Fully computable convergence analysis of discontinous galerkin finite element approximation with an arbitrary number of levels of hanging nodes


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Türkiye

Tezin Onay Tarihi: 2012

Öğrenci: SEVTAP ÖZIŞIK

Danışman: SONGÜL KAYA MERDAN

Özet:

In this thesis, we analyze an adaptive discontinuous finite element method for symmetric second order linear elliptic operators. Moreover, we obtain a fully computable convergence analysis on the broken energy seminorm in first order symmetric interior penalty discontin- uous Galerkin finite element approximations of this problem. The method is formulated on nonconforming meshes made of triangular elements with first order polynomial in two di- mension. We use an estimator which is completely free of unknown constants and provide a guaranteed numerical bound on the broken energy norm of the error. This estimator is also shown to provide a lower bound for the broken energy seminorm of the error up to a constant and higher order data oscillation terms. Consequently, the estimator yields fully reliable, quantitative error control along with efficiency. As a second problem, explicit expression for constants of the inverse inequality are given in 1D, 2D and 3D. Increasing mathematical analysis of finite element methods is motivating the inclusion of mesh dependent terms in new classes of methods for a variety of applications. Several inequalities of functional analysis are often employed in convergence proofs. Inverse estimates have been used extensively in the analysis of finite element methods. It is char- acterized as tools for the error analysis and practical design of finite element methods with terms that depend on the mesh parameter. Sharp estimates of the constants of this inequality is provided in this thesis.