Meter scale cycles in the eocene Cayraz formation (Haymana basin) and response of foraminifers to cyclicity


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2008

Öğrenci: BEDİA GEYİKÇİOĞLU ERBAŞ

Danışman: DEMİR ALTINER

Özet:

The aim of this study is to investigate the nature of the meter-scale cycles in the Çayraz Formation of the Middle Eocene age and to study the response of foraminifera to the sedimentary cyclicity. In order to perform this study, two stratigraphic sections, which are 44,55 m and 25,95 m in thickness, were measured on a regularly bedded succession mainly composed of carbonates and siliciclastics in the Çayraz Formation of the Haymana Basin. In this study, detailed microfacies analyses were carried out in the studied sections and 10 different microfacies types were identified strictly based on the biofacies in order to define meter scale cyclic sedimentation. Based on the detailed microfacies analysis and the distribution of the vertical facies relationships a composite depositional model is suggested. According to this model, three major facies associations were distinguished, from deepest to shallowest, as: shallow open marine, shoal and lagoon. Studied sections are composed of meter-scale cycles of both upward shoaling or deepening in character and based on the stacking pattern of meterscale cycles two systems tracts were identified along the measured sections. Section 1 is represented by highstand systems tract (HST) and section 2 is represented by lowstand systems tract (TST). In this study, the responses of benthic foraminiferal groups to the sedimentary cyclicity have been documented by quantitative and statistical analysis to understand the shallowing upward cycles, which are fundamental stratigraphic units, in the Çayraz Formation of Middle Eocene age. Among foraminifera, particularly the forms like Nummulites, Assilina and Discocyclina are excellent in order to detect cyclic variations of facies. These studies lead to understand shoaling-upward character of the meter-scale cycles, which are the building blocks of the Çayraz Formation.