Prina, kömür ve prina-kömür karışımlarının akışkan yatakta yakılması.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Çevre Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2006

Tezin Dili: İngilizce

Öğrenci: Murat Varol

Danışman: AYSEL ATİMTAY

Özet:

In this study, combustion performances and emission characteristics of olive cake and olive cake+coal mixture are investigated in a bubbling fluidized bed of 102 mm inside diameter and 900 mm height. The average particle sizes of coal and olive cake used in the experiments were 1.57 mm and 1.52 mm, respectively. Flue gas concentrations of O2, CO, SO2, NOx, and total hydrocarbons (CmHn) were measured during combustion experiments. Operational parameters (excess air ratio, secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The temperature profiles measured along the combustor column was found higher in the freeboard for olive cake than coal due to combustion of hydrocarbons mostly in the freeboard. The location of the maximum temperature in the freeboard shifted to the upper part of the column, as the volatile matter content in the fuel mixture increased. Combustion efficiencies in the range of 83.6-90.1% were obtained for olive cake with the excess air ratio of 1.12-2.30. The corresponding combustion efficiency for coal was 98.4-99.7% under the same conditions. As the CO and hydrocarbon concentration in the flue gas increased, the combustion efficiency decreased. Also co-combustion experiments of olive cake and coal for various mixing ratios were carried out. As the amount of olive cake in the fuel mixture increased, SO2 emissions decreased because of the very low sulfur content of olive cake. In order to increase the combustion efficiency, secondary air was injected into the freeboard which was a good solution to decrease the CO and hydrocarbon emissions, and to increase the combustion efficiency. For the setup used in this study, the optimum operating conditions with respect to NOx and SO2 emissions were found as 1.35 for excess air ratio, and 30 L/min for secondary air flowrate for the combustion of 75 wt% olive cake and 25 wt% coal mixture. Highest combustion efficiency of 99.8% was obtained with an excess air ratio of 1.7, secondary air flow rate of 40 L/min for the combustion of 25 wt% olive cake and 75 wt% coal mixture.