Tezin Türü: Doktora
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Maden Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2003
Tezin Dili: İngilizce
Öğrenci: Çağatay Avşar
Danışman: ÇETİN HOŞTEN
Özet:The production of multi-component cement from clinker and two additives such as trass and blast furnace slag has now spread throughout the world. These additives are generally interground with clinker to produce a composite cement of specified surface area. The grinding stage is of great importance as it accounts for a major portion of the total energy consumed in cement production and also as it affects the quality of composite cements by the particle size distribution of the individual additives produced during grinding. This thesis study was undertaken to characterize the breakage properties of clinker and the additives trass and slag with the intention of delineating their grinding properties in separate and intergrinding modes. Single particle breakage tests were conducted by means of a drop weight tester in order to define an inherent grindability for the clinker and trass samples in terms of the median product size ( ). In addition, a back-calculation procedure was applied to obtain the breakage rate parameters ( ) of perfect mixing ball mill model using industrial data from a cement plant. Kinetic and locked-cycle grinding tests were performed in a standard Bond mill to determine breakage rates and distribution functions for clinker, trass and slag. Bond work indices of these cement components and of their binary and ternary mixtures were determined and compared. Attempts were made to use back-calculated grinding rate parameters to simulate the Bond grindability test. The self-similarity law was proved to be true for clinker and trass that their shapes of the self-similarity curves are unique to the feed material and independent of the grinding energy expended and overall fineness attained. The self-similar behaviour of tested materials will enable process engineers to get useful information about inherent grindability and energy consumption in any stage of