or y1 6= y2 + c and let P3 = (x3, y3):

x3 = m2 + x1 + x2 and y3 = m(x1 + x3) + y1 + c

where m =
y2 + y1

x2 + x1

3. char(K) = 3:

• non-supersingular type:

– x1 = x2 but y1 6= y2: P3 = ∞.

– x1 = x2 and y1 = y2 and y1 = 0: P3 = ∞.

– x1 = x2 and y1 = y2 but y1 6= 0 and let P3 = (x3, y3):

x3 = m2 − a− 2x1 and y3 = m(x1 − x3)− y1

where m =
3x2

1 + 2ax1

2y1

.

– x1 6= x2 and let P3 = (x3, y3):

x3 = m2 − a− x1 − x2 and y3 = m(x1 − x3)− y1

where m =
y2 − y1

x2 − x1

• supersingular type:

– x1 = x2 but y1 6= y2: P3 = ∞.

– x1 = x2 and y1 = y2 and y1 = 0: P3 = ∞.
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– x1 = x2 and y1 = y2 but y1 6= 0 and let P3 = (x3, y3):

x3 = m2 − 2x1 and y3 = m(x1 − x3)− y1

where m =
3x2

1 + a

2y1

.

– x1 6= x2 and let P3 = (x3, y3):

x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1

where m =
y2 − y1

x2 − x1

Finally, we also construct the addition formulas for generalized Weierstrass

equation where R = P + Q, and P = (x1, y1), Q = (x2, y2) and R = (x3, y3):

x3 =



( y2 − y1

x2 − x1

)2

+ a1

( y2 − y1

x2 − x1

)
− a2 − x1 − x2 (P 6= Q)

(3x2
1 + 2a2x + a4 − a1y1

2y1 + a1x1 + a3

)2

+ a1

(3x2
1 + 2a2x + a4 − a1y1

2y1 + a1x1 + a3

)
− a2 − 2x1

(P = Q)

y3 =


y2 − y1

x2 − x1

(x1 − x3)− y1 − (a1x3 + a3) (P 6= Q)

3x2
1 + 2a2x + a4 − a1y1

2y1 + a1x1 + a3

(x1 − x3)− y1 − (a1x3 + a3) (P = Q)

Theorem 2.15. The addition of points on an elliptic curve satisfies the following

properties:

i. Commutativity

ii. Existence of identity element

iii. Existence of unique inverse element for each element

iv. Associativity

14



Proof: Since line through P and Q is the same as the line through Q and P , the

addition is commutative. Next, point at infinity is the unique identity element

of the group by definition. By definition inverse of any point P = (x, y) can be

obtained as follows:

• In the case of char(K) 6= 2 or 3 : −(x, y) = (x,−y);

• Char(K) = 2

Non-supersingular case: −(x, y) = (x, x + y);

Supersingular case: −(x, y) = (x, y + c);

• Char(K) = 3 for both non-supersingular and supersingular case:

−(x, y) = (x,−y).

Note that if P = (x, y) satisfies the generalized Weierstrass equation, then

−P = (x,−a1x− a3 − y).

Finally, for the proof of associativity see section 2.4 of [Was03].

Table 2.1: Simplified Forms of Elliptic Curves

Simplified form ∆ j −(x0, y0)
char(K) 6= 2, 3

y2 = x3 + ax + b −16(4a3 + 27b2) 1728
4a3

4a3 + 27b2
(x0,−y0)

char(K) = 3 and j 6= 0

y2 = x3 + ax2 + b −a3b −a3

b
(x0,−y0)

char(K) = 3 and j = 0
y2 = x3 + ax + b −a3 0 (x0,−y0)
char(K) = 2 and j 6= 0
y2 + xy = x3 + ax2 + b b 1

b
(x0, x0 + y0)

char(K) = 2 and j = 0
y2 + cy = x3 + ax + b c4 0 (x0, y0 + c)
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2.4 Endomorphisms

Endomorphisms have crucial role in the theory of elliptic curves. An endo-

morphism α of an elliptic curve E over a field K is defined as homomorphism

on E(K) given by rational functions. That is,

α : E(K) 7→ E(K)

P 7→ (g1(P ), g2(P ))

where g1 and g2 are rational functions on E (quotient of polynomials) and

α(P1 + P2) = α(P1) + α(P2)

for all P1 and P2 ∈ E(K). The set of all endomorphisms of E over K forms a

ring under addition and composition [Enge99], called the endomorphism ring of

E over K. The characteristic polynomial of an endomorphism α is defined to be

the least degree monic polynomial f(x) ∈ Z[x] satisfying f(α)(P ) = ∞ for all

P ∈ E, if it exists2.

Example 2.16. [HMV04]

(i) Let E be given by y2 = x3 + ax + b over K.

Define α : E(K) 7→ E(K) α(P ) = 2P

It can be checked that α is a homomorphism. Moreover, we can define α as

α(x, y) = (g1(x, y), g2(x, y))

where

g1(x, y) = (3x2 +
a

2y
)2 − 2x and

g2(x, y) = (3x2 +
a

2y
)(3x− ((3x2 +

a

2y
)2)− y).

Since g1 and g2 are rational functions, α is an endomorphism of E. The char-

2The term characteristic polynomial is not equivalent to linear algebraic one
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acteristic polynomial of α is f(x) = x− 2. Generalization of this example is the

following:

(ii) Let E be an elliptic curve defined over K = Fq. For each n, the multipli-

cation by n defined as α : E(K) 7→ E(K), α(P ) = nP is an endomorphism of E.

The characteristic polynomial of α is f(x) = x− n.

(iii) Let E be an elliptic curve defined over K = Fq. The map φ defined by

φ : E(K) 7→ E(K)

(x, y) 7→ (xq, yq), φ(∞) = ∞

is an endomorphism of E. The above map is generally shown by φq and called

Frobenius endomorphism. The characteristic polynomial of φq is

f(x) = x2 − (q + 1−#E(Fq))x + q [Was03].

(iv) Let p ≡ 1(mod 4) be a prime, and E : y2 = x3 + ax be defined over Fp.

Let i be a 4th root of unity in Fp, and let α : E(K) 7→ E(K)

α(x, y) = (−x, iy), α(∞) = ∞.

It is easy to see that α is an endomorphism of E having the characteristic poly-

nomial of f(x) = x2 + 1.

(v) Let p ≡ 1(mod 3) be a prime, and E : y2 = x3 + b be defined over Fp. Let

β be a 3rd root of unity in Fp. Define α : E(K) 7→ E(K)

α(x, y) = (βx, y), α(∞) = ∞.

is an endomorphism of E. The characteristic polynomial of α is f(x) = x2+x+1.

Remark 2.17. In examples (iv) and (v) α(P ) can be computed easily, that is

using only one field multiplication.

As we said before, endomorphisms have crucial role in the theory of elliptic

curves; especially, Frobenius endomorphism is used in a wide range. For instance,
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it is used in proving the Hasse’s Theorem, which constructs a nice range for the

order of an elliptic curve over a finite field:

Theorem 2.18. (Hasse) Let E be an elliptic curve over Fq. Then the order of

E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√

q.

In order to decide the security strength of an elliptic curve cryptosystem,

number of rational points is a crucial feature of the system. It is desirable to be

large and devided by large primes. Here, Hasse’s Theorem does not give us any

information about factors of the #E(Fq); but says that #E(Fq) is approxiamately

q.
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Chapter 3

Scalar Multiplication on

Elliptic Curves

Scalar multiplication (or point multiplication) is the operation of calculating

an integer multiple of an element in additive group of elliptic curve. In other

words, it is calculation of kP for any integer k and a point P on the curve.

Scalar multiplication corresponds to group element exponentiation in a multi-

plicative group, i.e. xk, for some x in the multiplicative group. Therefore, one

can adapt easily historical exponentiation methods to scalar multiplication, re-

placing multiplication by addition and squaring by doubling. Mathematicians

have been dealing with exponentiation methods for more than two thousands

years, efficient methods have been grown up in that period.

In this chapter, we will give many scalar multiplication methods starting from

generic ones up to curve specific ones. There are two main situations that occur

in practice: base point P is not known a priori and known a priori, there is,

moreover, a sub case in which the scalar is used several times. Additionally,

different coding methods of k gives different scalar multiplication methods.

The expected running time and the worst case running time is important to

analyze a scalar multiplication method. Thus, one of them is always given in

details when algorithm is coded. Algorithms are constructed for the points P in

E(Fq) for some q = pm where p is prime and m in Z+ since cryptosystems are

designed on E(Fq).

19



3.1 Unknown Point

In this section both k and P are unknown until the run-time, i.e. they are

seeded in to the program at the run time. Since k and P may vary, methods

given in this section may be realized as generic methods.

