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ABSTRACT

A DENSITY-AWARE, ENERGY- AND SPECTRUM-EFFICIENT
SCHEDULING MODEL FOR DYNAMIC NETWORKS

Mollahasani, Shahram
Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ertan Onur

August 2019, 80 pages

Future mobile networks have to be densified by employing small cells to handle the

upsurge in traffic load. Although the amount of energy each small cell consumes is

low, the total energy consumption of a large-scale network may be enormous. To en-

hance the energy efficiency, we have to adapt the number of active base stations to the

offered traffic load. Deactivating base stations may cause coverage holes, degrade the

quality of service and throughput while redundant base stations waste energy. That

is why we have to adapt the network to the effective density. In this thesis, we show

that achieving an optimal solution for adapting density of base stations to the demand

is NP-hard. We propose a solution that consists of two heuristic algorithms: a base

station density adaptation algorithm and a cell-zooming algorithm that determines

which base stations must be kept active and adapts transmit power of base stations

to enhance throughput, energy and spectral efficiency. We employ multi-access edge

clouds for taking a snapshot of the network state in nearly real-time and for collecting

network telemetry over a large area. We show that the proposed algorithm conserves

energy up to 12% while the spectral efficiency and network throughput can be en-
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hanced up to 30% and 26% in comparison with recent works, respectively.

Keywords: 5G mobile networks, densification, density-aware networking, energy-

efficiency, green networks, multi-access edge cloud (MEC), self-organizing network-

sal
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ÖZ

DİNAMİK GEZGİN AĞLARDA YOĞUNLUK-UYARLI, ENERJİ- VE
SPEKTRUM-VERİMLİ ÇİZELGELEME MODELİ

Mollahasani, Shahram
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Ertan Onur

Ağustos 2019 , 80 sayfa

Gelecekteki mobil ağların, trafik yükündeki artışlarla başa çıkmak için küçük hücre-

ler kullanılarak yoğunlaştırılması gerekmektedir. Her küçük hücrede tüketilen enerji

miktarı düşük olmasına rağmen, büyük ölçekli bir şebekenin toplam enerji tüketimi

muazzam derecede fazla olacaktır. Enerji verimliliğini arttırmak için aktif baz istas-

yonu sayısını, trafik yüküne uyarlamak zorundayız . Baz istasyonlarını devre dışı bı-

rakmak kapsama boşluklarına neden olurken, servis ve verim kalitesini düşürecek

ancak gereğinden fazla sayıda çalıştırılan baz istasyonları ise enerji israfına yol aça-

caklardır. Bu tezde, baz istasyonlarının yoğunluğunun talebe uyarlanması konusunda

optimum bir başarı elde etmenin NP-zor bir problem olduğunu göstermekteyiz. İki

tür sezgisel algoritmadan oluşan bir çözüm önermekteyiz: birincisi baz istasyonu yo-

ğunluğu adaptasyon algoritması ve ikincisi ise ağdaki veri iletim hacmini, enerji ve

spektral verimliliği arttırmak için hangi baz istasyonlarının aktif olarak kullanılması

gerektiğini belirleyen ve baz istasyonlarının iletim gücünü uyarlayan hücre yakın-

laştırma algoritmasıdır. Daha geniş bir perspektifle neredeyse gerçek zamanlı olarak

belirtilen ağın anlık görüntüsünü almak için çoklu erişim kenar bulutu kullanıyoruz.
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Önerilen algoritma ile %12’ye kadar enerji tasarrufu sağlandığı, aynı zamanda spekt-

ral verim ve ağ verimliliğinde de yakın zamanlı iki çalışmaya gore %30 ve %26’lık

artış sağlandığı gösterilmektedir.

Anahtar Kelimeler: 5G gezgin ağlar, yoğunlaştırma, yoğunluğa-uyarlı ağ iletişimi,

enerji verimliliği, yeşil ağlar, çoklu erişim kenar bulutu (MEC), kendi kendini düzen-

leyen ağ iletişimi
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CHAPTER 1

INTRODUCTION

The state of the art in a mobile cellular network is the centrally-managed and rela-

tively inflexible architecture that was prosperous albeit not scalable anymore. The

present-day networks have already reached the spectrum limitations [4]. We have

to densify cellular networks by spatial multiplexing to overcome capacity limitations.

Increasing the number of base stations (BS) may cause severe interference and redun-

dant coverage resulting in energy wastage [5]. Centralized configuration or real-time

centralized monitoring is not applicable due to the difficulties in acquiring global in-

formation about the network and computational complexity of the tasks [6]. Manage-

ment, coordination and optimization tasks usually require solving NP-hard problems.

As the network enlarges, its management and control become a symptomatic is-

sue [7]. Operator intervention requirements have to be drastically reduced by em-

ploying self-organization. There is a research gap between the state of the art and

the ambition of achieving a self-organized, adaptive and flexible networking archi-

tecture. Moreover, we are on the verge of several key paradigm changes in mobile

communications.

1.1 Paradigm Changes in Mobile Communications

One of the significant paradigm shifts happens in the control domain of operators.

In the past, network operators used to plan, dimension and install BSs. Before and

after the launch of the BSs, optimization was plausible. Performance monitoring,

failure mitigation, and correction were carried out by the network operator within the

lifetime of a BS. However, this scheme will change substantially in future mobile
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networks and operators will partially lose their control on cell deployment as we will

explain in this thesis [8].

Figure 1.1: Two application scenarios of mobile BSs in future networks are presented.

We illustrate how cells on wings or wheels may change the infrastructure of mobile

networks. Because of mobility and many other factors we present in this thesis, the

infrastructure of mobile networks start resembling ad hoc networks in terms of dy-

namics. As a consequence, the density of BSs unpredictably change.

Another paradigm change is in the infrastructure of mobile networks [9]. In the past,

we used to assume that locations of user equipment (UE) were stochastic, and the

network infrastructure was stationary. In the future, BSs may also be mobile yielding

a random infrastructure; e.g., drones may provide service to blind spots [10, 11]. We

present some example scenarios where the density of UEs and also BSs may change

in a dynamic fashion in Figure. 1.1. As can be seen in these scenarios, the density

of users may increase suddenly because of some emergency situation such as a car
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accident or a sports event. As we can see on the left-hand side of Figure. 1.1, the

area seems sparse initially. However, after the car accident, the density of users in-

creases dramatically. Therefore, mobile or nomadic BSs are deployed in the area

to maintain the quality of service (QoS) in terms of coverage or capacity. In emer-

gency cases, pre-deployment planning may not be possible. Communication services

are of critical importance for public protection and disaster recovery. Man-made or

natural disasters such as earthquakes may disrupt communication services that are

currently provided by stationary infrastructures. Employing drone BSs can be a vi-

able approach for establishing a communication infrastructure in affected areas and

for providing wireless coverage in blind spots. Drone BSs can also be used for gather-

ing data from rural fields where no communication infrastructure exists. For instance,

drone cells may act as mobile sinks in applications of the Internet of Things and in

massive machine type communication scenarios.

As another scenario, a derby football match can be given. Some flying BSs such as

drones may provide coverage and enhance QoS during the event as presented on the

right-hand side of Figure. 1.1. Before the event and after the event, the user density

in the stadium will be low. However, it will be substantially larger during the match.

Instead of incurring the cost of deploying stationary cells inside or nomadic cells

around the stadium, cells on wings may be employed on the stadium to satisfy the

QoS requirements of users by getting closer to UEs. Depending on the user density,

additional BSs can be dynamically deployed that in turn changes the network density.

1.2 Why Does Infrastructure Become Dynamic?

Mobile cells have a huge potential to be employed in future networks. In addition to

cells’ mobility [12] [11], factors which make a network dynamic are as follows:

• User-controlled BSs (e.g., femtocells bought and controlled by end users): When

BSs are deployed in customer premises (such as homes), users may turn them

on or off depending on consumption requirements [13].

• Green operation (e.g., sleep scheduling of BSs): BSs may employ duty-cycling

for energy conservation. Depending on the employed duty-cycling scheme, the

3



effective density of BSs will be different over periods of time.

• Incremental deployment: Gradual deployment of BSs will change the network

density throughout the deployment time.

• Loss of control and failures in the topology: Deterministic and pre-planning

deployment are not probable anymore. The operator may have to strictly com-

ply with the constraints imposed by the urban structure period. Consequently,

the deployment can be considered to be stochastic [14].

• Support for various verticals (e.g., automotive, health), multi-tenancy and vari-

ous scenarios (e.g., megacities versus low average revenue per user (low-ARPU)

regions or sporadic events such as Olympics) by network slicing.

The mobile network infrastructure will become stochastic and the location of small

cells cannot be pre-planned with the introduction of mobile cells. Considering the

scenarios described above and shown in Figure 1.1, we can list the major advantages

of employing mobile or nomadic cells as follows.

• Mobile cells may be rapidly deployed to mitigate coverage holes without intro-

ducing site-acquisition costs [15].

• Drone cells may facilitate ubiquitous coverage in rural areas [16].

• Mobility of drones cells can be inline with the mobility of the end users pro-

viding a better approach for group mobility lowering the mobility management

costs.

• Mobile cells together with edge/fog computing may bring processing power

closer to end users which can decrease power consumption and provide a higher

data rate by obtaining high SINR [17].

• Broadcast data rates can be improved especially for the UEs located at cell

edges.
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1.3 Why Present Architectures Will Fail?

It is not possible today for present mobile communication networks to address these

paradigm changes because of their shortages and limitations [18]:

• Lack of functions for mobile BSs: mobility management of BSs has not been

foreseen in standardization yet.

• Inflexible architecture, static and manual configurations: when the infrastruc-

ture is dynamic, it is clear static configurations will waste resources. Manual

configurations make the network inflexible to dynamics in the topology and are

subject to severe human errors. Software networks cast light onto this prob-

lems.

• Lack of common control functions and interfaces: real-time and holistic man-

agement is almost impossible because of vendor lock-in and vendor-dedicated

hardware and software components requiring trained administrators. Network

virtualization may help solve this problem.

• Limited backhauling capacity and a shortage of fiber infrastructure in develop-

ing countries.

