MEMS accelerometers and gyroscopes for inertial measurement units


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2004

Öğrenci: MEHMET AKİF ERİŞMİŞ

Danışman: TAYFUN AKIN

Özet:

This thesis reports the development of micromachined accelerometers and gyroscopes that can be used for micromachined inertial measurement units (IMUs). Micromachined IMUs started to appear in the market in the past decade as low cost, moderate performance alternative in many inertial applications including military, industrial, medical, and consumer applications. In the framework of this thesis, a number of accelerometers and gyroscopes have been developed in three different fabrication processes, and the operation of these fabricated devices is verified with extensive tests. In addition, the fabricated accelerometers were combined with external readout electronics to obtain hybrid accelerometer systems, which were tested in industrial test facilities. The accelerometers and gyroscopes are designed and optimized using the MATLAB analytical simulator and COVENTORWARE finite element simulation tool. First set of devices is fabricated using a commercial foundry process called SOIMUMPs, while the second set of devices is fabricated using the electroplating processes developed at METU-MET facilities. The third set of devices is designed for a new advanced process based on DRIE, which is under development. Mechanical and electrical test results of the fabricated accelerometers and gyroscopes are in close agreement with the designed values. The testing of the SOI and nickel accelerometers is also performed in industrial test environments. In order to perform these tests, accelerometers are hybrid connected to commercially available capacitive readout circuits. These accelerometer systems require only two DC supply voltages for operation and provide an analog output voltage related to the input acceleration. The industrial tests show that the SOI accelerometer system yields a 799 æg/vHz average noise floor, a 1.8 mg/vHz peak noise floor, a 22.2 mV/g sensitivity, and a 0.1 %