3.1.1 Binary Method

Binary method is the first known exponentiation method, so a scalar multi-

plication method. Binary representation of the scalar enables us to interpret the

multiplication as cumulative addition of non-zero components. Namely, if k has

binary representation (kl−1, kl−2, . . . , k0)2 where ki ∈ {0, 1}, then k =
∑l−1

i=0 ki2
i.

kP =
l−1∑
i=0

ki2
iP (3.1.1)

= k0P + k12
1P + k22

2P + . . . kl−12
l−1P (3.1.2)

= k0P + 2(k1P + 2(k2P + ... + (2(kl−2P + 2(kl−1P ))...) (3.1.3)

Equation 3.1.2 can be interpreted as starting from k0 and summing the terms

ki2
iP up cumulatively for each non-zero ki up to kl−1 to end up with the result

kP . 2iP can be calculated by 2∗2i−1P if 2i−1P is known. Thus, in order to speed

up more, 2iP is needed to be calculated for each i ∈ {0, . . . , l−1} by doubling the

previous one, and added to the cumulative summand if ki is 1. Because of which,

this case of the method is known as double-and-add. Also, it is called right-to-

left binary method since it starts from k0 ends with kl−1. The pseudo-code of

right-to-left binary method is Algorithm 3.1.

Next, equation 3.1.3 enables us to interpret the multiplication as starting

from kl−1 down to k0 and adding P if ki is non-zero and continuously doubling

whatever ki is. In contrast to previous case, it is not needed to keep at hand

a doubled version of P . In other words, memory is not allocated for a doubled

version of P . Because of similar reasons, this case of the method is known as

add-and-double or left-to-right binary method. And, its pseudo-code is given in

20



the Algorithm 3.2.

Algorithm 3.1. [Knu81]

Right-to-left binary method for scalar multiplication

input: k = (kl−1, kl−2, . . . , k0)2, P ∈ E(Fq).

output: kP

1. Q = ∞.

2. for i from 0 to l-1 do

2.1 if ki = 1 then Q = Q + P .

2.2 P = 2P .

3. output(Q)

Algorithm 3.2. [Coh93]

Left-to-right binary method for scalar multiplication

input: k = (kl−1, kl−2, . . . , k0)2, P ∈ E(Fq).

output: kP

1. Q = ∞.

2. for i from l-1 down to 0 do

2.1 Q = 2Q

2.1 if ki = 1 then Q = Q + P.

3. output(Q)

The running time of a algorithm is determined as how many operations are

performed throughout its execution. In order to do that, it is needed to analyze

each line of the algorithm in detail. For instance, line 1 of Algorithm 3.1 is

equivalence and it is very fast and it is not included into the running time analysis.

Similarly, line 2 is determination of the loop and it is very fast and not included

into the running time. Next, if ki is 1, then a point addition is performed in

the line 2.1. Point addition needs some field operations; because of which, it is

heavy operation and included into the running time. Since the expected number

of ones in the binary representation of k is half of its length (l/2), line 2.1 is

expected to run l/2 times. Finally, a doubling is performed in the line 2.2 for

each value of i, that is, l times. Because of the same reasons of point addition,
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point doubling is included into the running time. Therefore, the expected running

time of Algorithm 3.1 is l/2Additions + lDoubling denoted as

l

2
A + lD.

Algorithm 3.2 has the same operations as Algorithm 3.1 with reverse order, so

they have the same running time. The analysis of Algorithm 3.1 was explained

in details for clarity, but for the next times, it will be done directly. Also, the

running time analysis will be given in terms of point addition and point doubling

to compare them.

Example 3.3. k = 26 = (11010). 26P can be calculated by Algorithm 3.1 and

Algorithm 3.2. The algorithm steps are given in Table 3.1 and Table 3.2.

Table 3.1: Right-to-Left Binary Method

i 0 1 2 3 4
ki 0 1 0 1 1
P ∞ 2P 4P 8P 16P
Q ∞ ∞+2P=2P 2P 2P+8P=10P 10P+16P=26P

Table 3.2: Left-to-Right Binary Method

i 4 3 2 1 0
ki 1 1 0 1 0
Q ∞+P=P 2(P)+P=3P 2(3P)=6P 2(6P)+P=13P 2(13P)=26P

3.1.2 Non-adjacent Form(NAF)

By previous chapter, we know that inverse of P = (x, y) ∈ E(Fq) is

−P = (x, x + y) in binary fields and −P = (x,−y) in the fields of characteristic

≥ 3. Thus, taking inverse of an element on elliptic curve is very fast in terms of
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computational time. This brings up the question of representing k in the form

k =
l−1∑
i=0

ki2
i where ki ∈ {−1, 0, 1}

to get fast computation for kP . Additional to binary method, when minus one is

come across, subtraction of P is performed during the scalar multiplication kP.

A representation whose set consists also negative values is called signed digit

representation(SDR). If the representation set is {-1,0,1}, then it is the most

trivial type signed digit representation and known as signed binary represen-

tation.

In the binary method, we have noticed that running time of algorithm in-

creases proportional to number of ones in its representation. Hence, the aim is to

form a representation of an integer k whose weight(number of nonzero elements)

and length is as small as possible. There is a representation which was studied

before satisfies this aim:

Definition 3.4. A non-adjacent form(NAF) of a positive integer k is an expres-

sion k =
∑l−1

i=0 ki2
i where ki ∈ {−1, 0, 1}, kl−1 6= 0 and no two consecutive digits

are nonzero. According to definition, the length of the NAF is l.

For any k ≥ 1, NAF exists and has the following properties:

Theorem 3.5. Let k be a positive integer

i. k has a unique NAF denoted NAF(k) [Rei60].

ii. NAF(k) has the fewest nonzero digits of any signed binary representation

of k [Rei60].

iii. The expected value of number of the ones of NAF(k) over the length of

NAF(k) is 1/3 [MoOl90].

iv. The length of NAF(k) is at most one more than the length of the binary

representation of k [MoOl90].
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Algorithm 3.6, 3.7, 3.8 and 3.9 give the recoding1 of a given integer k into

NAF(k), then Algorithm 3.11, which takes NAF(k), computes the scalar multi-

plication kP using NAF representation of k, this is called NAF method. We will,

first, give the algorithms and then explain the steps of them.

Algorithm 3.6. [MoOl90]

Right-to-left NAF recoding

input: k = (kl−1, . . . , k0)2 ∈ Z+

output: NAF(k)

1. i = 0

2. while k > 0 do

2.1 if k is even then k′
i = 0

2.2 else {k′
i = 2− (k mod 4), k = k − k′

i}
2.3 k = k/2, i= i + 1

3. output (k′
l, k

′
l−1, . . . k′

0)

Algorithm 3.6 recodes NAF(k) by repeatedly dividing k by 2 and assigning k′
i

to be 0 if k is even or 1 if (k − 1)/2 is even or −1 if (k + 1)/2 is even.

Algorithm 3.7. [Rei60]

Right-to-left NAF recoding

input: k = (kl−1, kl−2, . . . , k0)2

output: NAF(k)

1. c0 = 0

2. for i = 0 to l do

2.1 ci+1 = b(ci + ki + ki+1)/2c
2.2 k′

i = ci + ki − 2ci+1

3. output (k′
l, . . . , k

′
0)

Algorithm 3.7 uses the identity 3k − k = 2k and performs the subtraction

bit by bit with exception 0 − 1 = 1. Let k = (kl−1, . . . , k0)2 be the input scalar,

(k′
l, . . . , k

′
0) be the output sequence, ci be carry sequence at the ith iteration and

1Recoding is an operation of transferring a representation to another one
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3k be (sl, . . . , s0, r0). Then,

si = ki + ki+1 + ci mod 2

= ki + ki+1 + ci − 2 b(ki + ki+1 + ci)/2c

= ki + ki+1 + ci − 2ci+1

So, k′
i = si − ki+1 = ci + ki − 2ci+1.

In order to show the output of Algorithm 3.7 is in non-adjacent form, it is

enough to show k′
ik

′
i+1 = 0 ∀ i ≤ l−1 Suppose k′

i 6= 0. We know k′
i = ci+ki−2ci+1.

So, ci + ki must be 1, otherwise k′
i is not zero. Then by using this fact, ci+1 =

b(1 + ki+1)/2c = ki+1. Hence, k′
i+1 = 2ki+1 − 2ci+2 mod 2 = 0. Therefore,

k′
ik

′
i+1 = 0, as desired.

Note that Algorithm 3.6 and 3.7 recodes k from right to left. However, as we

have seen in binary method, left-to-right scalar multiplication is better than right

to left one in terms of memory consumption. In addition, we have to wait until

the end of Algorithm 3.6 or 3.7 in order to run scalar multiplication. Now we will

discuss so called on the fly recoding method. NAF(k) recoding can be obtained

left-to-right(starting from kl−1) by using Algorithm 3.8 or 3.9, and simultaneously,

we can compute kP by Algorithm 3.11.

Algorithm 3.8. [JoYe00]

Left-to-Right NAF recoding

input: (kl−1, . . . , k0)2

output: NAF(k)

1. j = m, b = 0, kl = 0

2. for i form l-1 down to 0 do

2.1 if (ki+1 = ki) then

2.1.1 k′
j = ki − b

2.1.2 while (j > i + 1) do

2.1.2.1 j = j − 1, k′
j = 1− ki − b, b = 1− b

2.1.3 b = ki, j = j − 1

3. k′
j = −b
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4. while (j > 0) do

4.1 j = j − 1, k′
j = 1− b, b = 1− b

5. output(k′
l, . . . , k

′
0)

Algorithm 3.8 uses the trick of r+2r by LtoR and then similar to previous

algorithm subtracts r from 3r bit by bit with the exception 0− 1 = 1.

