Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Türkiye
Tezin Onay Tarihi: 2006
Öğrenci: SERHAN ÖZSOY
Danışman: FEVZİ SUAT KADIOĞLU
Özet:Fatigue failure of metallic structures operating under dynamic loading is a common occurrence in engineering applications. It is difficult to estimate the response of complicated systems analytically, due to structure̕s dynamic characteristics and varying loadings. Therefore, experimental, numerical or a combination of both methods are used for fatigue evaluations. Fatigue failure can occur on systems and platforms as well as components to be mounted on the platform. In this thesis, a helicopter̕s Missile Warning Sensor - Cowling assembly is analyzed. Analytical, numerical and experimental approaches are used wherever necessary to perform stress and fatigue analyses. Operational flight tests are used for obtaining the loading history at the analyzed location by using sensors. Operational vibration profiles are created by synthesizing the data (LMS Mission Synthesis). Numerical fatigue analysis of the assembly is done for determining the natural modes and the critical locations on the assembly by using a finite element model (MSC Fatigue). In addition, numerical multiaxial PSD analysis is performed for relating the experimental results (Ansys). Residual stresses due to riveting are determined (MSC Marc) and included in experimental analysis as mean stresses. Bolt analysis is performed analytically (Hexagon) for keeping the v assembly stresses in safe levels while mounting the experimental prototype to the test fixture. Fatigue tests for determining the accelerated life parameters are done by an electromagnetic shaker and stress data is collected. Afterwards, fatigue test is performed for determining whether the assembly satisfies the required operational life. Resonance test is performed at the frequency in which the critical location is at resonance, since there was no failure observed after fatigue testing. A failure is obtained during resonance test. At the end of