1.4 Problem Definition

Until 2016, over 14 million small cells are deployed in Long Term Evolution (LTE)

networks and this number has increased for about 270 percent in 2017 [19]. In het-

erogeneous networks (HetNets), by employing small cells in addition to macro cells,

spectral and energy efficiency (EE) can be enhanced simultaneously [20]. By increas-

ing density of small cells, the distance between base stations and user equipment (UE)

can be reduced, which can enhance network area throughput and reduce power con-

sumption. However, increasing density of small cells implies more infrastructure and

hardware deployment, which increases the overall circuit energy consumption in the

network [21]. During the last decades, mobile networks have grown tremendously

and mobile communications have become inseparable technology from our lives. As
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Figure 1.2: Categorization of power consumption in mobile networks.

the number of subscribers increases and the networks grow in size, the amount of en-

ergy consumption increases astronomically in mobile networks. Reducing the amount

of energy wastage in information and communication technologies (ICT) is important

since 2% of the total carbon dioxide-equivalent gas emissions is produced by ICT, and

there is an upward trend. The cost of connecting base stations (BSs) that have access

to the electrical grid is approximately 3000$ per year and this may increase up to ten

times when BSs are located in rural areas where energy is provided by fuel power

generators [22]. As it is shown in Figure. 1.2 the largest portion of energy which is

about 57%, is consumed by BSs in mobile networks; while, the amount of energy

is consumed by mobile switching, core transmission, and data centers are 19%, 15%

and 7%, respectively [23].

Because of mobile/nomadic BSs such as drone cells, user-controlled based BSs (in-

door small cells) and sleep scheduling of BSs, the network density may dynamically

change in time and space. On the one hand, by increasing the density of small cells,

we need to adapt BS density to the network condition for maximizing energy effi-

ciency in the network. On the other hand, future networks need to be smart to adapt

themselves to BS density for maintaining the quality of service (QoS) under various

conditions when the density of BSs dynamically changes [24]. For instance, when a

BS is turned off in a HetNet, the associated traffic load of the deactivated BS needs to
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be transferred over to other cells. The demand can be different at each cell because

of heterogeneity [25]. Therefore, the impact of turning off a BS on the neighboring

cells have to be considered in an adaptive fashion. Turning off a BS may also cause

coverage holes that requires the assistance of neighboring cells for providing service

to blind spots. In case of network expansion or occasional events (such as a football

match), the number (density) of BSs may need to be increased permanently or tem-

porarily. Human intervention may not be possible in a large-scale HetNet. Therefore,

future networks need to be equipped with flexible algorithms that can adapt network

parameters such as coverage or transmit power to the density of BSs to dynamically

react over any changes in the network state [26].

The main idea behind our approach is adapting density of BSs to the network pa-

rameters such as coverage and transmit power to provide a highly flexible scheduling

model which can enhance energy and spectral efficiency and maintain QoS contin-

uously in the whole network for different conditions. We assume the QoS can be

maintained when the minimum throughput by each UE can be satisfied by the net-

work. In this thesis, we define a joint heuristic sleep scheduling and power allocation

algorithm for saving energy while satisfying the throughput requirement of users and

maintaining the coverage in dynamic heterogeneous networks by considering the den-

sity of BSs and employing MEC in the network architecture. The main advantages of

this work with respect to old energy efficient techniques are employing MECs in the

network architecture and providing a self-organized network which can adapt network

parameters including BS transmit power and density of BSs to the network state, that

can be categorized as one of the basic requirements of 5G networks. Employing MEC

platforms provide higher flexibility, processing power and support multi-tenancy in

cellular networks, and can provide self-adaptability in dynamic networks where in

addition of density of UEs, density of BSs can be also changed.

1.5 Contributions

The overall contributions of this thesis are as follows.

• We formulate density-, energy- and spectrum-aware base station scheduling
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problem (DESAS) in Chapter 3 and we show that providing an optimal solu-

tion to this problem for adapting density of BSs to network parameters such

as coverage and transmit power to reduce energy consumption and enhance

spectral efficiency in the network is NP-hard.

• We propose a heuristic solution named as BS density and power adaptation

algorithm (BDPA) that consists of two sub-algorithms named by BS density

adaptation (BDA) and power adaptation (PA) in Chapter 4. These algorithms

can jointly reduce the amount of power consumption in the network through

minimizing the number of active BSs with respect to the cells’ load and can

enhance the throughput and the coverage in the network by applying a cell-

zooming technique in each cell in a distributed manner by adapting transmit

power of BSs based on channel conditions and effective density.

• We define a framework for future network infrastructures that employs MECs

that facilitate reduction of latency and access a larger amount of data about

the state of the network for management and control purposes. On one side, a

global optimization is nearly impossible since the DESAS problem is an NP-

hard problem. On the other side, solutions carried out individually by base

stations lack the required information for achieving an optimal solution. There-

fore, we assert that solutions designed on MECs by employing a divide-and-

conquer approach are appropriate candidates as we discuss in Chapter 4.2.

1.6 Outline

The outline of this thesis can be categorized as follows.

• In Chapter 2, we reviewed the required basic information regarding wireless

network generations, orthogonal frequency division multiple access, Multi-

Access Edge Cloud and we compared the proposed algorithm with recent works.

• In Chapter 3, we investigated the resource and power allocation mechanism in

wireless networks and we formulate our problem based on that. We also reduce

our defined problem to two sub-problems in order to find a joint solution with

lower complexity.
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• In Chapter 4, we proposed base station density and power adaptation (BDPA)

Algorithm.

• In Chapter 5, We validate the BDPA algorithm and compare it with the low-

power wake-up radio (LP-WUR) algorithm [27] where base stations activated

or deactivated by UEs’ request and the cooperative inter-cell interference con-

trol (C-ICIC) algorithm [28], which energy consumption is optimized by col-

laborating among neighbor cells.

• In Chapter 6, we concluded our work and present our expected future works.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we overview wireless network generations history, explain orthog-

onal frequency division multiple access, resource allocation and power adaptation,

clarify the advantage of using Multi-Access Edge Cloud in the network and we also

compared the proposed algorithm with recent works.

2.1 The Overall View of Mobile Networks

Marvelous growth of wireless networks during last decades, the number of user equip-

ment (UEs) are continuously increasing and even in some regions this number has sur-

passed the number of citizens because seamless connectivity is a mandatory require-

ment in the current era [29] [30]. The concept of cellular networks was introduced

by Bell Labs. We witnessed their advancement for four generations and nowadays

observe their progressive steps toward a complex, very dense, massively connected

5th generation of wireless networks. This path started from 2.4 kbps in the first gen-

eration and it dramatically increased to 100 Mbps in the fourth generation while we

expect 1000 times improvement in 5G networks.

In the 1980’s, the first generation of wireless network (1G) is commercially rolled out

[31] [32]. The main object in this generation was providing voice services which were

low quality and it has very limited capacity. 1G networks was a fully analog system

without any digital processing module and its throughput was limited to 2.4 kbps.

Some of the typical 1G implementations are Total Access Communication Systems

(TACS) of Britain and American Advanced Mobile Phone Systems (AMPS) [33].
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2.2 2nd Generation and 3rd Generation of Wireless Networks

The 2nd generation of mobile networks (2G) were commercially rolled out in the

early 1990s [34]. This generation was designed as a digital communication network.

Therefore, the 2G’s capacity and quality of service were improved noticeably in com-

parison with the first generation. 2G also provided voice services alongside low data

rate communications which provide a fast boot for the market and let it spread it

throughout the whole world. 2G networks were implemented based on circuit switch-

ing systems and it can provide throughput up to 384 kbps. Some of the typical 2G im-

plementations are European GSM (Global System for Mobile Communication) [35]

and the American IS-95 (Interim Standard - 95) [36].

In the early 2000s, Third Generation Partnership Project (3GPP) standardized the

third generation of mobile networks (3G). This generation of mobile networks imple-

mented based on the code division multiple access (CDMA) technology which can

provide a higher throughput and spectral efficiency with respect to previous gener-

ations [37]. Network services in 3G were more data-oriented which allow seamless

and high-quality services to be offered to users. The architecture of 3G networks con-

tain both packet switching and circuit switching and the throughput was up to 2Mbps.

The major standardized members of 3G in the worldwide are CDMA2000 in Amer-

ica, Wideband CDMA (WCDMA) in Europe, Time Division - Synchronous CDMA

(TD-SCDMA) in China [38] and IEEE 802.16e which is known as Worldwide inter-

operability for Microwave Access (WiMAX) [39].

2.3 4G (LTE) Wireless Networks

In the late 2000’s, Third Generation Partnership Project (3GPP) introduced the fourth

generation of wireless networks also known as Long Term Evolution (LTE) [40]. 4G

networks at first developed based on CDMA communications while, voice services

were fully Internet protocol (IP) based and a higher data rate could be achieved in

it. To tackle the drawbacks of 3G networks, LTE standards redefined in 2010. By

employing multiple-input multiple-output (MIMO) and orthogonal frequency divi-

sion multiple access (OFDMA) technologies in LTE networks, network throughput
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was dramatically enhanced with respect to 3G networks [41] [42]. In this genera-

tion of mobile network, the core network is fully developed over the packet-switched

structure and all communications including voice and data are IP-based. In LTE,

the network throughput can go up to 100Mbps. As it is shown in Figure. 2.1, the

LTE network architecture consists of the Evolved UMTS Terrestrial Radio Access

Network (E-UTRAN) and the Evolved Packet Core (EPC) [43]. The EPC consists

of the Home Subscriber Server (HSS), the Packet Data Network (PDN) Gateway

(P-GW), the serving gateway (S-GW), the mobility management entity (MME) and

the Policy Control and Charging Rules Function (PCRF) which are responsible for

providing a connection with outside networks such as the Internet, apply network

policies, UEs registration, mobility management. E-UTRAN consists of radio access

network nodes called evolved Node B (eNB) which is responsible for transmitting

and receiving data and user planes to and from UEs.

Figure 2.1: The overview of the LTE network architecture which consist of three

main components: The User Equipment (UE), The Evolved UMTS Terrestrial Radio

Access Network (E-UTRAN) and the Evolved Packet Core (EPC) [2].
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2.4 Orthogonal Frequency Division Multiple Access

One of the well-known digitization modulation techniques is Orthogonal frequency-

division multiplexing (OFDM) which divide data stream into multiple parallel re-

duced data rate streams and each of them transmitted on different subcarriers [44].