Algorithm 3.9. [JoYe00]

Left-to-Right minimum weight signed digit recoding

input: (kl−1, . . . , k0)2

output: (k′
l, . . . , k

′
0)SDR

1. bl = 0, kl = 0, k−1 = 0, k−2 = 0

2. for i from l down to 0 do

2.1. bi−1 = b(bi + ki−1 + ki−2)/2c
2.2. k′

i = −2bi + ki + bi−1

3. output(k′
l, . . . , k

′
0)SDR

Algorithm 3.9 has also minimum weight property; but, it is not in the non-

adjacent form. In addition, a table look-up version of Algorithm 3.9 can be used

to recode of a positive integer k = (kl−1, . . . , k0). The details of the algorithm

and the table can be obtained from [JoYe00].

Table 3.3: Look-up Table of Algorithm 3.9

bi ki ki−1 ki−2 bi−1 k′
i

0 0 0 x 0 0
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 x 0 1
1 0 1 x 1 1
1 1 0 0 0 1
1 1 0 1 1 0
1 1 1 x 1 0
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Here is an example to illustrate the Algorithms 3.6, 3.7, 3.8 and 3.9.

Example 3.10. In order to trace it easily, a small number 26 is chosen.

26 = (101010)NAF by Algorithms 3.6, 3.7 and 3.8

26 = (100110)SDR by Algorithm 3.9.

Algorithm 3.11. Left-to-right NAF multiplication

input: NAF(k) = (kl−1, kl−2, . . . , k0) and P ∈ E(Fq)

output: kP ∈ E(Fq)

1. Q = ∞
2. For i from l − 1 down to 0 do

2.1. Q = 2Q

2.2. If ki = 1 then Q = Q + P

2.3. If ki = −1 then Q = Q− P

3. Output(Q)

Note that, the line 2.1 of Algorithm 3.11 performs exactly l times and by The-

orem 3.5 (iii) and (iv). It is expected that the lines 2.2 and 2.3 together performs

approximately l/3 times. Therefore, expected running time of Algorithm 3.11 is

l/3A + lD.

3.1.3 Window Method

If the digits of representation of k are allowed to be the elements of a larger set

instead of only {−1, 0, 1}, then running time of above algorithms are decreased. In

this case, not only P is added or subtracted, but also some small scalar multiple of

P is added or subtracted. So, those values have to be calculated at the beginning

of the scalar multiplication algorithm and saved to the memory. The window

method may be interpreted as processing some consecutive digits of the scalar

at a time. There are unsigned and signed versions of window method. Unsigned

width-w window representation of a positive integer k is k =
∑l−1

i=0 ki2
i where

ki is either zero or odd integer smaller than 2w and kl−1 6= 0. Similarly, signed
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width-w window representation of a positive integer k is k =
∑l−1

i=0 ki2
i where |ki|

is either zero or odd integer smaller than 2w−1, kl−1 > 0, and particularly width-w

NAF representation of a positive integer k is k =
∑l−1

i=0 ki2
i where |ki| is either

zero or odd integer smaller than 2w−1, kl−1 > 0, and additionally at most one of

any w consecutive digits is nonzero. Since width-w NAF decreases nonzero terms

fairly, we will only deal with properties and running time of it.

Theorem 3.12. [MuSt04a]

Let k be positive integer

i. k has unique width-w NAF. It is denoted by NAFw(k).

ii. The length of NAFw(k) is at most one more than the length of binary

representation of k.

iii. The expected value of number of nonzero digits of NAFw(k) over length of

NAFw(k) is 1/(w + 1).

Note that NAF (k) = NAF2(k).

NAFw(k) can be computed easily similar to NAF (k). In order to ensure that

w consecutive digits contains at most one nonzero digit, reduction modulo 2w has

to be done by choosing least residue as represented in the line 2.2 of Algorithm

3.13.

Algorithm 3.13. [Sol00]

Computing the NAFw of a positive integer

input: window width w, positive integer k

output: NAFw(k)

1. i = 0

2. while k > 0 do

2.1. if k is even ki = 0

2.2. else ki = k mods 2w, k = k − ki

2.3. k = k/2, i = i + 1

3. output (kl−1, . . . , k1, k0)
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The difference of NAF3(26) and NAF2(26) is clear in the following example.

Example 3.14. NAF3(26) = 100030 is the output of Algorithm 3.13 and

NAF2(26) = (101010) is the output of Algorithm 3.6.

As in the binary method and NAF method, if one can do the recoding of

NAFw(k) left-to-right, scalar multiplication operation using NAFw(k) can be

performed on-the-fly. That is, scalar multiplication and recoding operations can

be performed simultaneously.

Avanzi[Ava04], Muir et al.[MuSt04b] and Okeya et al.[OSST04] independently

obtained similar results of left-to-right recoding of an integer k having the least

Hamming weight. We will give Avanzi’s method, and also explain others a little.

[MuSt04b]’s left-to-right algorithm is optimal, is different from Avanzi’s one and

can output up to two different recodings of the same integer, one of which is

equal to that of Avanzi’s algorithm, whereas the other one differs on some of the

least significant digits. Okeya et al. also have a left-to-right algorithm, do not

prove equivalence to the w-NAF but only give asymptotic density estimates using

Markov chains.

Algorithm 3.15. [Ava04]

Computing width-w left-to-right representation of an integer(LtoRw)

input: k = (kl−1, . . . , k0)2, width w ∈ Z+

1. for j from 0 up to l + w − 1 do k′
j = 0

2. kl = k−1 = 0 and i = l

3. while (i ≥ 0) do

3.1 if (ki = ki−1) then i = i− 1

3.2 else

3.2.1 w′ = min{w, i + 1}
3.2.2 v = −ki2

w′−1 +
∑w′−2

j=0 ki−(w′−1)+j2
j + ki−w′

3.2.3 k′
i−(w′−1)+s = v/2s, where 2s||v

3.2.4 i = i− w′

4. output (k′
l, . . . , k0)
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Avanzi states that Algorithm 3.15 outputs an expression which evaluates the

integer represented by its input, and that Hamming weight of NAFw(k) is equiv-

alent to Hamming weight of LtoRw(k) for all k and w. In particular, the LtoRw

is a recoding of minimal weight among all the width w SDR’s, besides the NAFw

Example 3.16. [Ava04] The NAF4 and the LtoR4 of 1971 coincide and are equal

to (100000050003). On the other hand, the NAF4 of 2004 is (100001000500)

whereas its LtoR4 is (100000005100). Here, the two recodings differ but have the

same length. Let us consider now 2359, the NAF4 is (1000700030007) but the

LtoR4 is (5003001001), which is shorter. Of course, in all examples shown, the

NAFw and the LtoRw have the same Hamming weight. The recodings of 2004

and 2359 are examples of the fact that the LtoRw does not necessarily satisfy the

generalized non-adjacency property.

Computation of scalar multiplication by NAFw(k) or by LtoRw(k) is a general

version of usual NAF (k) scalar multiplication. However, there exists a precom-

putation stage.

Algorithm 3.17. [Sol00]

Left-to-right NAFw(k) multiplication

input: NAFw(k), P ∈ E(Fq)

output: kP

0. compute 2P

1. for i=3 up to 2w−1 − 1 do

1.1 if i is odd then compute Pi = Pi−1 + 2P

2. Q = ∞
3. for i = l-1 down to 0 do

3.1 Q = 2Q

3.2 if ki 6= 0 then

3.2.1 if ki > 0 then Q = Q + Pki

3.2.2 else Q = Q− P−ki

4. output(Q)
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Running time of line 0 and line 1 of Algorithm 3.17 is 1D and (2w−2 − 1)A

respectively; precomputation cost, therefore, is 1D + (2w−2− 1)A. Next, running

time of line 3.1 is lD and expected total running time of line 3.2.1 and line 3.2.2

is (l/(w + 1))A. To sum up, the expected running time of Algorithm 3.17 is

(l + 1)D + (2w−2 +
l

w + 1
− 1)A.

3.1.4 Sliding Window Method

This method operates left-to-right over the digits of k with a window width at

most w, at which the value in the window is odd. In contrast to window method,

it has no exact window width; but similar to window method, it ignores zero

digits. This method can be applied to binary or NAF representation of k. It may

be applied to NAFw(k) with window width at most w′, but, the same algorithm

of window NAF is obtained unless w′ > w.

Algorithm of sliding window method applied to NAF2 is given in the Algo-

rithm 3.18. So, it has to be computed before, and seeded to the algorithm. The

first stage is precomputation of Pi for some i. Observe that a block of digits in

an arbitrary window can have a value at most either 101010 . . . 10101(w-digits)

or 101010 . . . 101001(w-digits) for w is odd or even respectively. Therefore, the

value of the most valuable block is either (2w+1 − 1)/3 or (2w+1 − 5)/3 which

implies that the upper bound for the precomputation stage is

2
2w − (−1)w

3
− 1.

