Plazmonik uygulamalarda alttaş türünün metal nano parçacıkların yapısal ve optik özelliklerine etkisi.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Türkiye

Tezin Onay Tarihi: 2011

Tezin Dili: İngilizce

Öğrenci: İrem Tanyeli

Eş Danışman: ALPAN BEK, RAŞİT TURAN

Özet:

In this work, the structural and optical properties of metal nanoparticles fabricated on various substrates have been investigated. The particles were fabricated by electron beam lithography (EBL) and dewetting of a thin metal film. The advantages and disadvantages of these two fabrication techniques are discussed by considering the properties of the nanoparticles and the applicability to large area substrates. Being a practical fabrication method, dewetting can be applied to any substrate with either small or large surfaces. For comparison between different sample types, some process parameters such as film thickness, annealing temperature and duration were fixed during the whole study. Gold (Au) and silver (Ag) were preferred for nanoparticle formation because of their superior optical properties for solar cell applications. We used silicon (Si), silicon nitride (Si3N4), silicon dioxide (SiO2) and indium tin oxide (ITO) on glass, and textured Si as the substrate for the particle formation. These substrates are commonly used in solar cell technology for different purposes. The formation of the metal nanoparticles, their size and size distribution were monitored by Scanning Electron Microscope (SEM). We performed a dimension analysis on the SEM images using a program called Gwyddion. We observed that the substrate type greatly affects particle mean size, suggesting a dependence of the dewetting process on the interface properties. Moreover, the effect of the annealing temperature was found to be a function of the substrate type. Scattering measurements have been carried out in order to observe the localized surface plasmon resonance (LSPR) conditions. The effect of the particle size and the dielectric environment was observed as a shift in the plasmon resonance peak position along the wavelength axis. As expected from the theory, the resonance peaks shift to longer wavelengths with increasing particle size and dielectric constant. In order to compare the experimental results with the theory, Mie theory was applied to calculate the plasmon resonance peaks. We obtained fairly well agreement between the experimental and theoretical results. In this study, nanoparticles were assumed to be in contact with more than one medium, namely air and the underlying substrate. Finally, we have reached a successful methodology and knowledge accumulation for the metal particle formation on variety of substrates by the dewetting technique. It is clear that this knowledge can form basis for the photovoltaic applications. (TMG) as well as the gradient Ricci soliton.