OFDM has been introduced for about 40 years ago and it was invented during the

1960s and 1970s for coping the interference exist among channels within the same

frequency range. OFDM has employed in different wired and wireless networks such

as digital audio and video broadcasts as well as asymmetric digital subscriber line

(ADSL) [45].

In wireless communications, signals can follow different paths with varied propaga-

tion delay. When a signal is reflected by surrounding obstacles during communi-

cation, each signal can reach the receiver through different directions that can cause

spread delay, fading and inter-symbol interference (ISI) [46]. Therefore, the transmit-

ted rate will be limited by propagation delay in the channel. The OFDM technique

has been shown up into a wide variety of wireless communications due to its capa-

bility for increasing bandwidth efficiency and handling multi-path delay which can

cause a higher bitrate in the network.

OFDMA is developed based on the OFDM modulation technique and it subdivides

the overall bandwidth into orthogonal subcarriers in order to carry multiple and in-

dependent information during each communication. The frame structure of the LTE

system in the time-frequency is represented in Figure. 2.2. As we can see, in the LTE

systems length of each frame is 10 ms which is contained 10 subframes with a length

of 1 ms. Each of these subframes composes of two 0.5 ms slots. Each of these slots

includes seven symbols. The intersection of OFDM symbols and subcarrier can be

defined as a resource element (RE) where subcarrier spacing is considered as 15 kHz.

A slot of 0.5 ms which represents a group of resource elements that contain 12 sub-

carriers with overall bandwidth of 180 kHz is defined as a resource block (RB) [47].

The RBs are important because they are the smallest unit of communication that is

used during scheduling. Power allocation and scheduling are done periodically by

schedulers every transmit time interval (TTI) which is about 1ms and a RB explicitly
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Figure 2.2: The OFDMA-based systems downlink frame structure [3].

will be assigned to each UE in every cell. Although, in multiuser OFDMA systems,

packets are transmitted exclusively in different subcarriers, and it can cope the intra-

cell interference in networks; but, by employing frequency resue-1 model, same RB

can be assigned to neighbor cells simultaneously which will lead to inter-cell interfer-

ence (ICI) in the network. The ICI can reduce the overall network throughput because

of its negative effect over the received SINR of active UEs [48].

Therefore, providing an efficient ICI coordination (ICIC) model play a vital role in

the mobile networks. The ICI coordination models can be categorized into two main

groups as it is shown below:

• static ICIC which can be used for to statically managing frequency distribution

among cells.

• dynamic ICIC which can be applied by employing dynamic transmit power

adaptation (TPA) models and resource allocation schedulers in order to have an

efficient model.

In this thesis, we evaluated and analyzed the dynamic ICI management and we in-

vestigate centralized, distributed and hybrid models in order to highlight their char-
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acteristics. The proposed model includes both dynamic TPA and RB scheduler by

considering the density of BSs to tackle the ICI effect in the network. For enhanc-

ing the efficiency, we also add the user association in conjunction with TPA and RB

scheduler to our model.

2.5 5G Wireless Networks

As we briefly explained, massive development and research have been conducted

in wireless mobile networks during the past decades [49] [50]. By changing the

functionality of the Internet users from just human-based to the Internet of things

(IoT), the amount of machine-to-machine (M2M) communications raised extraordi-

narily. [51] [52]. Moreover, by introducing ultra-dense networks [16], the density of

BSs rapidly increase and size of cells are reduced and cells will be overloaded by

huge data communications including high definition videos, multimedia-based appli-

cations, online gaming, smart devices, social media and etc. which require a massive

data rate and high network capacity. It is predicted in 2021, 86% of traffic load

in the cellular networks will be generated by smartphones while 78% of it will be

videos [53] [54]. The current LTE networks are not capable of handling such a traffic

load and cannot satisfy the minimum requirement of 5G networks such as low la-

tency (1ms) for tactile communications [55] hence, present wireless networks need to

be transformed to 5G networks. With respect to LTE networks, the next generation of

wireless networks need to be highly energy-efficient due to the fact that the capacity

of future networks will be increased up to 1000 times while 90% of energy consump-

tion needs to be reduced [56]. Moreover, alongside a high data rate in 5G networks,

the end-to-end latency needs to be reduced for 5 times as well [57].

2.6 Multi-Access Edge Cloud (MEC)

The three main use cases of 5G mobile networks are enhanced Mobile BroadBand

(eMBB) [58], Ultra Reliability and Low latency Communications (URLLC) [59], and

massive Machine Type Communications (mMTC) [60]. To reach the mentioned re-

quirements in 5G networks, architectures and network topologies need to be placidly
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evolved from the current LTE network to an ultra-dense, more complex and hetero-

geneous network. Multi-access edge cloud (MEC) can be considered as a potential

candidate to tackle these issues in the next generation of mobile networks [61]. MEC

offers application engineers and substance suppliers distributed computing capacities

and an IT administration condition at the edge of the system [62]. This condition is

described by ultra-low latency and high data transmission with real-time access to ra-

dio system data that can be utilized by applications. Network operators by employing

MEC can open their Radio Access Network (RAN) edge to approved third-parties,

enabling them to adaptably and quickly convey their imaginative and creative appli-

cations and services for their subscribers [63].

2.7 Related Work

In a mobile network, a portion of energy is consumed dynamically by the BSs de-

pending on the amount of the traffic load while another portion of energy is statically

consumed in some components such as cooling systems, power supplies or for signal

processing. In this thesis, the main focus is on dynamic power consumption in BSs.

Power consumption in BSs can be managed by utilizing their resources and adapting

density of BSs and transmit power of BSs to the network condition.

Green networking and energy-efficiency have motivated researchers, and their works

can be categorized into three main classes: (1) efficient resource allocation models,

(2) load balancing models, and (3) bandwidth enhancement models. We will briefly

survey these categories in relation to our work in the sequel.

To reduce the energy consumption in BSs by turning off BSs’ transceivers in idle

times, discontinuous transmission (DTX) models can be employed in the network

architecture [64] [65]. In DTX based models Multicast Broadcasting Single Fre-

quency Network (MBSFN) sub-frames are allocated by considering traffic load in

the network [66]. Although applying DTX schemes can reduce the energy consump-

tion significantly, DTX does not useful during peak load due to the lack of empty

sub-frames and it causes a delay for packet delivery [20]. Moreover, by equipping

UEs and BSs with LP-WUR, delay for activation and deactivation of BSs can be re-
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duced and BSs can be switched off during their idle periods [27]. Another method for

enhancing energy efficiency is the aggregation of RBs [67]. By employing carrier ag-

gregation schemes, the amount of overheads during communication will be reduced,

which can increase energy conservation in the network. Another scheme for reducing

power consumption in the network is adapting BSs’ transmit power to satisfy QoS

constraints by minimizing block error rate (BLER) in the network [68]. Also, en-

ergy efficiency can be increased by optimizing resource allocation in OFDMA-based

networks [69] [70]. In the BDPA algorithm, in addition of adapting BSs transmit

power, we adapt density of BSs to network parameters such as throughput and cover-

age to optimize the network resources more efficiently. Moreover, resource allocation

is optimized by increasing cells’ utilization factor and deactivating redundant BSs at

the same time. Therefore, by adapting density and transmit power of BSs and uti-

lizing the network resources, we simultaneously enhanced the resource management,

throughput and coverage in the network from different perspectives. In [71], a joint

user scheduling and power control mechanism is proposed which can enhance energy

efficiency in ultra-dense networks. Although, in [71], transmit power of base stations

and UE allocation are optimized, the density of BSs considered as a pre-configured

value which may not applicable in dynamic networks where the density of small cells

dynamically changes in time and space. Moreover, by implementing the proposed

algorithm in a system level LTE network, we considered the real-life network param-

eters including traffic models, mobility models and etc. which are not analyzed in

the mentioned work. In [72], an energy efficient on-off switching model is proposed

where BSs are turned off or on by considering the amount of traffic load in the net-

work. Unlike [72], the main focus is on the effect of increasing density of small cells

in future heterogeneous networks in this thesis. Moreover, the proposed algorithm

in addition of considering the traffic load and the density of UE dynamicity, it also

considers dynamic BSs where the density of BSs may also fluctuate. In the BDPA,

network parameters (transmit power) will be adapted to the density of active BSs (PA

algorithm) and the density of BSs will be also adapted to the network condition while

the QoS (network throughput) can be maintained (BA algorithm).

Moreover, energy can be also conserved by applying load balancing schemes such as

distance-aware models in the network architecture [73] [74]. By employing distance-
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aware models, when two BSs are competing with each other for registering UEs in

their cells, a BS can be switched off when it has a larger distance to UEs and lower

traffic load with respect to other BSs. Energy efficiency can be also improved by ap-

plying traffic-aware models to adapt energy consumption by considering traffic varia-

tions with respect to time in the network [75]. Energy efficiency can be also achieved

by applying UE migration techniques to reduce the number of active BSs with the low

traffic load which can be implemented in a distributed or centralized manner [76]. In

centralized models, by analyzing traffic load among BSs, a BS with the highest load

will be determined. After that, in case the selected BS has enough bandwidth for sat-

isfying its neighbor UEs, UEs from a BS with light traffic load will be migrated and

the selected BS will be turned off. In contrast, in distributed models, a BS needs to

find its pair in a way that the selected BS has a lower traffic load and its traffic load can

be handled by its peer. Therefore, by applying UE migration techniques the amount

of energy conservation will be increased significantly in the network [77] [78]. In this

work, we employed a combination of these methods with a heuristic and fast solu-

tion to enhance the network performance. In our scheduling model, we equipped our

algorithm with a UE mitigation technique to provide load balancing in the network;

but, unlike [73] and [74], UEs are not transferred to other cells just by considering the

distance to their neighbor BSs. We consider cell utilization factor and received SINR

value to find out the best candidate among BSs to mitigate UEs. We also employ

a cell-zooming technique to maintain throughput and prevent any coverage holes in

the network. Moreover, the BDPA algorithm, unlike [75], can enhance the network

performance and energy conservation even when the traffic load is high due to the

resource utilization technique which is employed in this algorithm. Last but not least,

our scheduling model is faster than [76] due to its lower complexity and employing

MEC instead of a centralized solution.