Algorithm 3.18. [BSS99]

NAF Sliding window method for scalar multiplication

input: window width w, NAF(k), P ∈ E(Fq)

output: kP

0. P1 = P

1. compute 2P

2. for i from 3 to 2(2w − (−1)w)/3 − 1
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2.1 Pi = Pi−2 + 2P

3. Q = ∞, i = length(NAF (k))− 1

4. while i ≥ 0 do

4.1 if ki = 0 then t = 1, u = 0

4.2 else

4.2.1 t = 1; j = w

4.2.2 while (t = 1 and j > 1) do

4.2.2.1 if (ki, . . . , ki−j+1) is odd t = j; u = (ki, . . . , ki−j+1)

4.3 Q = 2tQ

4.4 if u > 0 then Q = Q + Pu; else if u < 0 then Q = Q− P−u

4.5 i = i− t

5. output(Q)

The average length of a run of zeros between windows in the NAF sliding

window method is stated in [MoOl90] as

ν(w) =
4

3
− (−1)w

3 · 2w−2
.

precomputation stage consists of the lines 0, 1 and 2. Line 1 costs 1D and line 2

costs ((2w − (−1)w)/3 − 1)A. Thus, totally

(1D +
2w − (−1)w

3
− 1)A

is done at the precomputation stage. Next, lines 4.1, 4.2 are worthless. The line

4.3 is executed l times, hence costs lD. In order to find the running time of the

line 4.4 we need to find the average number of nonzero terms and number of zeros

between windows. The average length of a run of zeros between windows in the

NAF sliding window method is

ν(w) =
4

3
− (−1)w

3 · 2w−2
.
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Then, expected cost of line 4.4 is

l

w + ν(w)
.

Therefore, expected running time of Algorithm 3.18 is

(1 + l)D + (
2w − (−1)w

3
+

l

w + ν(w)
− 1)A.

3.1.5 Montgomery’s Ladder

Montgomery in [Mon87] presented a ladder method to perform fast exponen-

tiation(scalar multiplication). After that, [LoDa99] presented the elliptic curve

version of Montgomery’s ladder. However, their ideas were applicable only for

non-supersingular curves over binary fields. [OkSa01] extended Montgomery’s

ladder method for elliptic curves over non-binary fields. Hence, it became a

generic method to compute scalar multiplication on elliptic curves.

The general idea of this method is starting from left-most bit of the scalar

and a pair (P, 2P ) corresponding to left-most bit. Then, iterate to next left-most

bit with a pair (2(P ), P + 2P ) (i.e. doubling first component of previous pair

and addition of first and second component of previous pair) or (P + 2P, 2(2P ))

(i.e. addition of first and second component of previous pair and doubling second

component of previous pair) if the next left-most bit of the scalar is 0 or 1,

respectively. Continue this procedure until reaching to the last bit and naturally

to the pair (kP, (k + 1)P ). This idea is scalar multiplication equivalence of

exponentiation. In the above iteration, it is enough to compute x-coordinate of

both components for each pairs. Each iteration requires only an addition and a

doubling.

Also, there is a shortcut for addition operation for elliptic curves over binary

fields: For arbitrarily given Qi = (xi, yi) i = 1, 2, 3, 4 satisfying Q3 = Q1 + Q2
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and Q4 = Q1 −Q2. Then,

x3 = x4 +
x2

x1 + x2

+ (
x2

x1 + x2

)2.

In our case, Q1 = (l + 1)P , Q2 = lP and Q4 = P are given and we are asked to

compute (2l+1)P = Q3. Therefore, this shortcut can be applied at each iteration

stage. Moreover, the y-coordinate of kP can be recovered, if needed, as:

y1 = x−1(x1 + x)[(x1 + x)(x2 + x) + x2 + y] + y,

where kP = (x1, y1), (k + 1)P = (x2, y2) and P = (x, y).

Algorithm 3.19. [LoDa99]

Montgomery scalar multiplication

input: k = (kl−1, . . . , k1, k0), P ∈ E(Fq)

output: kP

1. X = P and Y = 2P

2. for i from l − 2 down to 0 do

2.1 if ki = 0 then X = 2X and Y = X + Y

2.2 else X = X + Y and Y = 2Y

3. output(X)

Algorithm 3.19 performs a doubling and an addition for each i whatever ki

is. Thus, expected running-time of the algorithm is l(D + A). However, it is

not needed to compute the y-coordinate of corresponding points until the last

iteration. Hence, it is not possible to compare the running-time of this algorithm

with the running-time of the others.

Example 3.20. If 26 = (11010)2 is given, 26P is calculated by Montgomery’s

ladder by

1 1 0 1 0

P P + 2P = 3P 2(3P ) = 6P 6P + 7P = 13P 2(13P ) = 26P

2P 2(2P ) = 4P 3P + 4P = 7P 2(7P ) = 14P 13P + 14P = 27P
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3.2 Fixed Point

Fixed point means that the point for which a scalar multiple is to be computed

is known previously, and so the algorithm of scalar multiplication can be designed

according to this privilege. For instance, if the point P is fixed and some storage

is available, then some of the multiples of the P can be precomputed and saved to

memory, and then used during the computation of scalar multiplication directly

by memory call.

3.2.1 Fixed-base Windowing Method

If P is fixed, then the simplest idea that can be applied to the scalar multi-

plication is precalculation of all doublings of P up to 2tP i.e. 2P , 4P , 8P , . . . ,

2t−1P where t is equal to approximately extension degree m of our finite field.

Then, for any given scalar k, one can compute kP by summing up only 2iP for

which ki is nonzero. Hence, all doublings are removed, and expected running

time of binary algorithms decreases to (l/2)A.

A refinement to the above idea is first described in [Yao76] and more refine-

ment is given in section 4.6.3 of [Knu81]. Finally, [BGMW92] proposed a patented

version of previous ideas. The basic idea behind these refinements is the following

equality:

kP =
l−1∑
i=0

kiP =
L−1∑
j=1

(j
∑

i:Ki=j

2wiP ) where k =
d−1∑
i=0

Ki2
wi.

We now define the BGMW’s algorithm. Let

k = (kl−1, . . . , k1, k0)2 = (Kd−1|| . . . ||K0)

= (Kd−1, Kd−2, . . . , K0)2w

=
d−1∑
i=0

Ki2
wi
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Then

kP =
d−1∑
i=0

Ki2
wiP

=
d−1∑
i=0

Ki(2
wiP )

=
2w−1∑
j=0

(j
∑

i:Ki=j

2wiP )

=
2w−1∑
j=1

jQj

= Q2w−1 + (Q2w−1 + Q2w−2) + . . . + (Q2w−1 + Q2w−2 + . . . + Q1).

Then, the corresponding algorithm is coded as, first, calculate Qj by cumulative

addition of Kis and add Qjs together cumulatively to reach kP .

Algorithm 3.21. [BGMW92]

Binary BGMW’s algorithm

input: w, d = dl/we , k = (Kd−1, Kd−2, . . . , K0)2w , P ∈ E(Fq)

precomputed values: Pi = 2wiP, 0 ≤ i ≤ d− 1

output: kP

1.A = ∞, B = ∞
2. for j from 2w − 1 down to 1 do

2.1 for i from 0 up to d− 1 do

2.1.1 if j = Ki do B = B + Pi

2.2 A = A + B

3. output(A)

The precomputation stage is not included into the running-time. Expected

running-time of line 2.2.1 of Algorithm 3.21 is (d/(2w − 1))(2w − 1) since the

equivalence j = Ki occurs expectedly d/(2w − 1) times and outer loop performs

this expectancy 2w−1 times. Consequently, the addition at the line 2.2.1 performs

d times. In fact, it costs (d − 1)A if we discard the trivial first addition which

is identity plus a point. Next, the line 2.2 performs 2w − 1 times, but costs
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(2w − 2)A by discarding first trivial addition. Therefore, the expected running

time of Algorithm 3.21 is (2w + d− 3)A where d = dl/we

Algorithm 3.22 uses the same argument presented above with NAF repre-

sentation of k instead of binary representation. NAF (k) = (Kd−1, . . . , K1, K0)

where each Ki is in non-adjacent form. Thus, Ki can be at most

(1010 . . . 1010)NAF2 =
2w+1 − 2

3
or (1010 . . . 101)NAF2 =

2w+1 − 1

3

if w is even or odd, respectively.

Algorithm 3.22. [Gor98]

NAF BGMW’s algorithm

input: w,NAF (k), P ∈ E(Fq)

precomputed values: Pi = 2(wi)P, 0 ≤ i ≤ d(l + 1)/we
output: kP

1. d = dl/we
2. if w is even S = (2w+1 − 2)/3 and else S = (2w+1 − 1)/3

3. A = ∞, B = ∞
4. for j from S to down to 1 do

4.1 for i from 0 up to d-1 do

4.1.1 if j = Ki do B = B + Pi

4.1.2 else if −j = Ki do B = B − Pi

4.1.3 A = A + B

5. output(A)

As the similar expectations of Algorithm 3.21 are made, the expected running

time of Algorithm 3.22 is (2w+1/3 + d− 2)A where d = dl/we.

3.2.2 Fixed-base Comb Method

This method is also known as Lim-Lee Method. Let d = dl/we. If neces-

sary, pad on the left of the representation with zeros and then, split k into w
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concatenated parts: k = Kw−1, . . . , K0.

kP =
l−1∑
i=0

ki2
iP

= k0P + k12P + k24P + ... + kt−12
l−1P

= k0P + ... + kd−12
d−1P + k(w−1)d2

(w−1)dP + ... + kwd−12
wd−1P

= k0P + ... + (kd−1P )2d−1 + k(w−1)d2
(w−1)dP + ... + (kwd−12

(w−1)dP )2d−1.

