Production and characterization of activated carbon from sulphonated styrene divinyl benzene copolymer


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Fen Bilimleri Enstitüsü, Türkiye

Tezin Onay Tarihi: 2004

Öğrenci: WİSAM ABDALLAH

Danışman: HAYRETTİN YÜCEL

Özet:

Activated carbon was produced from strong cation-exchange resins, sulphonated styrene divinylbenzene copolymers originally in H+ form, by means of carbonization and steam activation in an electrical furnace. One macroporous resin produced by BAYER Chemicals Inc., Lewatit MonoPlus SP 112 H, was used in the research. Products of carbonization and activation were characterized by using BET, Mercury Porosimetry, Helium Pycnometry and SEM techniques. The effect of carbonization time and temperature on the BET surface areas of the resins were also investigated. Two sets of carbonization experiments (Set 1 and 2) were performed in which time and temperature were varied in order to study their effects on the BET surface areas of the products. In activation experiments (Set 3), carbonized ion-exchangers (600 oC, 1 hr) were activated with steam at 900°C, changing the time of activation and the steam flow rate. The temperatures of the water bath used for steam generation were selected as 60°C, 80°C and 90°C. The pore structures of activated carbons were determined by proper techniques. The volume and area of macropores in the pore diameter range of 8180-50 nm were determined by mercury intrusion porosimetry. Mesopore (in the range of 50-2 nm) areas and volumes were determined by N2 gas adsorption technique at -195.6oC, BET surface areas of the samples were also determined, in the relative pressure range of 0.05 to 0.02, by the same technique. The pore volume and the area of the micropores with diameters less than 2 nm were determined by CO2 adsorption measurements at 0oC by the application of Dubinin Radushkevich equation. In the experiments of Sets 1 and 2, the BET surface area results of the six different carbonization times ranging from 0.5 to 3 hours gave almost the same value with a maximum deviation of 5% from the average showing almost no effect on the areas of the