Bandwidth expansion models can be also employed for enhancing energy efficiency

in the network [79] [80]. For instance, in time compression mode (Tcom) algorithm,

energy is conserved by reducing overhead caused by control signals during transmis-

sion. Moreover, in Tcom by applying high order modulation and coding schemes,

RBs are compressed in either of frequency and time domain which can expand the

bandwidth in networks. Therefore, BSs can handle their load faster and signal over-
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head will be reduced, which can cause energy conservation in the network [81].

In [79] and [80] expanding bandwidth for UEs located at the edge of cells may not

possible due to the high amount of interference received by them from their neighbor

cells. In this work, by employing a cell-zooming technique we enhance communi-

cation for UEs located at the edges by minimizing interference from other cells and

providing high order MCS which can expand bandwidth in each cell individually by

considering the network condition.

Moreover, networks can be also optimized by employing MEC platforms in their ar-

chitectures. Employing MEC platforms provide high flexibility and supporting multi-

tenancy in the cellular networks, which can deliver a wide variety of services includ-

ing cloud computing, network slicing, network function virtualization (NFV) and

software-defined networks (SDN) [82]. Due to the heterogeneity of future networks,

coordination of dynamic network is difficult which in recent works, authors tackle

this issue by employing MEC platforms in networks [83] [84]. MEC can also enable

an agile and simple solution to maintain connectivity and enhance service manage-

ment in the future networks [85]. In recent researches, energy efficiency through

MEC platforms is achieved by offloading processing loads from UEs to MECs which

can alleviate UEs resource constraints [86]. MEC by providing higher computational

power can also be used for enhancing routing data among UEs which can reduce the

energy consumption in the network [87] [88] [89]. Moreover, MECs by having higher

perspective over the network condition can enhance QoS and interference which can

enhance power conservation in the networks [90]. The main advantages of the BDPA

algorithm are employing MEC in a distributed manner, implementing it in a system

level simulator by considering real-life network parameters (antenna type, height and

angle, channel model, shadowing, fading, scheduling, traffic load and etc.) and en-

hancing the energy efficiency and the throughput by adapting network parameters

including transmit power and density of BSs to each other simultaneously through

the MEC platform.
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CHAPTER 3

DENSITY-, ENERGY- AND SPECTRUM-AWARE RESOURCE

SCHEDULING

We define the system model and the density-, energy- and spectrum-aware base sta-

tion scheduling problem (DESAS) based on the system model presented in this chap-

ter.

3.1 Density-, energy- and spectrum-aware resource scheduling problem (DE-

SAS)

The set M = {1, 2, . . . , T, . . . ,M} represents M BSs including T macro BSs and

S small cells. The set N represents N UEs. BSs and UEs are uniform randomly

distributed in a two-tier LTE-like environment as shown in Figure.3.1. We assume

that no power control is employed in the system and we only focus on the downlink

transmission. In LTE-systems [91], BSs schedule their users in 1ms subframes. A

UE is associated to the BS from which it receives the strongest Signal-to-Interference-

plus-Noise Ratio (SINR). The experienced SINR by UE i from its serving BS j is

SINRij =
gijPij

σ2 +
∑M

k=1,k 6=j gikPik
dB, (3.1)

where Pij and gij are the downlink transmit power assigned by BS j to UE i and the

channel gain between UE i and BS j, respectively. The amount of noise power is σ2

and
∑M

k=1,k 6=j gikPik =
∑

k 6=j Iik is the total received interference by UE i from other

BSs.

By considering power is distributed uniformly among resource blocks (RBs) [92], the
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Figure 3.1: The illustration of a network architecture where multi-access edge clouds

are employed for self organization.

amount of allocated power in W to each RB can be obtained as:

Pτj =
Pj
τj
, (3.2)

where Pj is the maximum transmit power of BS j and τj is the total number of avail-

able RBs in BS j. Then, the number of RBs that has to be allocated to UE i from BS

j to satisfy the user’s required throughput R∗ij is

τ ∗ij =
R∗ij

bτ log2(1 + SINRij)
, (3.3)

where the denominator provides the maximum achievable data rate and bτ is the band-

width of a RB in the network, which is 180 kHz in LTE [93]. By obtaining Pτj and

τ ∗ij from (3.2) and (3.3) respectively, we can calculate the minimum amount of power

in W that has to be allocated by BS j to UE i as

P ∗ij = Pτjτ
∗
ij. (3.4)
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The dynamic power consumption of BS j can then be computed as

Pj = β
∑
i∈N

Pij + P0, (3.5)

where the constant β > 1 is the inverse of power amplifier efficiency to evaluate

amplifier losses and P0 is the fixed operational power consumed for backhaul signal-

ing and cooling including losses. Although the most influential component of energy

consumption in macro cells is the static power, it is not the case for small cells. In

small cells, the main part of energy is consumed by the radio transceiver unit due to

the absence of cooling system and low-power amplifier [94]. Therefore, we did not

analyze the effect of P0 in this thesis. By considering this fact, we do not need to

turn off the small cells completely. While the transmitter of BSs (which consume the

major part of energy in small cells) will be turned off completely, other small cells’

modules remain active for rapid response to the network condition (we do it per TTI

which implicitly sets the timescale to 1 ms). That is why P0 is considered in the

problem formulations. Generally, P0 is around 500 W and 15 W for macro and small

cells, respectively [93]. This model can be expanded by including switching power

consumption which is out of scope of this work [95] [96]. Because in our opponents

(LP-WUR and C-ICIC) switching power is also not considered. Therefore, for fair-

ness, we did not apply the switching power effect over our power consumption model

in this work and we set it a future work item.

The QoS provided to the users can be increased if the amount of interference is low-

ered. Therefore, we aim in the DESAS at enhancing the received SINR to reach a

required threshold TSINR,

gijPij
σ2 +

∑
k 6=j Iik

> TSINR.

Maximization of energy- and spectral-efficiency can be achieved through minimiza-

tion of power consumption and the number of required RBs while satisfying UEs’

throughput requirements. Therefore, we formulate the DESAS problem given an ini-
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tial xij assignment as

finding xij, Pij, zj

to minimize
∑
i∈N

∑
j∈M

xij (αPPij + αSτij) (3.6a)

subject to
∑
j∈M

xij = 1,∀i ∈ N, (3.6b)

∑
i∈N

xijτij ≤ τj,∀j ∈M, (3.6c)

τij ≥ τ ∗ij,∀i ∈ N,∀j ∈M, (3.6d)

xij ≤ zj, (3.6e)

where xij =

 1 if UE i is assigned to BS j and zj = 1

0 otherwise

The objective of the DESAS problem is to minimize energy consumption and to re-

duce the number of required RBs by finding UEs should be assigned to which BSs

(xij), how much power need to be assigned by BSs to their associated UEs (Pij) and

which BSs should be kept active (zj) while maintaining the throughput and satisfy-

ing UEs requirements. In (3.6a), we employ normalization coefficients αP and αS

defined as wPρP and wSρS for energy- and spectral-efficiency, respectively [97]; w

is a weight for adding a preference among energy- and spectral-efficiency, and ρ is a

normalization factor. DESAS is a UE-to-BS assignment problem where each UE has

to be served by only one BS (3.6b). To make sure we can assign a UE to a BS, the

corresponding BS should have enough available capacity to satisfy the requested RBs

by UE (3.6c) and the minimum required RBs of users have to be satisfied (3.6d). A

UE can be assigned to a BS only when the BS is active (3.6e).

For simplicity, we did not consider lots of parameters such as velocity, shadowing,

fading, packet arrival rates. in the problem formulation, but all of those parameters

will be considered during the simulation. The DESAS problem is an integer nonlin-

ear programming problem and can be reduced to the generalized assignment problem

with a search space complexity ofO(2N×M +2N×M +2M) which is an NP-hard prob-

lem [98]. By using classical knapsack terminology, we can describe the generalized

assignment problem (GAP) [98] as assigning item i to knapsack j with a profit value

of Pij . When item i is assigned to knapsack j it has a weight and each knapsack has a
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capacity. In the DESAS problem, (αPPij+αSτij) can be considered as profit value of

assigning UE i to BS j, τij is the weight of UE i in case it is assigned to BS j and the

capacity of BS j is represented as τj . Since the DESAS problem is an NP-hard prob-

lem, a global solution to the DESAS is not feasible and practicable. We consequently

resort to dividing the DESAS into two separate problems with a lower complexity

that we present in the next two sections. These two subproblems are briefly:

• BS density adaptation (BDA) problem defines how density of BSs can be con-

trolled based on network capacity and traffic load to conserve energy. By solv-

ing the BDA problem, we identify which BSs can be turned off while the min-

imum required throughput can still be satisfied.

• Power adaptation (PA) problem defines how the transmission power of BSs can

be adapted by considering the density of BSs while maintaining coverage.

We firstly formulate these problems to evaluate their complexities. After that, we pro-

pose heuristic solutions to them. The overall methodology of this thesis is presented

in Figure. 3.2.

3.2 Base Station Density Adaptation (BDA) Problem

Let the minimum number of RBs that have to be allocated to UE i by BS j be τ ∗ij .

Then, the minimum required bandwidth of BS j to satisfy its associated UEs is de-

noted as B∗j (Hz) becomes

B∗j =
∑
i∈N

B∗ij =
∑
i∈N

τ ∗ijbτ . (3.7)

By adapting density of BSs, network resources can be used more efficiently by bal-

ancing load among cells and then redundant BSs can be turned off. We have to control

BS density for maximizing energy efficiency while preserving throughput. The num-

ber of active BSs can be minimized by finding out the whether or not a BS should be
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Figure 3.2: The overall methodology.

active (zj) subject to QoS constraints. Therefore, we define the BDA problem as

finding xij, zj

to minimize
∑
j∈M

zj (3.8a)

subject to
∑
i∈N

xijBij ≤ Bj,∀j ∈M, (3.8b)

xijBij ≥ B∗ij,∀j ∈M, (3.8c)∑
j∈M

xij = 1,∀i ∈ N, (3.8d)

given xij =

 1 if UE i is assigned to BS j and zj = 1

0 otherwise

(3.8e)
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In the BDA problem, we try to minimize the number of active BSs (3.8a) by mak-

ing sure that the amount of bandwidth allocated to UEs are always smaller than the

bandwidth (3.8b) allocated to BSs. In other words, the minimum required bandwidth

by each UE must be satisfied by its corresponding BS (3.8c). UE i will initially be

assigned to BS j if the amount of received SINR value is the highest with respect

to its neighbor cells (xij = 1). This is carried out for only initializing the system

model and after that UE assignment will be considered as the optimization value in

this thesis.