The general idea of the method is operating on k column by column. Firstly,

kd−1P + . . . + kid2
id + . . . + kwd−12

wd−1 is calculated and it is doubled. Secondly,

kd−2P + . . . + kid−12
id−1 + . . . + kwd−22

wd−2 and added to first calculated and

final result is doubled. And, it goes like this. Finally, k0P + . . . + kid2
i + . . . +

k(w−1)d2
(w−1)d is calculated and added to previous sum. The obtained result is kP .

In order to accelerate the computation, one can compute [aw−1, . . . , a2, a1, a0]P =

aw−12
(w−1)d+. . .+a12

dP+a0P for all possible values of string (aw−1, . . . , a2, a1, a0).

The exact algorithm is given below.

Algorithm 3.23. [LL94]

Fixed-base comb method point multiplication

input: w, d = dt/we , k = (kt−1, . . . , k0)2 = Kw−1|| . . . ||K0 where Ki is d-bit-

integer and Ki
s is sth bit of Ki, P ∈ E(Fq)

Precomputed values: [aw−1, . . . , a2, a1, a0]P for all possible strings (aw−1, . . . , a0)

output: kP

1. Q = ∞
2. for i from d− 1 down to 0 do

2.1 Q = 2Q

2.2 Q = Q + [Kw−1
i , Kw−2

i . . . , K2
i , K

1
i ]P

3. output(Q)

Probability of [Kw−1
i , Kw−2

i . . . , K2
i , K

1
i ] is a zero array is 1/2w. Hence, it is a

non-zero array with a probability 1 − 1/2w and non-infinity addition in the line

2.2 occurs expectedly (
2w − 1

2w
d−1) times (−1 comes from first infinity addition).

Also, in the line 2.1 a non-infinity doubling is executed (d − 1) times(−1 comes

38



from first infinity doubling). Therefore, the expected running time of Algorithm

3.23 is

(
2w − 1

2w
d− 1)A + (d− 1)D.

In the case of additional memory is available for the algorithm, two columns

can be executed simultaneously. The idea is to divide the columns of k in to two

parts. For both sides apply the previous procedure simultaneously. This idea is

given in Algorithm 3.24

Algorithm 3.24. [LL94]

Fixed-base comb method point multiplication with two tables

input: w, d = dl/we , e = dd/2e , k = (kl−1, . . . , k0)2 = Kw−1|| . . . ||K0 where Ki is

d-bit-integer and Ki
s is sth bit of Ki, P ∈ E(Fq)

precomputed values: [aw−1, . . . , a2, a1, a0]P and 2e[aw−1, . . . , a2, a1, a0]P for all

possible string (aw−1, . . . , a2, a1, a0)

output: kP

1. Q = ∞
2. for i from e-1 down to 0 do

2.1 Q = 2Q

2.2 Q = Q + [Kw−1
i , Kw−2

i . . . , K2
i , K

1
i ]P + 2e[aw−1, . . . , a2, a1, a0]P

3. output(Q)

Similar to the Algorithm 3.23, the expected time of Algorithm 3.24 can be

calculated, and it is (
2w − 1

2w
2e− 1)A + (e− 1)D. On the other hand, Algorithm

3.24 requires twice as much storage for precomputation as Algorithm 3.23. If

memory is limited, then two algorithms can be compared for a given fixed amount

of precomputation.

3.3 Curve Specific Methods

In this section, we will study scalar multiplication methods on some specific

curves. These methods developed from nice properties of these curves. Specific
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scalar multiplication methods are included into the many standards, e.g. NIST,

IEEE, ISO, ANSI. The methods, studied in the previous two sections, are also

applicable to the curves in this section. Moreover, generic methods are used with

curve specific methods in order to decrease the computation time of the scalar

multiplication.

3.3.1 Koblitz Curves

The non-supersingular curves defined over F2 are called Koblitz curves[Kob92]

also known as anomalous binary curves. Any non-supersingular curve over F2 is

isomorphic to one of the following two curves:

E0 : y2 + xy = x3 + 1

E1 : y2 + xy = x3 + x2 + 1.

Hence, there exist only two non-isomorphic Koblitz Curves: E0, E1. By sim-

ply counting, #E0(F2) = 4 and #E1(F2) = 2. Then, #E0(F2m) = 4n and

#E1(F2m) = 2n′, for some n and n′ ∈ Z. In cryptography, n and n′ are desired

to be prime. n and n′ can only be prime if m is prime; otherwise, there exist a

subgroup Ea(F2d) of Ea(F2m) for any d|m.

3.3.2 Z[τ ] and τ-Representation

Let a ∈ {0, 1}. Then the Frobenius map on Ea(F2m) is

τ : Ea(F2m) → Ea(F2m)

τ(∞) = ∞

τ(x, y) = (x2, y2).

Squaring in a binary field, when polynomial base is used, requires only inserting

zeros between the components and then reduction. It is very easy compared to
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other operations. Furthermore, when normal base is used instead of polynomial

base, it is just a circular shift. Therefore, computing Frobenius map for any

binary field element is very fast.

From previous chapter, it is known that Frobenius map is an endomorphism

over Ea(F2m). Its characteristic polynomial is x2 − tx + 2 where t is trace of

Frobenius and equals to 2+1−#Ea(F2). Explicitly, the characteristic polynomial

of Frobenius map over E0(F2m) is x2+x+2, and similarly, over E1(F2m) is x2−x+2.

Let λ = (−1)1−a. Then, the characteristic polynomial of Frobenius over Ea is

x2 − λx + 2. Hence,

(τ 2 − λτ + 2)P = 0 for all P ∈ Ea(F2m).

It can be observed that τ = (λ +
√
−7)/2 is one of the roots of the characteristic

polynomial of Frobenius map over Ea(F2m).

We can naturally lift the action of Frobenius map to the action of the com-

mutative ring

Z[x]
/
(x2 − λx + 2) ∼= Z[τ ] by identifying x with τ : Ea(F2m) → Ea(F2m)

This shows that the natural action of Z[τ ] over Ea(F2m) induces the action of the

ring Z[τ ] on Ea(F2m):

(slτ
l + . . . + s1τ + s0)P = slτ

l(P ) + . . . s1τ(P ) + s0P.

In general, for an efficient scalar multiplication it is preferred to constitute the

representation of the scalar as short as possible, and small-sparse digits are surely

desired. In the next pages, the length and digits of the representation of a scalar

are investigated.

Any element α ∈ Z[τ ] can be written uniquely in the form α0 + α1τ for some

integers α0 and α1 since τ 2 = λτ − 2. In order to investigate the digits, we need

to know the norm of an element in Z[τ ].
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Definition 3.25. The norm of α = α0 + α1τ ∈ Z[τ ] is the square of the absolute

value of the complex number α. Namely,

N(α0 + α1τ) = (α0 + α1τ)(α0 + α1τ)

= α2
0 + λα0α1 + 2α2

1.

Theorem 3.26. [Sol00]

Properties of the norm function

(i) N(α) ∈ Z+ for all non-zero α ∈ Z[τ ].

(ii) N(α) = 0 if and only if α = 0. Also, N(α) = 1 if and only if α = ±1.

(iii) N(τ) = 2 and N(τ − 1) = 22−a.

(iv) N(τm − 1) = #Ea(F2m) and N((τm − 1)/(τ − 1)) = #Ea(F2m)/22−a.

(v) N(αβ) = N(α)N(β) for all α, β ∈ Z[τ ].

(vi) Z[τ ] is a Euclidean domain with respect to the norm function. That is for

any α, β ∈ Z[τ ] with β 6= 0, there exist κ, ρ ∈ Z[τ ](not necessarily unique) such

that α = κβ + ρ and N(ρ) < N(β).

Proof:

(i)Any α ∈ Z[τ ] ⊂ C can be written as α = a0 + ia1 for some a0 and a1 ∈ R.

Then,

N(α) = αα

= (a0 + ia1)(a0 − ia1)

= a2
0 + a2

1 ≥ 0.

(ii) N(α) = 0 iff a2
0 + a2

1 = 0 iff a0 = a1 = 0 iff α = 0.

Next, N(α) = 1 iff α = ±1:

For λ = 1, α2
0+α0α1+2α2

1 = 1 iff α2
0+α0α1+

1
4
α2

1+
7
4
α2

1 = 1 iff (α0+
1
2
α1)

2+ 7
4
α2

1 = 1

iff α1 = 0 and α0 = ±1.

Similarly, for λ = −1, α2
0 − α0α1 + 2α2

1 = 1 iff α1 = 0 and α0 = ±1.
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(iii) ττ = 1/4 + 7/4 = 2 gives N(τ) = 2. Next,

N(τ − 1) = (τ − 1)(τ − 1)

= (τ − 1)(τ − 1)

= ττ − (τ + τ) + 1

= N(τ)− λ + 1

= 2− λ + 1

= 3− λ

= 22−a

(iv)

N(τm − 1) = (τm − 1)(τm − 1)

= N(τ)m − (τm + τ) + 1

= 2m + 1− (τm + τ)

= #Ea(F2m)

Next,

N((τm − 1)/(τ − 1)) = N(τm − 1)/N(τ − 1)

= (#Ea(F2m))/22−a

(v)

N(αβ) = (αβ)(αβ)

= ααββ

= N(α)N(β)

(vi) see [Sol00].

