Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2010
Öğrenci: ARDA ERDEM
Danışman: ALP CANER
Özet:Current seismic design approach of bridge structures can be categorized into two distinctive methods: (i) force based and (ii) performance based. AASHTO LRFD seismic design specification is a typical example of force based design approach especially used in Turkey. Three different importance categories are presented as “Critical Bridges”, “Essential Bridges” and “Other Bridges” in AASHTO LRFD. These classifications are mainly based on the serviceability requirement of bridges after a design earthquake. The bridge’s overall performance during a given seismic event cannot be clearly described. Serviceability requirements specified for a given importance category are assumed to be assured by using different response modification factors. Although response modification factor is directly related with strength provided to resisting column, it might be correlated with selected performance levels including different engineering response measures. Within the scope of this study, 27216 single circular bridge column bent models designed according to AASHTO LRFD and having varying column aspect ratio, column diameter, axial load ratio, response modification factor and elastic design spectrum data are investigated through a series of analyses such as response spectrum analysis and push-over analysis. Three performance levels such as “Fully Functional”, “Operational” and “Delayed Operational” are defined in which their criteria are selected in terms of column drift measure corresponding to several damage states obtained from column tests. Using the results of analyses, performance categorization of single bridge column bents is conducted. Seismic responses of investigated cases are identified with several measures such as capacity over inelastic demand displacement and response modification factor.