Akrilik bazlı yüksek iç faz emülsiyon polimerlerinin sentezi ve kromatografide kullanımı.


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Türkiye

Tezin Onay Tarihi: 2009

Tezin Dili: İngilizce

Öğrenci: Yeliz Tunç

Danışman: NESRİN HASIRCI

Özet:

High internal phase emulsion polymers (PolyHIPEs) are new generation materials with their high porosity and interconnected open-cell structures and finds applications in areas such as supports for catalytic systems, separation media and tissue engineering scaffolds. Styrene based PolyHIPEs are currently the most popular choice, but solvent compatibility and poor mechanical properties of these materials prevent their applications. Therefore development of new polyHIPEs with desired mechanical and cellular properties is needed to extend the range of applications. The objective of this thesis was to synthesize new polyHIPEs with different mechanical characteristics changing from ductile to elastomeric. For this purpose, acrylic based polyHIPEs with various cellular structure and mechanical characteristics were developed by using stearyl acrylate (SA), isodecyl acrylate (IDA), isobornyl methacrylate (IBMA) and divinylbenzene (DVB). All materials were highly porous (90%) and had open cellular structure with uniform voids in the range of 5.2-12.9 μm. The PolyHIPEs produced from the monomers of SA and IDA demonstrated elastomeric property and had high ability of recovery when the applied stress is removed. IBMA based polyHIPEs were ductile and demonstrated higher Young’s modulus and compression strength than that of conventional styrene based polyHIPEs. Therefore, by varying the composition, it became possible to alter the mechanical properties of polyHIPEs from ductile to elastomeric, without changing the interconnected cellular structures. One of the prepared IDA based polyHIPE was evaluated as stationary phase for capillary electrochromatography for the first time in literature. The column was very efficient in the separation of alkylbenzenes namely thiourea, benzene, toluene, ethylbenzene, propylbenzene and butylbenzene with high column efficiency (up to 200.000 plates/m).