Theorem 3.26 enables us to represent any positive integer k in terms of τ .

Similar to binary representation of k =
∑l′−1

i=0 ki2 where ki ∈ {0, 1}, τ -adic rep-
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resentation of k can be obtained by repeatedly dividing k by τ and the digits ui

are remainders of the division steps. Since N(τ) = 2, remainders are −1, 0 or 1.

Then any positive integer k can be represented in τ -adic representation uniquely

as k =
∑l−1

i=0 uiτ
i where each digit ui ∈ 0,±1.

Any generic method studied in the previous sections can be applied to τ -adic

representation of k. Firstly, in order to decrease the number of point additions,

namely, decrease the number of non-zero digits, NAF method can be applied to

this representation. It becomes so called τ -adic NAF or TNAF. τ -adic NAF is

obtained in a similar way of 2-adic NAF.

Definition 3.27. TNAF of an element κ ∈ Z[τ ] is κ =
∑l−1

i=0 uiτ
i where each

ui ∈ {0,±1}, ul−1 6= 0, and no two consecutive digits are nonzero. The length of

the TNAF is l.

Theorem 3.28. [Sol00]

Properties of TNAF

Let κ ∈ Z[τ ], κ 6= 0

1. κ has a unique TNAF denoted TNAF (κ).

2. The average density of nonzero digits among all TNAF representations of

length l is approximately 1/3.

3. If the length l(κ) of TNAF (κ) is greater than 30, then

log2(N(κ))− 0.55 < l(κ) < log2(N(κ)) + 3.52.

Computation of TNAF (κ) is similar to computation of NAF of an integer.

That is , the ith right-most digit of TNAF (κ) is r which is the remainder of

repeatedly ith division of κ by τ , but at that step if r is not zero than it is chosen

the element for which (κ − r)/τ is divisible by τ , ensuring that the next TNAF

digit is 0. As it is observed, in order to generate TNAF (κ), division of an element

of Z[τ ] by τ or τ 2 is to be computed.
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Theorem 3.29. [Sol00]

Division by τ and τ 2 in Z[τ ]

Let α = r0 + r1τ ∈ Z[τ ]

i. α is divisible by τ if and only if r0 is even, in this case

α/τ = (r1 + λr0/2)− (r0/2)τ.

ii. α is divisible by τ 2 if and only if r0 ≡ 2r1 (mod 4).

Proof:

i. α = r0 + r1τ is divisible by τ iff r0 is divisible by τ (since r1τ is divisible by

τ) iff N(r0) is divisible by N(τ) iff r2
0(= N(r0)) is divisible by 2(= N(τ))

iff r0 is even. Next, if r0 is even,

α/τ = (r0 + r1τ)/τ

= r0/τ + r1

= r0τ/ττ + r1

= r0(−τ + λ)/2 + r1

= (r1 + λr0/2)− (r0/2)τ as desired.

ii. α = r0 +r1τ is divisible by τ 2 iff α/τ is divisible by τ iff 2 divides r1 +λr0/2

(by previous item) iff 2 divides (2r1 + λr0)/2 iff 4 divides 2r1 + λr0 iff

2r1 ≡ λr0 (mod 4) iff 2r1 ≡ r0(mod 4) (since λ is either 1 or −1) as desired.

The following algorithm computes the TNAF (κ) for any κ ∈ Z[τ ].

Algorithm 3.30. [Sol00]

Computing TNAF (κ)

input: κ = r0 + r1τ ∈ Z[τ ]

output: TNAF (κ).

1. i = 0
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2. while r0 6= 0 or r1 6= 0 do

2.1 if r0 is odd then

2.1.1 ui = 2− (r0 − 2r1 mod 4)

2.1.2 r0 = r0 − ui

2.2 else ui = 0

2.3 t = r0

2.4 r0 = r1 + λr0/2

2.5 r1 = −t/2

2.6 i = i + 1

3. output (ul−1, ul−2, . . . , u1, u0)

By Theorem 3.28 (iii), the length of TNAF (k) for any integer k is approxi-

mately log2N(k) = log2(k
2) = 2log2k, which is twice the length of NAF (k). This

is an undesirable situation. The next observation reduces the length of TNAF (k).

If the degree of the extension of binary field is m, then by the properties of

Frobenius τ : Ea(F2m) → Ea(F2m), we have:

(τm − 1)(P ) = τm(P )− P = P − P = ∞ ∀P ∈ Ea(F2m).

Then, if k ≡ γ (mod τm − 1) then kP = γP for any integer k, and

length(γ) ≈ length(τm − 1) ≈ m ≈ length(NAF (k)).

That is, length of TNAF (k) is approximately reduced to the length of NAF (k)

[MeSt93]. Furthermore, observe that

(τm − 1)(P ) = (
τm − 1

τ − 1
(τ − 1))(P )

and it was observed that left hand side is ∞ for all P ∈ Ea(F2m). So is right

hand side. Then,

(
τm − 1

τ − 1
)(P ) = ∞ if (τ − 1)(P ) 6= ∞.
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Therefore, if k ≡ δ (mod (τm − 1)/(τ − 1)), then kP = δP for all P ∈ Ea(F2m)

except {P | τ(P ) = P}. In deed, for any P ∈ Ea(F2m), τ(P ) = P iff P ∈ Ea(F2).

Thus, length(δ) ≈ length((τm − 1)/(τ − 1)) ≈ n by Theorem 3.26.

In order to compute the modular reduction δ ≡ k (mod ρ), the division

algorithm on Z[τ ] is needed to be defined, and the reduction should be done

to the smallest norm. Algorithm 3.31 computes the division algorithm in Z[τ ].

In step 5, it needs the rounding of an element in Z[τ ], which is performed by

Algorithm 3.32.

Algorithm 3.31. [HMV04]

Division Algorithm in Z[τ ]

input: α = a0 + a1τ, β = b0 + b1τ ∈ Z[τ ] with β 6= 0.

output: κ = q0 + q1τ , δ = r0 + r1τ ∈ Z[τ ] with α = κβ + ρ and N(δ) ≤ 4
7
N(β).

1. g0 = a0b0 + λaa0b1 + a1b1

2. g1 = a1b0 − a0b1

3. N = b2
0 + λb0b1 + 2b2

1

4. µ0 = g0/N, µ1 = g1/N

5. Use Algorithm 3.32 to compute (q0, q1) = Round(µ0, µ1)

6. r0 = a0 − b1q0 + 2b1q1

7. r1 = a1 − b1q0 − b0q1 − λb1q1

8. κ = q0 + q1τ

9. δ = r0 + r1τ

10. output (κ, δ)

Algorithm 3.32. [HMV04]

Rounding off in Z[τ ]

input: Rational numbers µ0 and µ1

output: integers q0, q1 such that q0 + q1τ is close to complex number µ0 + µ1τ

1. for i = 0 and 1

1.1 fi =
⌊
µi + 1

2

⌋
, ηi = µi − fi, hi = 0

2. η = 2η0 + λη1

3. if η ≥ 1 then

3.1 if η0 − 3λη1 < −1 then h1 = µ
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3.2 else h0 = 1

4. else

4.1 if η0 + 4λη1 ≥ 2 then h1 = µ

5. if η < −1 then

5.1 if η0 − 3λη1 ≥ 1 then h1 = −µ

5.2 else h0 = −1

6. else

6.1 if η0 + 4λη1 < −2 then h1 = −µ

7. q0 = f0 + h0

8. q1 = f1 + h1

9. output (q0, q1)

In the fourth line of Algorithm 3.31, there exist two multi precision integer

divisions costing too much. Algorithm 3.33 computes modular reduction in Z[τ ]

without expensive multi precision integer divisions. k ≡ δ′ partmod ρ is the

operation of the algorithm. [Sol00] proved that length(δ) ≤ m + a and if C ≥ 2

then length(δ′) ≤ m + a + 3. In fact, δ′ = δ with a probability 1− 2−(C−5), hence

a sufficiently large C ensures that they are probable equivalent.

Algorithm 3.33. [Sol00]

Partial reduction modulo ρ = (τm − 1)/(τ − 1)

input: k ∈ [1, n− 1], C ≥ 2, s0 = d0 + λd1, s1 = −d1, where ρ = d0 + d1τ

output: δ′ = k partmod ρ

1. k′ =
⌊
k/(2a−C+(m−9)/2)

⌋
2. Vm = 2m + 1−#Ea(F2m)

3. for i = 0 and 1 do

3.1 g′ = sik
′

3.2 j′ = Vm bg′/2mc
3.3 ui =

⌊
(g′ + j′)/2(m+5)/2 + 1/2

⌋
/2C

4. Use Algorithm 3.32 to compute (q0, q1) = Round(µ0, µ1)

5. r0 = k − (s0 + λs1)q0 − 2s1q1

6. r1 = s1q0 − s0q1

7. output (r0 + r1τ)
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To sum up, in order to calculate kP one can calculate, equivalently, δP where

δ ≡ k (mod (τm − 1)/(τ − 1)) and length(δ) < log2(k) which is desirable. Next,

scalar multiplication is going to be performed by using TNAF.

