Fenollü ve bisfenollü polibenzoksazinlerin ısısal olarak karakterizasyonu.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Türkiye

Tezin Onay Tarihi: 2009

Tezin Dili: İngilizce

Öğrenci: Shahla Bagherifam

Danışman: JALE HACALOĞLU

Özet:

Although, several researches on synthesis and characterization of benzoxazines and polybenzoxazines have appeared in the literature, detailed studies on thermal characterization are still limited. In this study, polymerization and thermal degradation mechanisms of benzoxazines were investigated via direct pyrolysis mass spectrometry. Benzoxazine monomers prepared by reactions of phenol or bisphenol- A with aniline or methyl amine were analyzed to investigate the effects of the structures of phenyl and amine groups on both polymerization and thermal degradation behaviours. It has been proposed in the literature that polymerization of benzoxazines occurs by ring opening polymerization of oxazine ring; cleavage of O-CH2 bond of the oxazine ring and attack of n-CH2 group to phenol or bisphenol-A ring. However, the direct pyrolysis mass spectrometry analyses of polymerization and thermal degradation of benzoxazines pointed out that after the cleavage of O-CH2 bond of the oxazine ring, polymerization proceeded through opposing pathways. Strong evidences confirming coupling of (CH3)NCH2 or (C6H5)NCH2 groups yielding dimers involving diamine linkages were detected. Polymerization of the dimer by the reactions with the corresponding monomers was proposed. In case of benzoxazines based on bisphenol-A, the results indicated polymerization of the dimer ii by coupling of both of the oxazine rings. On the other hand, polymerization of the dimer through the ethylene units (vinyl polymerization) in case of benzoxazine monomer based on phenol and methyl amine was also noted. For polybenzoxazines based on aniline another polymerization pathway involved attack of radicals generated by cleavage of the oxazine ring to aniline ring. Multi-step thermal decomposition was observed for all the polybenzoxazines under investigation confirming the presence of units with different structures and stabilities.