The BDA problem is a binary integer linear program (BILP) with a search space

complexity of O(2N×M +2M), that is NP-hard [99] [100] with a smaller search space

complexity compared to the DESAS problem. Turning off or on a BS impacts other

network parameters such as available bandwidth in other cells or received interfer-

ence. In case the effect of activation and deactivation of BSs is considered constant,

this problem can be reduced to the well-known bin packing problem [101]. In the

bin packing problem, the goal is to minimize the number of required bins to be used

for packing objects with different sizes and values. In the BDA problem, objects are

UEs with different bandwidth requirements (values) and bins are active BSs whose

count we try to minimize. Therefore, the BDA problem can be reduced to a multi-

dimensional bin packing problem that is NP-hard. To solve this problem, we need to

define a utilization factor for each cell to predict network behavior in case of activa-

tion and deactivation of a BS. The corresponding utilization ratio will be introduced

in the next section.

3.3 Power Adaptation (PA) Problem

In the PA problem, we want to adapt transmit power by considering the effective BS

density to maintain network coverage and to prevent coverage holes while satisfying

UEs’ traffic requirements. This problem can be formulated as the minimization of

overall power which is allocated by BS j to its associated UEs.

Assume the overall density of small BSs and density of UEs in the network are repre-

sented as λb and λu, respectively where generally λu ≥ λb. We assume a UE is served
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by the BS that provides the highest SINR value. The bandwidth per user depends on

the density of UEs (λu) and the size of cells. For the sake of simplicity, we assume

the whole bandwidth (B) is divided among UEs homogeneously; i.e., Bu = B λb
λu

.

Therefore, the average rate per UE i is

Rij = BuE [log2(1 + SINRij)] . (3.9)

We define the coverage probability Pc(TSINR) as the probability of the received

SINRij by UE i from its closest BS j to be greater than a threshold value TSINR,

Pc(TSINR) = Prob (SINRij > TSINR) .

In the PA problem, we want to find a solution to maximize the energy efficiency

while enhancing the spectral efficiency (φ) without degrading the provided QoS level

in terms of network coverage and UEs’ throughput. To maintain the network coverage

and satisfy the UEs’ throughput requirement, the maximization of energy efficiency

can be converted to the minimization of overall power consumption including the

transmit power (Pij) for all UEs and the operational power (P0) in the whole network.

Given an initial UE-to-BS assignment xij , we formulate the PA problem as

finding xij, Pij

to minimize
∑
i∈N

∑
j∈M

xij ((Pij + P0)) (3.10a)

subject to Pc(Pij) > (1− ε)Pmax
c , (3.10b)

Rij(Pij) > min {R, φmaxBu(λb)} , (3.10c)

xij ∈ {0, 1} ,∀i ∈ N,∀j ∈M, (3.10d)∑
j∈M

xij = 1,∀i ∈ N, (3.10e)

The objective is to minimize the overall power consumption in the network given xij

where xij = 1 if UE i is connected to BS j, and zero otherwise (3.10d), and each UE

can be connect to just one BS (3.10e). We need to make sure that the probability of

coverage for all UEs should be always higher than an acceptable outage value if the

power allocated by BS j to UE i is set to Pij . By considering Pmax
c as the probability
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of coverage when there is no interference, we want Pc(Pij) (coverage probability in

practice) to be greater than ε less of Pmax
c to achieve the required coverage and to

satisfy the throughput requirement of UEs.

By considering an interference limited environment, we assume the maximum achiev-

able spectral efficiency is φmax. When the bandwidth allocated to a UE in a network

with density λb is Bu(λb), the maximum achievable data rate becomes φmaxBu(λb).

This is the upper bound for the UEs’ demand rate, R. Then, Ri(Pj) is the achievable

rate by UE i from its associated BS j when the transmission power of the BS is equal

to Pj . It must always be equal or larger than the UEs’ demand rate R (3.10c).

The PA problem, similar to the DESAS problem, can be reduced to the GAP. The

overall power that is going to be assigned to UEs is the profit value, allocated rate to

UE i (Ri(Pj)) when transmit power is set to Pj is the weight of assigned power and

the maximum achievable data rate by BS j (φmaxBu(λb)) can be considered as the

capacity in the PA problem. Therefore, the PA problem can be reduced to generalized

assignment problem with the space complexity of O(2N×M + 2M) which is known

to be an NP-hard problem [102] with a smaller search space compared to the DESAS

problem.
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CHAPTER 4

BASE STATION DENSITY AND POWER ADAPTATION (BDPA)

ALGORITHM

In this chapter, we present the base station density and power adaptation (BPDA)

algorithm to solve the DESAS problem. We first need to evaluate various scenarios

that we may face in a dynamic network to justify the BDPA algorithm and show how

can we tackle the problems defined in the previous section by adapting density and

transmit power of BSs to the network state.

4.1 Scenarios

We define four different scenarios that we may face while running our algorithm

among small cells. These four scenarios (S1, S2, S3, S4) and the effect of applying

BDPA algorithm is depicted in the left and right side of Figure. 4.1 respectively. We

assumed in the figures that macro BSs are connected to a MEC.

• Scenario S1: As it can be seen in Figure. 4.1a, when the traffic load in some of

small cells is low and in case their assigned UEs are transferred to the associated

macro cell, the utilization ratio of macro BS (that we define in Section 4.3) will

still remain under the threshold value. In this case, we can turn off redundant

small cells and transfer their load to the macro cells.

• Scenario S2: Small cells can cause interference to each other that may degrade

UE satisfaction as shown in Figure. 4.1b. To enhance QoS and save energy,

we may turn off interferer BSs and transfer their UEs to a neighbor BSs with

a higher SINR value if the utilization ratio of the neighboring BS still remains
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below the expected threshold.

• Scenario S3: In the third scenario (Figure. 4.1c), when a small cell’s load is

below the threshold and if its neighboring small cells can handle its associ-

ated UEs without causing any degradation in the coverage and the throughput,

and if the macro cell is overloaded, then that small cell can be turned off and

its neighbors need to expand their coverage area by amplifying their transmit

power until the required received SINR can be obtained for all UEs.

• Scenario S4: Maintaining QoS may have a higher priority in comparison to

saving energy. If the received SINR in a BS is below the minimum required

received SINR value to satisfy UEs, the traffic load needs to be distributed to

the neighboring cells to enhance the QoS level. As it is shown in Figure. 4.1d,

other cells can boost their transmit power to expand their coverage area for

providing service to the unsatisfied UEs located at the edges. The system may

force those UEs to handover to their neighboring cells for balancing the load.

In these scenarios, the main goals are enhancing UEs QoS by lowering received in-

terference and increasing UEs throughput while the transmit power of BSs and the

density of active BSs are optimized.

4.2 Comparison of Distributed, Centralized or Decentralized Solutions

For solving the DESAS problem, there are basically three approaches. One is to de-

sign a centralized approach where the input size to the problem is the number of BSs.

The other approach is the fully distributed approach where each BS tries to solve the

problem individually. Since the DESAS is an NP-hard problem, a centralized solu-

tion is not feasible in practice, because of the huge search space. When the number

of BS’s the increases, the solution space grows exponentially. On the other hand,

scheduling BSs for conserving energy may affect the overall network throughput if

it is done individually by each BSs in a distributed fashion. Since proposing a fully

centralized or a distributed solution is not feasible, we design a hybrid solution using

multi-access edge clouds (MECs) to augment the capabilities of BSs. We off-load
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(a) Energy conservation by moving load from small to macro BSs.

(b) Reducing interference (INF) by adapting BS density.

(c) Cell-zooming for conserving energy.

(d) Cell-zooming for user satisfaction.

Figure 4.1: Four different scenarios (S1, S2, S3, S4) including: a) reducing energy

consumption through macro cell, b) reducing interference, c) enhancing energy con-

servation through small cells, d) maintaining QoS, that we may face in a HetNet and

the effect of applying the BDPA algorithm over these scenarios.
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some management and control tasks such as coverage control and sleep scheduling

from the core network to the edges of the network.

MECs, by accessing multiple BSs and communicating with each other, have a larger

perspective (accessing data which is not limited to just one cell) over the network state

in comparison to distributed models [103]. The overall cost to collect network state

for a MEC is lower than a centralized model since the divide-and-conquer approach is

employed. Although centralized models have the largest perspective over the network

state in comparison to MEC and fully distributed models, they are not scalable; the

problems become intractable as the network grows. Since MECs are located to the

edge of network and close to the BSs, they can collect information from cells as fast

as fully distributed models while the delay for collating the information at the core

network is huge. With a similar argumentation, we can claim that the amount of

processing power and energy needed by centralized models are large in comparison

to MECs. All in all, although centralized models can allocate resources optimally,

reaching the optimal result may not always be feasible if the size of network is too

large. Therefore, by employing MEC we can reach a sub-optimal solution faster with

a lower amount of energy and processing power. The overall comparison among

decentralized, MEC and fully centralized solutions are summarized in Table 4.1.

We assume a two-tiered HetNet where under the macro BS’s coverage, there are a

number of small cells. In the BDPA algorithm, macro BSs will always be up and

operational, and the proposed scheduling model will be executed over small cells

to maintain the network coverage. The BDPA algorithm consists of BDA and PA

algorithms to solve the DESAS problem (3.8a-3.10a).

4.3 Base Station Density Adaptation (BDA) Algorithm

Let us assume the total number of available RBs in BSj during the time interval T

is represented as τj(T ). The resource utilization ratio of BS j can be defined as the

percentage of allocated resource blocks to satisfy the minimum required throughput
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Table 4.1: The comparison of implementing a fully distributed, a decentralized or a

centralized solution to the DESAS problem.

