Glukoz izomeraz enziminin poli(2-hidroksietil metakrilat) tanecikleri üzerine kovalent tutuklanması.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü, Türkiye

Tezin Onay Tarihi: 2004

Tezin Dili: İngilizce

Öğrenci: Ümit Hakan Yıldız

Danışman: NESRİN HASIRCI

Özet:

In this study, poly (2-hydroxyethyl methacrylate), P(HEMA), particles were prepared by suspension polymerization of the monomer 2-hydroxyethyl methacrylate with addition of ethylene glycol dimethyacrylate, EGDMA, as cross linker. Glucose isomerase, GI, enzyme was covalently immobilized on the prepared P(HEMA) particles after activation of the particles with cyanuric chloride. The activities of the free and immobilized enzymes were measured with Ethanol-Carbazole method. The immobilization of GI on P(HEMA) particles promoted enzyme stability and as a result, the enzyme became more stable to temperature, storage, and reuse. For maximum substrate conversion, optimum temperature was determined as 70 oC for free GI and this value shifted to 60 oC for immobilized enzyme. Optimum pH for maximum substrate conversion was found to be 7.0 for free GI and 8.0 for immobilized GI. The change of enzyme activity with substrate concentration were determined to calculate Km and Vmax values of the free and immobilized enzymes. Km values were found to be 1.7x10-2 mol/L and 3.1x10-1 mol/L while Vmax values were 1.01x10-4 mol/L.min, 1.65x10-3 mol/L.min for free and immobilized GI, respectively. Reuse capability of immobilized GI on P(HEMA) particles was measured and compared with commercial GI. Both systems retained 80 % of their original activities after 40th use, within 6 days. The change of enzyme activities upon storage were detected at certain time intervals for the samples stored in buffer solution at 4 oC. Immobilized enzyme was retained 60% of its original activitiy in 60 days of storage at 4 oC. Immobilized GI and commercial GI both retained 90% of their activities under continuous flow after 180 mL of substrate solution passed through the column.