3.3.3 Scalar Multiplication on Koblitz Curves

Since a specific coding of k, that is TNAF(k), is obtained , generic methods

are applicable in this case. Algorithm 3.34 performs a scalar multiplication by

using previously observed properties of the curve and TNAF.

Algorithm 3.34. [Sol00]

TNAF scalar multiplication on Koblitz curves

input: integer k ∈ [1, n− 1], P ∈ E(F2m) of order n

output: kP

1. compute δ′ = k partmod ρ by Algorithm 3.33

2. compute TNAF (δ′) =
∑l−1

i=0 uiτ
i by Algorithm 3.30

3. Q = ∞
4. for i from l − 1 down to 0

4.1 Q = τQ

4.2 if ui = 1 Q = Q + P

4.3 if ui = −1 Q = Q− P

5. output(Q)

Running-time of Algorithm 3.34 is
l

3
A since τQ is a very fast calculation and

the weight of TNAF (k) is 1/3.

3.3.4 Window TNAF Method

Window method can be applied to TNAF(k) to increase the speed of the

algorithm and to secure it against the simple power attack. Similar to width-w

NAF method, width-w TNAF method processes w digits of δ′ at a time. However,

obtaining width-w TNAF is different, and needs the following observation.
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Theorem 3.35. [Sol00] Let {Uk} be the integer sequence defined by U0 = 0,

U1 = 1, Uk+1 = λUk − 2Uk−1 for k ≥ 1. Then,

i. U2
k − λUk−1Uk + 2U2

k−1 = 2k−1 for k ≥ 1

ii. Let tk = 2Uk−1U
−1
k (mod 2k) for k ≥ 1. t2k + 2 ≡ λtk (mod 2k) for all k ≥ 1.

iii. The map φw : Z[τ ] → Z2w , τ → tw, is a surjective ring homomorphism

with kernel {α ∈ Z[τ ] : τw divides α}.

iv. {0,±1,±2,±3, . . . ,±(2w−1 − 1),−2w−1} is the set of equivalence classes of

Z[τ ] modulo τw.

Theorem 3.35 enables us to construct the definition of TNAFw:

Definition 3.36. Let w ≥ 2 be a positive integer, κ ∈ Z[τ ]. Define αi = i

mod τw for i ∈ {1, 3, 5, . . . , 2w−1 − 1}. TNAFw(κ) is defined as κ =
∑l−1

i=0 uiτ
i

where ui ∈ {0,±α1,±α3, . . . ,±α2w−1−1}, ul−1 6= 0, and at most one of any w

consecutive digits is nonzero. The length of the width-w TNAF is l.

The digits of TNAFw(δ) are remainders obtained by repeatedly dividing δ

by τ , and when δ is not divisible by τ , the remainder is chosen αu from the set

{±α1,±α3, . . . ,±α2w−1−1} where u = φw(δ) mods 2w. Hence, if a nonzero digit is

obtained, then (δ−αu)/τ will be divisible by τw−1, ensuring that the next w− 1

digits are 0.

Algorithm 3.37. [Sol00]

Computing a width-w TNAF of an element in Z[τ ]

input: w, tw, αu = βu + γuτ for u ∈ {1, 3, 5, . . . , 2w−1 − 1}, δ = r0 + r1τ ∈ Z[τ ]

output: TNAFw(δ)

1. i = 0

2. while r0 6= 0 or r1 6= 0 do

2.1 if r0 is odd

2.1.1 u = r0 + r1tw mods 2w

2.1.2 if u > 0 then s = 1
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2.1.3 else s = −1, u = −u

2.1.4 r0 = r0 − sβu, r1 = r1 − sγu

2.1.6 ui = sαu

2.2 else ui = 0

2.3 t = r0

2.4 r0 = r1 + λr0/2, r1 = −t/2

2.6 i = i + 1

3. output (ul−1, ul−2, . . . , u1, u0)

By using TNAFw(δ′), scalar multiplication can be done with a similar algo-

rithm of NAFw.

Algorithm 3.38. [Sol00]

window TNAF scalar multiplication method for Koblitz curves

input: window width w, integer k in [1, n− 1], P ∈ Ea(F2m) of order n

output: kP

1. use Algorithm 3.33 to compute δ′ = k partmod ρ

2. use Algorithm 3.37 to compute TNAFw(δ′) =
∑l−1

i=0 uiτ
i

3. compute Pu = αuP , u ∈ {1, 3, 5, . . . , 2w−1 − 1}
4. Q = ∞
5. for i = l − 1 down to 0

5.1 Q = τQ

5.2 if ui 6= 0

5.2.1 let u be such that αu = ui or α−u = −ui

5.2.2 if u > 0 then Q = Q + Pu

5.2.3 else Q = Q− P−u

6. output(Q)

Precomputation stage of Algorithm 3.38 costs (2w−2 − 1)A and while loop

costs approximately
m

w + 1
A. Thus, expected running-time of Algorithm 3.38 is

(2w−2 − 1 +
m

w + 1
)A.
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3.4 Endomorphism Based Scalar Multiplication

Scalar multiplication can be performed faster by using a special endomorphism

of the curves. In section 2.4, general treatment of the endomorhisms was studied.

In addition, examples of endomorphism of elliptic curves were given. Now, we

will build bridges on to the section 2.4.

Example 3.39. Let p ≡ 1(mod 3) be a prime, and E : y2 = x3 + b over Fp. Let

β be a 3rd root of unity in Fp. Define α : E(K) 7→ E(K)

α(x, y) = (βx, y), α(∞) = ∞.

is an endomorphism of E. The characteristic polynomial of α is f(x) = x2+x+1.

In general, let φ be an endomorphism of an elliptic curve E(Fq) and let #E(Fq)

is divisible by a prime r, but not by r2. Then by the properties of commutative

groups, there exist only one subgroup of order r of E(Fq). Having prime order

implies it is a cyclic subgroup. Let it be generated by P. Then, φ(P ) has order r

since φ is an endomorphism. Hence, φ(P ) ∈< P >, that is, φ(P ) = λP for some

λ ∈ [1, r − 1]. In fact, λ is a root modulo r of characteristic polynomial of φ. A

good example of this situation is used in the Wireless Transport Layer Security

standard:

Example 3.40. Let E : y2 = x3 + 3 defined over Fp where p = 2160 − 229233.

p ≡ 1 (mod 3) So, E satisfies the requirements of Example 3.39, φ(x, y) = (βx, y)

is an endomorphism of E/Fp.

Let β = 771473166210819779552257112796337671037538143582

whose order is 3. Furthermore,

#E(Fp) = 1461501637330902918203687013445034429194588307251

is a prime number. So, r = #E(Fp), and the solution

λ = 903860042511079968555273866340564498116022318806

to the equation x2 + x + 1 ≡ 0 (mod r) satisfies φ(P ) = λP for all P ∈ E(Fp)

since its cyclic subgroup is itself.
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We can apply above observations to scalar multiplication kP as follows: we

find the λ expansion of k. However, since λ is too large, it is desirable to represent

k as k = k1 + k2λ (mod r) where k1 and k2 have approximately half length of

k. Then, kP = k1P + λk2P = k1P + φ(k2P ). Computing φ(k2P ) is easy, it is

just one field multiplication. So, it reduces to computing k1P and k2P . After

finding k1 and k2, applying a interleaved right-to-left scalar multiplication method

to k1P and k2P reduces number of doubling operations approximately to half.

The gain is considerable if finding k1 and k2 for a given k and λ, which is called

decomposition of k, can be computed efficiently.

3.4.1 Decomposition of scalar

It is needed to find k1 and k2 satisfying k = f(k1, k2) = k1 + k2λ(mod r) and

number of bits of k1 and k2 are approximately half of the number of bits of k,

meaning k1 and k2 are small or
√

k2
1 + k2

2 is small. Thus, the aim is to find a

short vector u such that f(u) = k. Trivial solution is v = (k, 0), but this is not

short. The approach is the following:

(1) find two vectors v1 = (a1, b1) and v2 = (a2, b2) in Z× Z satisfying

(i) v1 and v2 are linearly independent over R.

(ii) f(v1) = f(v2) = 0.

(iii) v1 and v2 are short itself, that is
√

a2
i + b2

i is small since ai and bi have half

bits of k which can be at least r, then it is approximately
√

r.

(2) find a vector v in the integer lattice generated by v1 and v2 that is close

to (k, 0). Then, u = (k, 0)− v is a short vector with

f(u) = f((k, 0))− f(v) = k − 0 = k.

Note that subproblems (1) and (2) can be solved using lattice basis reduction

algorithms. However, we will give [GLV01]’s method, which is much more faster.
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First, extended Euclidean algorithm (EEA) applied to r and λ can be used to

find v1 and v2 satisfying (i), (ii) and (iii). EEA produces a sequence of equations

sir + tiλ = ri for i = 0, 1, 2..

where s0 = 1, t0 = 0, v0 = n, s1 = 0, t1 = 1, r1 = λ and ri ≥ 0 ∀i.

properties of EEA:

• ri > ri+1 ≥ 0 ∀i ≥ 0.