Fully Distributed
Decentralized

(MEC)
Centralized

Awareness of other cells Not known Aware Aware

Information collection cost Very low Low Very high

Scalability Scalable Scalable Not scalable

Perspective
Per BS

individually

Over BSs

under its

supervision

For the whole

network

Time resolution Very fast Fast Very slow

Computational power Low High
Very high but not

feasible

Resource allocation Not optimal Suboptimal Optimal

in that BS is defined as

Aj =

∑N
i=1 τij
τj(T )

=

∑N
i=1

R∗
ij

bτ log2(1+SINRij)

bj
bτ
T

, (4.1)

where bj is the total available bandwidth of BS j. To incorporate the resource utiliza-

tion ratio, we can redefine SINR in (3.1) as

SINRij =
gijPij

σ2 +
∑M

k=1,k 6=j AjgikPik
, (4.2)

We need to prevent coverage holes when BSs are turned off. By employing MEC, we

can calculate the probability of network coverage for different SINR values by con-

sidering the density of BSs (λb). In this thesis, we validate our results by employing

the probability of coverage, PC(TSINR) as proposed in [104],

PC(TSINR) =
2

γ

∫ ∞
0

t
2
γ
−1e−tTN0α

− 2
γ
e−t

2
γ ×

−2

γ

T t
2
γF (1, 1− 2

γ
; 2− 2

γ
;−T )

1− 2
γ

 dt,

(4.3)

where

α =
λbπE[(PdSd)

2
γ ]

K2
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is the distribution of shadowing Sd that is considered as arbitrary except E[S
2
γ ] <∞,

and F (a, b; c; z) is the hyper-geometric function [104]. In this model, T is the re-

ceived SINR value in the network, K = 6910 km−1 for urban environment, which

can be obtained from the COST Walfisch-Ikegami model and γ is a path-loss expo-

nent. Here, E[(PdSd)
2
γ ] is the propagation invariance which Sd and Pd are indepen-

dent random vectors. Sd represent the effect of propagation of a signal from its origin

at Sd and Pd is the transmit power of that signal. The proposed model can be easily

evaluated numerically if we consider the noise power zero (N0 = 0) as follows:

PC(TSINR) =

−2

γ

T t
2
γF (1, 1− 2

γ
; 2− 2

γ
;−T )

1− 2
γ

−1 . (4.4)

In this model, BSs are distributed based on Poisson model and by considering this fact

that BSs are not completely turned off (they are always aware of the network condition

through the MEC in order to be activated and deactivated during each time interval),

the Poisson distribution assumption will still be valid throughout the life-cycle of the

network. By obtaining PC from (4.3), we can find the corresponding required SINR

value to keep PC > TSINR. In (4.2), SINR depends on the activity ratio of cells.

Therefore, we can determine the maximum activity ratio each BS can tolerate to keep

the PC above the network threshold by knowing the required minimum SINR value.

For adapting density of small BSs, we need to make sure user’s traffic requirements

are satisfied and coverage can still be preserved. For offloading the traffic when a

small cell is deactivated, we need to evaluate the capacity of neighboring small cells

and the macro BS to find out whether or not they can handle the offloaded traffic. We

also need to analyze the effect of applying the scheduling algorithm over the network

coverage to prevent holes.

The pseudocode of the proposed BDPA algorithm is presented in Algorithm 1. Due

to heterogeneity of the network and variations of BS density, we need to calculate

a threshold SINR value to maintain network coverage and minimum cell utilization

factor (Amin) in each run (line 6). A MEC may access data from a wider range of

base stations and it has a larger computation power than base stations. Therefore, the

density of BSs can be estimated by using a density estimator at the MEC [105]. By

obtaining density of BSs, the minimum TSINR based on the required probability of
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coverage (Pc) can be computed; then, it can be used to calculate the minimum cell

utilization factor for the next step. We can obtain the minimum required throughput

in each small cell (R∗ij) by comparing the achievable throughput in the basic model (a

network where density and power adaptation is not employed) and set it as R∗ij in the

BDPA algorithm. We then check the utilization factor of each BS to compare with

Amin (line 5). If utilization factor of BS j is above the threshold and if its associated

macro BS has enough capacity (Amj) to handle BS j load (line 7) we can turn off

that base station and transfer its traffic load to its associated macro BS. If macro BS

is overloaded, we can transfer BS j’s load to one of its neighbors, if possible (lines

12-19). However, if its neighbor cannot handle BS j’s traffic load, we need to keep

this BS on and use our power adaptation algorithm (PA()) that will be explained in the

next section. If the utilization factor of BS j is below the threshold and by running

our power adaptation algorithm the utilization factor of BS j still remains below the

threshold, we can turn on redundant BSs and recalculate Amin until we make sure the

required QoS (users’ traffic requirements) can be satisfied (lines 27-39).

The computational complexity of the joint BDPA algorithm is O((Nmacro+Nsmall)τtot).

Due to the distribution of computational tasks among MECs, each MEC is responsi-

ble only for part of BSs and the BDPA algorithm runs in polynomial time.
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Algorithm 1: The base station density and power adaptation algorithm.
1 From MEC:
2 λ← density of BSs
3 TSINR ← find TSINR such that P (TSINR, λ) ≥ Tcov
4 for j = 1:All BSs connected to MEC do

5 Amin ←
∑N
i=1

R∗
ij

bτ log2(1+SINRij)

bτ
bj
T

6 if Amin ≤ Aj then
7 if Amin ≤ Aj + Amj ≤ 1 then
8 Turn off BS j

9 λ← Nsmall−1
Area

10 DeactivatedBSs+ 1
11 end
12 else
13 Find a neighbor small cell k
14 with the highest received SINR
15 if Amin ≤ Aj + Ak ≤ 1 then
16 if SINRk ≥ TSINR then
17 Turn off BS j

18 λ← Nsmall−1
Area

19 DeactivatedBSs+ 1
20 end
21 else
22 #Our heuristic cell-zooming #algorithm needs to be run to

#maintain QoS in the network
23 PA()
24 end
25 end
26 end
27 end
28 else
29 PA()
30 if Aj < Amin &&
31 DeactivatedBSs > 0 then
32 while Aj ≥ Amin or DeactivatedBSs > 0 do
33 Turn on a BS
34 λ← Nsmall+1

Area

35 DeactivatedBSs− 1
36 TSINR ← recalculate TSINR

37 Amin ←
∑N
i=1

R∗
ij

bτ log2(1+SINRij)

bτ
bj
T

38 end
39 end
40 end
41 end
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At the MEC

a.Determine the Pc

b.Collect measure-

ments from BSs

c.Create SINR-CQI map

d.Find the threshold TCQI

e.Send TCQI to BSs

Figure 4.2: The mobile edge tasks flow chart.

4.4 The Power Adaptation (PA) Algorithm

To maintain coverage and reduce interference in a network in addition of considering

the capacity of other cells, we employ the cell zooming technique that we partially

presented in [106]. In this work, we expand or reduce the cell size for enhancing the

overall network throughput.

In the first step, based on the determined SINR threshold from (4.3), we need to adapt

transmit power of BSs by finding out an adequate threshold value (TSINR) which can

keep PC above the minimum requirement of network operators (Figure. 4.2, step a)

for enhancing the network throughput while the coverage in the whole network is pre-

served. In the second step, the appropriate modulation and coding scheme (MCS) can

be obtained based on the channel quality indicator (CQI) value that can be obtained

by BSs from their associated UEs (Figure. 4.2, step b) [107].

After obtaining TSINR, we need to find the corresponding CQI value based on the

channel condition. In the third step (Figure. 4.2, step c), the SINR values can be

mapped to their corresponding CQI levels by calculating the block error rate (BLER)

for each CQI level as it is shown in Figure. 4.3. In Figure. 4.3, we calculate the BLER

for each CQI value to find the corresponding SINR value when the BLER reach to

10%. The corresponding SINR-CQI map is shown in Table 4.2.
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Figure 4.3: The BLER-SINR map for various CQI values.

In the last step of the flowchart shown in Figure. 4.2, at step d, the MEC needs to deter-

mine an appropriate CQI value to satisfy network coverage and enhance the through-

put simultaneously (TCQI). There is a trade-off between choosing high CQI value and

maintaining the network coverage. To maintain the network coverage, we need to use

a lower MCS to make sure the received signal is interpretable by the receivers even in

low quality channel conditions (low received SINR value). By decreasing the MCS,

the size of transport block and the number of bits per symbol will be decreased which

can drop the network throughput significantly. Therefore, MEC by considering the

probability of coverage and SINR-CQI map which are obtained from previous steps,

can choose an appropriate threshold value (TCQI) and inform BSs to adapt their mod-

ulation and coding schemes and their power consumption based on it (Figure. 4.2,

step e).

This procedure has to be repeated in case of any changes in the network topology such

as increasing the amount of maximum transmit power, type of base stations, density
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Table 4.2: The SNR-CQI map table.

CQI SNR CQI SNR CQI SNR

1 -6.93 6 2.69 11 12.28

2 -5.14 7 4.69 12 14.17

3 -3.18 8 6.52 13 15.88

4 -1.25 9 8.57 14 17.81

5 0.76 10 10.36 15 19.82

of BSs or environmental conditions. In Figure. 4.2, the summary of mobile edge tasks

is presented.

When all base stations are informed about the threshold value which is obtained in

the previous step by the MEC; each base station employs the power allocation algo-

rithm presented in Algorithm 2 that is based on the received CQI feedback from its

UEs. BSs compare CQI measurements of user-specific reference signals [108] with

the threshold value (line 5) to increase or decrease the power allocation to each RB

individually per transmit time interval (1 ms).

In the basic power allocation model where power is allocated to each UE homoge-

neously, UEs located at the edges experience a high amount of interference from

neighboring base stations. The amount of power allocated to UEs located at the cell-

center has to be reduced to overcome the interference effect over UEs located at the

edges in the PA algorithm.

Each base station independently monitors the feedback from active UEs. When the

amount of received CQI value is higher than the threshold, the BS will reduce the

power (P ) continuously until it makes sure the allocated power is higher than the

minimum possible transmission power (Pmin) and the new received CQI value is still

equal or higher than the threshold (lines 15-18). To enhance the network throughput,

BSs need to allocate more power to the UEs located at the edges in comparison with

other UEs. Therefore, if the amount of received feedback from a UE is less than the

threshold, BSs will consider it as the edge UE. In this case, BSs need to amplify the

allocated power for 1% (∆) until they make sure the new CQI feedback is higher than
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Figure 4.4: The effect of applying fluctuation reduction over the PA algorithm.

the threshold and the amount of allocated power is still below the maximum trans-

mission power (Pmax) (lines 6-9). By choosing a larger (∆) value, the precision of

the PA algorithm can reduce, but the algorithm will converge faster. BSs periodically

communicate with MECs to adapt their transmission powers by any changes happen

in the network condition. To decrease the convergence time in our algorithm because

mainly large portion of UEs are located close to the BSs; at first, we reduce the power

to the half then we run the algorithm to decrease the power adaptively based on UEs

conditions (line 13). To reduce the fluctuation during power allocation, BSs maintain

the history of last 10 power allocation to their associated UEs. In case, the amount

of power allocated to a UE after power reduction for about (∆) is not lower than the

average of power which have been allocated to the UE in the last 10 time slots (Pavg)

(line 12), BSs will allocate the same power as the previous step. In Figure. 4.4, we

present the effect of applying fluctuation reduction (FR) over the proposed algorithm.

