Otomotiv ve savunma uygulamaları için seramik fiber takviyeli alüminyum metal matris kompozit parçalarının üretimi ve değerlendirilmeleri.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2009

Tezin Dili: İngilizce

Öğrenci: Gökhan Türkyılmaz

Danışman: ALİ KALKANLI

Özet:

The aim of this study was to produce partially reinforced aluminum metal matrix composite components by insertion casting technique and to determine the effects of silicon content, fiber vol% and infiltration temperature on the mechanical properties of inserts, which were the local reinforcement parts of the components. Silicon content of alloys was selected as 7 wt% and 10 wt%. The reinforcement material, i.e. Saffil fiber preforms, had three different fiber vol% of 20, 25 and 30 vol% respectively. The infiltration temperatures of composite specimens were fixed as 750 °C and 800 °C. In the first part of the thesis, physical and mechanical properties of composite specimens were determined according to the parameters of silicon content of the matrix alloy, infiltration temperature and vol% of the reinforcement phase. X-ray diffraction examination of fibers resulted as the fibers mainly composed of deltaalumina fibers and scanning electron microscopy analyses showed that fibers had planar isotropic condition for infiltration. Microstructural examination of composite specimens showed that appropriate fiber/matrix interface was created together with small amount of micro-porosities. Bending tests of the composites showed that as fiber vol% increases flexural strength of the composite increases. The highest strength obtained was 880.52 MPa from AlSi10Mg0.8 matrix alloy reinforced with 30 vol% Saffil fibers and infiltrated at 750 °C. Hardness values were also increased by addition of Saffil fibers and the highest value was obtained as 191 HB from vertical to the fiber orientation of AlSi10Mg0.8 matrix alloy reinforced with 30 vol% Saffil fibers. Density measurement revealed that microporosities existed in the microstructure and the highest difference between the theoretical values and experimental values were observed in the composites of 30 vol% Saffil fiber reinforced ones for both AlSi7Mg0.8 and AlSi10Mg0.8 matrix alloys. In the second part of the experiments, insertion casting operation was performed. At casting temperature of 750 °C, a good interface/component interface was obtained. Image analyses were also showed that there had been no significant fiber damage between the insert and the component.