Design and simulation of an ABS for an integrated active safety system for road vehicles

Thesis Type: Postgraduate

Institution Of The Thesis: Middle East Technical University, Faculty of Engineering, Department of Mechanical Engineering, Turkey

Approval Date: 2007

Thesis Language: English

Student: Murat Şahin



Active safety systems for road vehicles have been improved considerably in recent years along with technological advances and the increasing demand for road safety. In the development route of active safety systems which started with introduction of digital controlled ABS in the late seventies, vehicle stability control systems have been developed which today, with an integration approach, incorporate ABS and other previously developed active safety technologies. ABS, as a main part of this new structure, still maintains its importance. In this thesis, a design methodology of an antilock braking system controller for four wheeled road vehicles is presented with a detailed simulation work. In the study, it is intended to follow a flexible approach for integration with unified control structure of an integrated active safety system. The objective of the ABS controller, as in the previous designs in literature, is basically to provide retention of vehicle directional control capability and if possible shorter braking distances by controlling the wheel slip during braking. iv A hierarchical structure was adopted for the ABS controller design. A high-level controller, through vehicle longitudinal acceleration based estimation, determines reference slip values and a low-level controller attempts to track these reference slip signals by modulating braking torques. Two control alternatives were offered for the design of the low-level controller: Fuzzy Logic Control and PID Control. Performance of the ABS controller was analyzed through extensive simulations conducted in MATLAB/Simulink for different road conditions and steering maneuvers. For simulations, an 8 DOF vehicle model was constructed with nonlinear tires.