Doku mühendisliği uygulamalarına yönelik elektro-eğirilmiş selüloz temelli hücre taşıyıcılar.


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Orta Doğu Teknik Üniversitesi, Türkiye

Tezin Onay Tarihi: 2014

Tezin Dili: İngilizce

Öğrenci: Deniz Hazal Atila

Danışman: AYŞEN TEZCANER

Özet:

With the use of a scaffold as support material, adequate number of cells, and bioactive molecules, tissue engineering applications intend to promote the regeneration of tissues or to replace failing or malfunctioning tissues/organs. In this study, electrospun 2D and 3D cellulose-based scaffolds were aimed to be produced with pullulan (PULL). Cellulose acetate (CA) and PULL powders in various ratios (80/20, 50/50, and 80/20) were dissolved in DMAc/DMSO solvent system and electrospun as either 2D or 3D forms. Scaffolds were modified by crosslinking or sacrificial fiber removal and characterized. When the electrospun scaffolds were crosslinked with STMP, a crosslinker for PULL, weight loss was so high and this crosslinking demolished fiber morphology. Therefore, for plant origin cellulose based scaffolds instead of crosslinking, PULL fibers were used as sacrificial fibers to increase porosity and produce 3D scaffolds. After sacrificial fibers of PULL were removed, cell viability tests were conducted via Alamar Blue Assay using CA/PULL with 50/50 ratio having 82.90±6.77% porosity, 14.19 μm mean fiber diameter and 146.9±9.24 MPa compressive strength by seeding human osteogenic sarcoma cell line (Saos-2) and mouse fibroblastic cell line (L929) cell line. Cell culture studies showed that electrospun scaffolds were biocompatible. Bacterial cellulose (BC) pellicles synthesized by bacteria species Glucanoacetobacter xylinum, were modified in order to be electrospun with the addition of PULL or/and gelatin. Acetylation, powder size reduction by mixer milling and autoclave treatments, and sulfuric acid exposure of BC were performed. However, crystalline BC was not easily processable for electrospinning due to poor solubility in the solvent systems suitable for plant origin cellulose. FTIR-ATR showed that these modifications altered the physicochemical characteristics of BC however they could not be sufficient for complete dissolution.