• |si| < |si+1 for i ≥ 1.

• |ti| < |ti+1| for i ≥ 1.

• ri−1|ti|+ ri|ti−1| = n ∀i ≥ 1.

Then, choose m be the greatest index for which rm ≥
√

n. We know

rm|tm+1| + rm+1|tm| = r by last properties of EEA. Thus, |tm+1| <
√

n. Then,

choose v1 = (rm+1,−tm+1). f(v) = (rm+1 − tm+1λ) mod r = 0 by EEA. Next,

|v1| =
√

r2
m+1 + t2m+1 <

√
n + n ≈

√
n meaning short, as desired.

Then, choose v2 as to be the shorter of (rm+2,−tm+2), (rm,−tm) Similarly, by

EEA f(v2) = 0 and, heuristically, v2 is short.

Next, it comes to show that v1 and v2 are linearly independent:

Assume v1 and v2 are linearly dependent and without lost of generality let v2 be

(rm,−tm). Then,
rm+1

rm

=
tm+1

tm
.

LHS is strictly less than 1 by first properties of EEA, but RHS is strictly greater

than 1 by third properties of EEA. Therefore, v1 and v2 are linearly independent.

To sum up, v1 and v2 satisfy (i), (ii) and (iii).

Next, in order to solve the subproblem (2), one needs to follow the following

routine:

Consider v1 and v2 ∈ Q×Q.
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Find β1 and β2 ∈ Q satisfying (k, 0) = β1v1 + β2v2. By linear algebra, it is

easy, and β1 = b2k/r and β2 = −b1k/r.

Let c1 = bβ1e and c2 = bβ2e where bxe is the nearest integer to x.

Finally, let v = c1v1 + c2v2.

Then, u = (k, 0)− v is the needed short vector:

If v is constructed as above, then

u = (k, 0)− v

= (k, 0)− (c1v1 + c2v2)

= (k, 0)− [(β1v1 + β2v2) + (c1 − β1)v1 + (c2 − β2)v2]

= (β1 − c1)v1 + (β2 − c2)v2 since (β1v1 + β2v2) is close to (k, 0).

So,

|u| ≤ |(β1 − c1)v1|+ |(β2 − c2)v2| by triangle inequality

≤ 1

2
|v1|+

1

2
|v2| since |(β1 − c1| <

1

2
and |(β2 − c2| <

1

2
≤ max(|v1|, |v2|)

Moreover, since both v1 and v2 are short vectors, and so is u.

Algorithm 3.41. [HMV04]

Balanced length-two representation of a scalar

input: Integers n, λ, k ∈ [0, n− 1]

output: integers k1 and k2 such that k = k1 + k2λ mod r and |k1|, |k2| ≈
√

r

1. use the extended Euclidean algorithm with inputs r and λ to produce equations

sir + tiλ = ri where s0 = 1, t0 = 0, r0 = r, s1 = 0, t1 = 1, r1 = λ and ri

sequence is non-negative and strictly decreasing. Let m be the greatest index for

which rl ≥
√

r.

2. (am, bm) = (rm+1,−tm+1

3. if (r2
m + t2m) ≤ (r2

m+2 + t2m+2) then (a2, b2) = (rm,−tm)

4. else (a2, b2) = (rm+2,−tm+2)
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5. b1 = bβ1e and b2 = bβ2e
6. k1 = k − c1a1 − c2a2 and k2 − c1b1 − c2b2

7. output(k1, k2)

Example 3.42. One can check that if we apply Algorithm 3.41 to Example 3.40,

we obtain

(rm, tm) = (2180728751409538655993509,−186029539167685199353061)

(rm+1, tm+1) = (788919430192407951782190, 602889891024722752429129)

(rm+2, tm+2) = (602889891024722752429129,−1391809321217130704211319)

(a1, b1) = (788919430192407951782190,−602889891024722752429129)

(a2, b2) = (602889891024722752429129, 1391809321217130704211319)

Now, let

k = 965486288327218559097909069724275579360008398257

then

c1 = 919446671339517233512759 and c2 = 398276613783683332374156

So,

k1 = −98093723971803846754077, and k2 = 381880690058693066485147

Algorithm 3.43. [HMV04]

Endomorphism based Scalar Multiplication

input: integer k ∈ [1, n− 1], P ∈ E(Fq), w1 and w2(window widths) and λ

output: kP

1. use Algorithm 3.41 to find k1 and k2

2. for j = 1 and 2 do

2.1 Use Algorithm 3.13 to find NAFwj
(|kj|) =

∑lj−1
i=0 kji2

i

3. l = maxlength(NAFw1(k1), NAFw2(k2))

4. equalize their lengths by padding zero to shorter one

5. if kj < 0 then kji = −kji j = 1, 2

6. precomputation iP for i ∈ 1, 3, 5, 7, . . . , 2wj−1 − 1 j = 1, 2

7. Similarly precompute for φ(P )

8. Q = ∞
9. for i from l − 1 down to 0 do
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9.1 Q = 2Q

9.2 for j = 1, 2 do

9.2.1. if kji > 0 then Q = Q + kjiPj

9.2.2. else Q = Q− |kji|P
10. output(Q)

When running-time of Algorithm 3.43 is analyzed, cost of the decomposition

operation and also cost of computing φ(P ) must be included if it costs fairly (e.g.

much more than Frobenius). Line 6 is the precomputation stage and it costs∑2
j=1 (2wj−2 − 1)A. For each kj NAFw method is applied in lines of 8 and it cost

(D +
∑2

j=1
1

wj+1
A)l/2. Therefore, running-time of Algorithm 3.43 is

2∑
j=1

(2wj−2 − 1)A + Ck + Cφ + (D +
2∑

j=1

1

wj + 1
A)l/2

if Ck denotes the cost of line 1 and Cφ denotes the cost of φ(P ).

Remark 3.44. One can think of applying the method of Koblitz to the curve of

Example 3.40. Roots of characteristic equation is x2 + x + 1 ≡ 0 are
1±

√
−3

2
.

Let κ be
1 +

√
−3

2
. Then the extension of integers with κ, Z[κ], is a Euclidean

Domain which is a desired feature since division algorithm can be applied di-

rectly in order to obtain κ-representation of an integer. But the norm of κ is

1. So, any element of Z[κ] is divisible by κ. Hence, an integer k doesn’t have

a κ-representation. We remember that for a Koblitz curve, τ has a norm of 2

which was an ideal case. Moreover, Frobenius map on Koblitz curves over some

small extensions of binary field giving fast scalar multiplication are investigated

by [Mül98]. On the other hand, GLV method can be applied to Koblitz curves.

The characteristic equation is needed to be solved modulo large prime divisor in

order to get λ as in the Example 3.40.
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Chapter 4

Conclusion

In this thesis, we studied the scalar multiplication on elliptic curves. We made

mathematical and computational analysis of many scalar multiplication methods.

The implementation part of this work has not been done in this thesis, and we

hope to do this as a part of BAP project.

In order to develop a scalar multiplication method or to improve an existing

one, one, first, needs to analyze properties of elliptic curves in deep, second, to

consider whether a recoding method of an integer corresponds to an efficient scalar

multiplication method, and finally, to use some algebraic methods on elliptic

curves.

In Table 4.1, there is a comparison of scalar multiplication in terms of their

number of additions, doublings and memory consumption.
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Table 4.1: Comparison of Scalar Multiplication Methods

Algorithm Additions Doublings Memory

3.1 l
2

l 1

3.2 l
2

l -

3.11 l
3

l -

3.17 2w−2 + l
w+1

− 1 l + 1 2w−2

3.18 2w−(−1)w

3
+ l

w+ν(w)
− 1 l + 1 2w−2

3.21 (2w + d− 3), d =
⌈

l
w

⌉
-

⌈
l
w

⌉
3.22 (2w+1

3
+ d− 2), d =

⌈
l+1
w

⌉
-

⌈
l+1
w

⌉
3.23 (2w−1

2w d− 1), d =
⌈

l
w

⌉
(d− 1) 2w

3.24 (2w−1
2w 2e− 1), e =

⌈
l

2w

⌉
(e− 1) 2w+1

3.34 l
3

- -

3.38 2w−2 − 1 + l
w+1

- 2w−2

3.43
∑2

j=1 (2wj−2 − 1) + (
∑2

j=1
1

wj+1
)l/2 l

2
2w1−2 + 2w2−2

l refers to dlog2(k)e) and names of algorithms given in the left most column are

Algorithm 3.1 Binary Method RtoL

Algorithm 3.2 Binary Method LtoR

Algorithm 3.11 NAF Method

Algorithm 3.17 wNAF Method

Algorithm 3.18 Sliding NAF Method

Algorithm 3.21 Binary Windowing Method

Algorithm 3.22 NAF Windowing Method

Algorithm 3.23 Comb Method with 1 Table

Algorithm 3.24 Comb Method with 2 Tables

Algorithm 3.34 TNAF Method

Algorithm 3.38 wTNAF Method

Algorithm 3.43 Endomorphism Based Method (GLV’s Method).
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