Ab initio studies of pentacene on Ag(111) surfaces


Thesis Type: Postgraduate

Institution Of The Thesis: Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, Turkey

Approval Date: 2010

Thesis Language: English

Student: İLKER DEMİROĞLU

Principal Supervisor (For Co-Supervisor Theses): Süleyman Şinasi Ellialtıoğlu

Supervisor: Mehmet Fatih Danışman

Abstract:

In this work pentacene adsorption on both flat and stepped Ag(111) surfaces were investigated by using Density Functional Theory within Projected Augmented Wave method. On the flat Ag(111) surface favorable adsorption site for a single pentacene molecule was determined to be the bridge site with an angle of 60◦ between pentacene molecular long axis and [011] lattice direction. Potential energy surface was found to be flat, especially along lattice directions. Diffusion and rotation barriers for pentacene on this surface were found to be smaller than 40 meV indicating the possibility of a two dimensional gas phase. Calculated adsorption energies for the flat surface indicate a weak interaction between molecule and the surface indicating physisorption. On the flat surface monolayer case is found to have lower adsorption energy than the isolated case due to pentacene−pentacene interactions. On the stepped Ag(233) surface, close to the step edge, adsorption energy increased significantly due to the stronger interaction between pentacene molecule and low coordinated silver step atoms. On the terraces of this surface, far from step edges, however a flat potential energy surface was observed similar to the case of flat Ag(111) surface. On the stepped surface pentacene found its favorable configuration as parallel to the step with a tilt angle similar to the observed thin film phase of pentacene on Ag(111) surface. Pentacene molecule showed small distortions on stepped surface and are closer to the silver step atoms 1 Å more than the case of flat surface, hinting a chemical interaction as well as van der Waals interactions. However on Ag(799) surface, the perpendicular orientation of the pentacene molecule to the step direction showed no strong interaction due to less matching of carbon atoms with silver step atoms.