Parallel navier stokes solutions of low aspect ratio rectangular flat wings in compressible flow


Thesis Type: Doctorate

Institution Of The Thesis: Middle East Technical University, Turkey

Approval Date: 2004

Thesis Language: English

Student: Gökhan Durmuş

Supervisor: SİNAN EYİ

Abstract:

The objective of this thesis is to accomplish the three dimensional parallel thin-layer Navier-Stokes solutions for low aspect ratio rectangular flat wings in compressible flow. Two block parallel Navier Stokes solutions of an aspect ratio 1.0 flat plate with sharp edges are obtained at different Mach numbers and angles of attack. Reynolds numbers are of the order of 1.0E5-3.0E5. Two different grid configurations, the coarse and the fine grids, are applied in order to speed up convergence. In coarse grid configuration, 92820 total grid points are used in two blocks, whereas it is 700,000 in fine grid. The flow field is dominated by the vortices and the separated flows. Baldwin Lomax turbulence model is used over the flat plate surface. For the regions dominated by the strong side edge vortices, turbulence model is modified using a polar coordinate system whose origin is at the minimum pressure point of the vortex. In addition, an algebraic wake-type turbulence model is used for the wake region behind the wing. The initial flow variables at the fine grid points are obtained by the interpolation based on the coarse grid results previously obtained for 40000 iterations. Iterations are continued with the fine grid about 20000-40000 more steps. Pressures of the top surface are predicted well with the exception of leading edge region, which may be due to unsuitable turbulence model and/or grid quality. The predictions of the side edge vortices and the size of the leading edge bubble are in good agreement with the experiment.