As we can see, the overall power consumption in the network will converge after 50

ms and by applying FR over our algorithm; the power fluctuation is reduced.

42



Algorithm 2: The power adaptation algorithm.

1 Receive the threshold value from MEC

2 for All available RBs do

3 Pmax ← Pmax = Sector Maximum Downlink Power
Number of Available RBs

4 Pmin ← minimum applicable power per RB

5 if CQI ≤ TCQI then

6 while P ≤ Pmax and CQI < Threshold do

7 P ← P+∆

8 CQI ← Request for a new CQI feedback

9 end

10 end

11 if CQI ≥ TCQI then

12 if P −∆ ≤ Pavg then

13 P ← P
2

14 CQI ← Request for a new CQI feedback

15 while P ≤ Pmin and CQI < Threshold do

16 P ← P −∆

17 CQI ← Request for a new CQI feedback

18 end

19 end

20 end

21 end
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CHAPTER 5

RESULTS AND DISCUSSION

For the evaluation, we use the Vienna-LTE simulator which is a system level sim-

ulator to implement the downlink channel model and the network environment of a

multi-user OFDMA system such as LTE [109]. In this simulator, collisions on the

random-access channel and other parameters such as noise, interference, shadowing,

fading, antenna size, BSs height, number of transceivers, angle of antennas, handover,

channel model, traffic model, walking model are considered based on real-life LTE

networks and applied in the proposed algorithm. We modified the power allocation

model and developed our scheduling module in this simulator.

5.1 Simulation Models and Parameters

The scheduling algorithm is implemented for sparse and dense small cell scenarios

to show its capabilities in dynamic networks. We simulate two different network

scenarios:

• Sparse network: where the density of BSs varies between 5 to 20 BS/km2, and

100 UEs are uniform randomly distributed in the region of interest.

• Dense network: the density of BSs varies between 20 to 100 BS/km2, and 1000

UEs are uniform randomly distributed in the region of interest.

To provide a fair comparison among the BDPA algorithm, the LP-WUR [27] and the

C-ICIC [28] are described in Section IV.D.1 and IV.D.2, respectively, we employed

different types of bursty traffic loads in our simulation which are modeled based on
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real-life LTE networks [1]. Simulation parameters and traffic models are summarized

in Table 5.1 and Table 5.2, respectively.

Table 5.1: Simulation parameters and their values.

Parameters Value Ref

Frequency 2.14 GHz [110]

K 6910 KM−1 [104]

γ 4 [104]

N0 10−15.82 [104]

Subcarrier Frequency 15 kHz [110]

Macro BSs Max Power 10 W [110]

Small BSs Max Power 100 mW [27]

Small BSs Sleep Power 15 mW [27]

LP-WUR Power 10 µW [27]

Transmission Time Interval 1 ms

Simulation Area 2000 m × 2000 m

RRH Antenna Gain Omni-directional [111]

Path Loss Model 128.1 + 37.6logR10, R in km [110]

Noise Power Spectral Density -174 dBm/Hz [110]

Receiver Noise Figure 9 dB [110]

Density of BSs (BS/km2) 5,10,15,20,35,50,75,100

Active UEs 20,50,100,1000

UE Speed 5,20,40 km/h

Feedback CQI [111]

Feedback Delay 3 TTI

Scheduler Proportional Fair

Number of Monte-Carlo Runs 30

Simulation Length 100 TTI
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Table 5.2: Traffic types in OFDMA-based networks [1].

Traffic Type Transmission Category Traffic Load

FTP Best effort 10%

HTTP Interactive 20%

Video Stream Streaming 20%

VoIP Real-time 30%

Gaming Interactive & real-0time 20%

5.2 Vienna Simulator, Implementation Details

Vienna LTE system level simulator consists of different modules including anten-

nas, channel models, network generation, schedulers, traffic models, walking models

and etc. Each BS includes three sectors and in each sector, small cells are imple-

mented. UEs and BSs are distributed uniform randomly in the region of interest. A

wide variety of schedulers exist in this simulator such as best CQI, proportional fair,

round robin, and max-min. All of these schedulers will be invoked through lteSched-

uler.m file. To make the BDPA algorithm applicable over different scheduling models,

we implement our algorithm in the scheduler coordinator (lteScheduler.m) under the

power allocation module. We also modify the traffic and the mobility models for

different scenarios as explained in the sequel.

5.3 What’s happening at MEC?

Our main aim is reducing the amount of energy consumption in the network by gath-

ering information at the MEC to apply the BDPA algorithm. In MEC, by considering

the density of BSs, the appropriate TSINR and TCQI values which can be used as the

threshold value to maintain minimum throughput and coverage requirements in the

network, needs to be obtained through (4.3).

In Figure. 5.1, the probability of coverage for various SINR thresholds is presented.

We also examine three different BS densities (10, 50, 100 BS/km2) to show how
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TSINR can be changed under various conditions. As we can see, when the BS den-

sity is low (10 BS/km2), if we set TSINR at -10 dB the probability of coverage will

be around 57%. However, by increasing the density of BSs to 50 BS/km2 and 100

BS/km2, the probability of coverage will be boosted up to 98% and 100%, respec-

tively. By evaluating Figure. 5.1 we can find out if BS density is very low, we may

face with too much coverage holes which can degrade the QoS in the network. More-

over, by increasing the density of BSs the amount of received interference will also

increase, but this improvement will be negligible when the BS density reaches to its

optimum level. Therefore, we need to adapt density of BSs to the network condition

to enhance QoS and prevent resource wastage in the network.

Figure 5.1: The probability of coverage for different SINR thresholds.

The SNIR threshold (TSINR), which is found at the edge cloud will be used by the

BDA algorithm and by employing the snapshot of the network condition, it has to be

mapped to a CQI value since BSs characterize the channels’ quality by using 4-bit

CQI values. Therefore, by evaluating BLER in the network, the SINR value which
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is obtained from the previous step can be mapped to its corresponding CQI level

(Figure. 4.3) to achieve (TCQI) which will be forwarded to BSs to be used in the PA

algorithm. Therefore, the BDPA algorithm will be invoked to optimize the network

resources when the corresponding information is received through MECs.

5.4 Validation of the BDPA Algorithm

We validate the BDPA algorithm in this section and compare it with the a sleep

scheduling technique that we call as the LP-WUR technique which employs low-

power wake-up receivers [27]. We also compare our results with a cooperative inter-

ference inter-cell control (C-ICIC) model which jointly allocates power and resource

among UEs to enhance energy consumption and network throughput [28]. In the LP-

WUR, density of BSs are adapted based on UEs request, while in the C-ICIC energy

consumption will be optimized by collaboration of neighbor BSs with each other.

Therefore, we can compare the effect optimizing energy consumption based on UEs

request or collaboration of neighbor cells with a MEC based architecture (BDPA)

in this thesis. We present its details in the sequel. We evaluate throughput, spec-

tral efficiency, energy efficiency, and the impact of mobility and user density on the

performance of the BDPA algorithm in this section.

5.5 LP-WUR Sleep Scheduling Technique

By equipping senders and receivers with wake-up receivers, an on-demand energy-

efficient UE-controlled sleep scheduler is presented in [27] that we call as LP-WUR

technique. For comparing the BDPA performance we implemented the LP-WUR

technique in the Vienna simulator as well. Due to a low amount of power consump-

tion in wake-up radio modules (10 µW approximately), they can be always in the

active mode to listen to channels. Therefore, the wake-up radio can trigger a BSs for

transmission whenever a wake-up signal is successfully received and small cells can

go to the sleep mode when the transmission is terminated. To implement LP-WUR,

we trace communications among UEs and BSs and we examine energy consumption,

throughput and spectral efficiency for this algorithm, whenever a packet is exchanged
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between UEs and BSs.

5.6 Cooperative ICIC (C-ICIC) Technique

In this model, authors introduced C-ICIC technique which can enhance the received

SINR and exploits communication channel by reducing the inter-cell interference

(ICI) effect between adjacent BSs [28]. In the C-ICIC, UEs are classified into a bad

radio (BR) group if they are negatively affected due to the ICI (by considering the

amount of received wideband CQI feedback), while the rest of UEs will be classified

as a good radio (GR). In the C-ICIC, satisfaction functions for UES, cells, sectors

are defined. Then, resource blocks and power allocation are based on the satisfaction

functions. C- ICIC is a distributed technique facilitating cooperation among adjacent

cells.

5.7 Monte-Carlo Simulation Results

In this section, we present the quality of service, spectral efficiency, energy consump-

tion results. We further evaluate the impact of user density and mobility.

5.8 Quality of Service (QoS)

As it is explained previously, QoS can be maintained when the minimum required

throughput in each small cell (R∗ij) can be satisfied. In this work, for increasing the

system efficiency with respect to our opponents (LP-WUR and C-ICIC), we defined

R∗ij as the mean throughput which can be achieved in in LP-WUR and C-ICIC. In

Figure. 5.2 and Figure. 5.3, we compare the mean throughput of the BDPA algorithm

with the LP-WUR and the C-ICIC techniques in sparse and dense network scenarios,

respectively. Throughput can be affected by increasing density of UEs and BSs in

the network, due to higher transmission rates in the network. As we can see, when

BS density is low (Figure. 5.2) the maximum achievable throughput by the BDPA,

the LP-WUR and the C-ICIC algorithms are around 10 Mbps, 8.5 Mbps and 9 Mbps,
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respectively. These values are boosted up to 15 Mbps and 11 Mbps when BS den-

sity is increased (Figure. 5.3). In both scenarios, we can achieve a higher network

throughput in different conditions by employing the BDPA algorithm. Because, in

the BPDA algorithm by considering the capacity of each cell and reducing the num-

ber of active BSs, the total amount of interference received by UEs will be reduced

which increases channel quality and improves the overall network throughput. More-

over, unlike the C-ICIC, the BDPA by employing MEC in its architecture can have a

higher perspective over the network which can maintain network coverage and adapt

BSs density while transmission power is reduced. With the power adaptation feature

of the BDPA algorithm, the received SINR for UEs located at the cell borders will be

enhanced that improves the network throughput compared to the LP-WUR and the

C-ICIC technique. The proposed algorithm can provide a larger network throughput

in dense networks and can enhance QoS up to 26% in comparison to the LP-WUR

and the C-ICIC techniques.

