Aeroservoelastic analysis and robust controller synthesis for flutter suppression of air vehicle control actuation systems


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Fen Bilimleri Enstitüsü, Türkiye

Tezin Onay Tarihi: 2006

Öğrenci: ALPER AKMEŞE

Danışman: BÜLENT EMRE PLATİN

Özet:

Flutter is one of the most important phenomena in which aerodynamic surfaces become unstable in certain flight conditions. Since the 1930’s many studies were conducted in the areas of flutter prediction in design stage, research of design methods for flutter prevention, derivation and confirmation of flutter flight envelopes via tests, and in similar subjects for aircraft wings. With the use of controllers in 1960’s, studies on the active flutter suppression began. First the classical controllers were used. Then, with the improvement of the controller synthesis methods, optimal controllers and later robust controllers started to be used. However, there are not many studies in the literature about fully movable control surfaces, commonly referred to as fins. Fins are used as missile control surfaces, and they can also be used as a horizontal stabilizer or as a canard in aircraft. In the scope of this thesis, controllers satisfying the performance and flutter suppression requirements of a fin are synthesized and compared. For this purpose, H2, Hinf, and mu controllers are used. A new flutter suppression method is proposed and used. In order to assess the performance of this method, results obtained are compared with the results of another flutter suppression method given in the literature. or the purpose of implementation of the controllers developed, aeroelastic model equations are derived by using the typical section wing model with thin airfoil assumption. The controller synthesis method is tested for aeroelastic models that are veloped for various flow regimes; namely, steady incompressible subsonic, unsteady incompressible subsonic, nsteady compressible subsonic, and unsteady compressible supersonic.