Static range assignment in wireless sensor networks

Thesis Type: Postgraduate

Institution Of The Thesis: Orta Doğu Teknik Üniversitesi, Faculty of Engineering, Department of Computer Engineering, Turkey

Approval Date: 2010


Consultant: ADNAN YAZICI


Energy is a limited source in wireless sensor networks and in most applications, it is non-renewable; so designing energy-effcient communication patterns is very important. In this thesis, we define the static range assignment (SRA) problem for wireless sensor networks, which focuses on providing the required connectivity in the network with minimum energy consumption. We propose minimum spanning tree based (MST), pruned minimum spanning tree based (MSTP) and shortest path incremental (SPI) algorithms as effcient heuristics for the SRA problem. As a data dissemination service, multicasting is frequently used for communication in the wireless sensor networks. In a WSN, several multicast requests occur simultaneously. In order to support multiple multicast requests, sensor nodes should have enough power levels for packet transmission between the nodes. In our study we present minimum energy multiple source multicast (MEMSM) problem. MEMSM problem is a special case of the SRA problem and we propose the M-MIPF algorithm as a solution to the MEMSM problem, which is a modified version of the well-known MIPF algorithm in order to support multiple multicast problem. Solutions to MEMSM problem try to make a range assignment that enables all the multicasts in the system and has a minimum energy cost. We compare the algorithms MST, MSTP, SPI and M-MIPF according to their energy consumptions. Our experimental results show that MSTP and SPI algorithms are stable and energy-effcient solutions to the MEMSM problem.