Kinetic analysis of glucose-6-phosphate branch point in Saccharomyces cerevisiae


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2005

Öğrenci: EDA ALAGÖZ

Danışman: HALUK HAMAMCI

Özet:

Glycolysis is the main metabolic route in Saccharomyces cerevisiae and it is the sequence of enzyme catalyzed reactions that oxidatively convert glucose to pyruvic acid in the yeast cytoplasm. In addition to the basic steps, glycolysis involves branch points providing the intermediary building blocks of the cell (i.e amino acids and nucleotides). One of these pathways is glucose-6-phosphate branch point which is a junction of glycolytic pathway and pentose phosphate pathway. At this point glucose-6-phosphate can be converted to fructose-6-phosphate a metabolite of glycolytic pathway by phosphoglucoisomerase or it can be dehydrogenated to 6-phosphogluconolactone by glucose-6-phosphate dehydrogenase which is the first enzyme of the pentose phosphate pathway. In this study, the influence of different nitrogen sources on the flux distribution through the pentose phosphate pathway and glycolysis in Saccharomyces cerevisiae was examined. For this purpose, four different compositions of nitrogen sources were used in growth media. The growth medium contained one of the following composition of nitrogen sources; only ammonium sulfate, only yeast nitrogen base, ammonium sulfate and histidine, yeast nitrogen base and histidine. Histidine was added because its synthesis branches from pentose phosphate pathway. In order to analyse the effect of the different compositions of nitrogen sources on the physiology of the yeast, specific activities of hexokinase, phosphoglucose isomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes were measured in the crude extracts of the biomass samples taken in the late exponential phase of the cultures. Addition of histidine caused an increase in the specific activities of all the enzymes analysed in medium containing ammonium sulfate. The specific activity of hexokinase, phosphoglucose isomerase and