Speech enhancement utilizing phase continuity between consecutive analysis windows


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü, Türkiye

Tezin Onay Tarihi: 2011

Öğrenci: ERDAL MEHMETCİK

Eş Danışman: ÇAĞATAY CANDAN, TOLGA ÇİLOĞLU

Özet:

It is commonly accepted that the induced noise on DFT phase spectrum has a negligible effect on speech intelligibility for short durations of analysis windows, as the early intelligibility studies pointed out. This fact is confirmed by recent intelligibility studies as well. Based on this phenomenon, classical speech enhancement algorithms do not modify DFT phase spectrum and only make changes in the DFT magnitude spectrum. However, in recent studies it is also indicated that these classical speech enhancement algorithms are not capable of improving the intelligibility scores of noise degraded speech signals. In other words, the contained information in a noise degraded signal cannot be increased by classical enhancement methods. Instead the ease of listening, i.e. quality, can be improved. Hence additional effort can be made to increase the amount of quality improvement using both DFT magnitude and DFT phase. Therefore if the performances of the classical methods are to be improved in terms of speech quality, the effect of DFT phase on speech quality needs to be studied. In this work, the contribution of DFT phase on speech quality is investigated through some simulations using an objective quality assessment criterion. It is concluded from these simulations that, the phase spectrum has a significant effect on speech quality for short durations of analysis windows. Furthermore, phase values of low frequency components are found to have the largest contribution to this quality improvement. Under the motivation of these results, a new enhancement method is proposed which modifies the phase of certain low frequency components as well as the magnitude spectrum. The proposed algorithm is implemented in MATLAB environment. The results indicate that the proposed system improves the performance of the classical methods in terms of speech quality.