Cpt based compressibility assessment of soils

Thesis Type: Postgraduate

Institution Of The Thesis: Middle East Technical University, Faculty of Engineering, Department of Civil Engineering, Turkey

Approval Date: 2004

Thesis Language: English

Student: Fatma Özkahriman



One of the most critical problems geotechnical engineers face with is the determination of the amount of consolidation settlement that will occur at a site as a result of the construction of a structure. The compressibility behavior of the soil is an important parameter in determining the amount of consolidation settlement. The goal of this study is to develop probabilistically based correlation between the compressibility behavior of soil and in-situ test data. Within the scope of this research effort, performed CPT tests and the recorded settlement case histories where consolidation settlements at the field under various surcharge loads were compiled from the Bursa East and West Waste Water Treatment Plant soil investigation projects. A database was composed of the results of 45 CPT and 57 settlement plate recordings. For the compilation of this database, a series of finite difference software FLAC-3D analyses were carried out to calculate the change in stress distribution under the settlement plates. A maximum likelihood framework was used for the development of compressibility behavior of soils. As a result of careful processing of available data, the cone tip resistance (qc), soil behavior type index (Ic) were selected as two important parameters effecting the value of the one-dimensional constraint modulus, M. The regression analysis which uses the settlement values recorded at the site and those computed using the change in the stress distribution, the thickness of the sublayers and the proposed one-dimensional constraint modulus were carried out to calculate the values of these model parameters. Two correlations based on the cone tip resistance and soil behavior type index were developed for the computation of the one-dimensional constraint modulus, M.