Figure 5.2: The effect of applying the BDPA algorithm on network throughput in a

sparse network with 100 UEs for different BS densities.
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Figure 5.3: The effect of applying the BDPA algorithm on network throughput in a

dense network with 1000 UEs for different BS densities.

5.9 Spectral Efficiency

We present the effect of applying the BDPA algorithm on the spectral efficiency in

Figure. 5.4 and Figure. 5.5. Spectral efficiency can be enhanced by using a high order

MCS which is possible when the interference in the network is low and the network

has enough capacity to handle the traffic load. In both cases (sparse and dense) the

spectral efficiency will reduce by increasing BS density due to the high amount of

interference. The highest spectral efficiency in a sparse network for the BDPA, the

LP-WUR and the C-ICIC are when BS density is 5 BS/km2 (Figure. 5.4) and it is

about 11 bps/Hz, 9 bps/Hz and 8.9 bps/Hz, respectively. Additionally, in the dense

network (1000 UEs) the highest spectral efficiency for the BDPA, the LP-WUR and

the C-ICIC can be achieved is when BS density is 20 BS/km2 and it is about to 35 bp-

s/Hz, 27 bps/Hz and 28 bps/Hz, respectively. Due to the larger number of deactivated
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BSs by the BDPA algorithm (which can reduce the interference in the network), the

average spectral efficiency per cell can be enhanced by 30%. The BDPA algorithm,

by adapting density of BSs and distributing their load to other cells, can use resources

more efficiently in comparison to the LP-WUR and the C-ICIC techniques. Although

BSs are only activated whenever UEs request in the LP-WUR technique, they can

be activated with even a single UE request. Therefore, the LP-WUR technique can-

not use resources efficiently and spectral efficiency will always be lower than that of

the BDPA algorithm. The C-ICIC adjusts transmit power in two levels based on UEs

class (BR and GR) while in the BDPA, power can be adjusted at different levels based

UEs condition which can distribute power among UEs more efficiently. Therefore,

the BDPA can provide higher throughput and spectral efficiency with respect to the

C-ICIC.

Figure 5.4: The effect of applying the BDPA algorithm in a sparse network with 100

UEs on spectral efficiency for different BSs’ densities.
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Figure 5.5: The effect of applying the BDPA algorithm in a dense network with 1000

UEs on spectral efficiency for for different BSs’ densities.

5.10 Energy Consumption

To evaluate the energy efficiency of the BDPA algorithm, we analyze the amount of

energy consumption for different numbers of UEs and BSs in Figure. 5.6 and Fig-

ure. 5.7. As it is shown, by increasing BS density the amount of energy consumption

in both scenarios will increase. When the network is sparse (Figure. 5.6) and BS

density is 20 BS/km2, the BDPA, LP-WUR and C-ICIC algorithms consume almost

same amount of power for about 12000 W; while, the overall power consumption in

the dense scenario (Figure. 5.7) will increase up to 13400 W, 14100 W and 13600

W, respectively when BS density is 100 BS/km2. In all cases, the highest amount

of energy is conserved in the BDPA algorithm due to the low number of active BSs

during each transmission in comparison with [27] and [28]. As we can see in these

figures, by adapting MCS in the network based on our power adaptation model and
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offloading BSs, we can always achieve less energy consumption in comparison to the

LP-WUR and the C-ICIC techniques. The BDPA algorithm can conserve a higher

amount of energy in dense networks and can save up to 5% more energy with respect

to the LP-WUR technique which means 3 kW per second or 98.55 Tera-Watt per year.

The amount of energy conservation will be larger in ultra-dense networks.

Figure 5.6: The effect of applying the BDPA algorithm on energy consumption in a

sparse network with 100 UEs and bursty traffic for different BSs’ densities.

Moreover, in the LP-WUR technique, when we have a continuous traffic load all BSs

need to be in the active mode to provide service for their associated UEs. However,

in the BDPA algorithm, network resources will be used in an efficient manner by

offloading the traffic of low-load BSs to neighboring cells and deactivating them to

conserve more energy. As we can see in Figure. 5.8, the proposed algorithm can

conserve up to 12% more energy when the traffic load is high.
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Figure 5.7: The effect of applying the BDPA algorithm on energy consumption in a

dense network with 1000 UEs and bursty traffic for different BSs’ densities.

5.11 User Density

In dynamic networks, in addition of variation in density of BSs, UE density will also

vary in a day. By keeping the density of BSs constant (50 BS/km2), we evaluate

the effect of UE density on throughput, spectral efficiency and power consumption in

Figure. 5.9, Figure. 5.10 and Figure. 5.11, respectively. As we can see, in all of these

cases, the BDPA algorithm can achieve higher performance in comparison to the LP-

WUR and the C-ICIC techniques. When the density of UEs are low, they have almost

the same performance. As we can see, by increasing UE population, the BDPA algo-

rithm produces better results. In the BDPA algorithm, to satisfy UE constraints such

as throughput, when UE density is low and based on the UEs locations we may need

to keep more BSs in the active mode in comparison to the LP-WUR and the C-ICIC

technique. However, by increasing UEs’ density the amount of data transmission will
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Figure 5.8: The effect of applying the BDPA algorithm on energy consumption in a

dense network when traffic load is high for different BS density.

also increase, and LP-WUR needs to turn on and off BSs more frequently. At this

point, the BDPA can be more efficient by distributing load among cells and deactivat-

ing redundant BSs. Moreover, in BDPA by enhancing SINR (4.2), we can enhance

the received interference by UEs more accurately with respect to the C-ICIC. There-

fore, the overall throughput and spectral efficiency will be enhanced while the energy

consumption can be maintained in comparison with the C-ICIC.

5.12 Mobility

To provide a real-life condition in our simulation, the mobility of UEs for differ-

ent speeds are also considered. The density of UEs and density of BSs are 100 and

20 BS/km2, respectively and we evaluate 3 different speeds for UEs (5 km/h, 20

km/h and 40 km/h) to simulate pedestrians, cyclists and drivers in our analysis. As
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Figure 5.9: The effect of applying the BDPA algorithm on network throughput when

density of BSs is fixed at 50 BS/km2 and UEs’ density is varied between 100 to 500.

it is shown in Figure. 5.12, the proposed algorithm can achieve a higher network

throughput in all cases compared to the LP-WUR and the C-ICIC techniques. The

main reason that BDPA can perform better is equipping BDPA with MEC and pro-

viding higher perspective over network state in comparison with the LP-WUR and

the C-ICIC techniques. Therefore, the BDPA algorithm can predict faster and more

accurate when a BS needs to be turned off or vice versa.
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Figure 5.10: The effect of applying the BDPA algorithm on spectral efficiency when

density of BSs is fixed at 50 BS/km2 and UEs’ density is varied between 100 to 500.
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Figure 5.11: The effect of applying the BDPA algorithm on power consumption when

density of BSs is fixed at 50 BS/km2 and UEs’ density is varied between 100 to 500.
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Figure 5.12: The effect of applying proposed algorithm on network throughput in a

sparse network with 100 UEs for varied velocities.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

With the invent of mobile BSs such as drone cells, not only the user’s devices but also

the elements in the infrastructure of the network has also become mobile introducing

many novel and not-addressed challenges. A flexible and density-adaptive mobile

communications architecture is required. However, there is a big research gap be-

tween the state of the art and the ambition of achieving a self-organized, adaptive and

flexible networking architecture. The existing architectures have severe limitations

and shortages to be able to address the presented paradigm changes. We stress in

this thesis that density-aware and –adaptive networking is crucial in future networks

by presenting a qualitative and quantitative analysis of the impact of density on net-

work performance. In this thesis, we proposed a density-aware, energy-efficient and

spectrum-efficient sleep scheduling technique by applying two heuristic algorithms to

conserve energy and enhance the quality of service including users’ throughput and

satisfying the required network coverage simultaneously in a heterogeneous network.

Base station density is adapted by considering cell capacities and by balancing traffic

load among cells. We prevent coverage holes and enhance network throughput by

applying a cell-zooming technique and improving signal-to-interference-plus-noise

ratio for users located at cells borders. We provide higher processing power and

higher perspective over the network state in comparison to individual base stations by

equipping the network with multi-access edge cloud. The proposed model is exam-

ined with a system level simulator to provide reliable results. All in all, we find out

future networks can become smarter and more efficient if we consider BS density in

our models and adapt it to the network condition.
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6.2 Future Work

We experience a major paradigm shift in mobile networks. The infrastructure of cel-

lular networks becomes mobile as it is densified by using mobile and nomadic small

cells to increase coverage and capacity. Furthermore, the innovative approaches such

as green operation through sleep scheduling, user-controlled small cells, and end-to-

end slicing will make the network highly dynamic and density of dynamic networks

may vary in time and space from sparse to dense or vice versa. Therefore, provid-

ing density adaptive solutions in different scenarios such as tactile operations, mo-

bility management, interference management, distributed and collaborative caching

models, etc. Is necessary for future wireless networks. This work can be extended

by providing a multi-objective model with considering its lower bound in order to

achieve close-to-optimum solutions. Furthermore, the effect of the mobility of base

stations by considering dynamic interference models and evaluation of heterogeneous

networks over the network performance can be evaluated in future work. Moreover,

in the next generation of mobile network, dynamic downlink and uplink symbol allo-

cation for asymmetry traffic will be supported and it is called as flexible time division

duplex (TDD). Although this feature can provide a highly flexible air interface for

the 5G network, it can cause inter-cell cross-link interference as well. Therefore, pro-

viding a flexible interference management model for flexible TDD and including its

effect in the future optimization models will be vital.
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