Finite element analysis of bending operation of aluminum profiles


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2008

Öğrenci: UFUK PENEKLİ

Eş Danışman: HALUK DARENDELİLER, SÜHA ORAL

Özet:

Bending process is an important forming process in most industrial fields. Springback and cross-section distortion are commonly faced problems in bending process. Springback behavior of closed and open section beams changes with different parameters such as cross-section type, cross-section dimensions, bend radius and bend angle. For closed sections like tube, the dominating problem is cross-section distortion. The thickness of the tube at intrados (inner surface of tube being in contact with die) increases, whereas the thickness of the tube at extrados (outer surface of tube) decreases. Furthermore, another cross-section distortion type for tubes is flattening at extrados which is undesirable in some manufacturing operations. The present research, using finite element method, focuses on investigating the springback behavior of commonly used aluminum beams which are T-Shaped, U-Shaped and tubular for different cases. A series of analyses is performed for a beam and the changing parameters in the analyses are bend radius and thickness. Furthermore, for tubes, the effects of axial force on springback behavior are investigated. It is seen that the axial force causes stretching and the springback angles are decreased. Moreover, in order to overcome cross-section distortion in flattening for tubes, different internal pressures are used and the effects of internal pressure are investigated. By applying appropriate internal pressure, the flattening distortion is mostly eliminated. Conclusions are drawn revealing springback behaviors and cross-section distortions with respect to bend radius, bend angle, thickness, axial pull and internal pressures. They are in good agreement with other published researches and experimental results. Therefore, the models can be used to evaluate tooling and process design in bending operations.