Impacts of climate change on water resources on eastern mountainous region of Turkey

Thesis Type: Postgraduate

Institution Of The Thesis: Orta Doğu Teknik Üniversitesi, Faculty of Engineering, Department of Civil Engineering, Turkey

Approval Date: 2013


Supervisor: İSMAİL YÜCEL


Temperature and precipitation are the most important indicators of climate change. Especially for the basins fed by snow, the shifts of melting to earlier times, affects the streamflow. Increase in temperature causes to shifts of melting of snow to shift to earlier times so that hydrologic regime of the river system changes, and leads to changes in climatic conditions of the region. In this study the shifts of snow melting times are analyzed for the selected 15 streamflow stations located in Euphrates, Tigris, Aras, and Çoruh basins in Eastern Anatolia of Turkey along with period from 1970 to 2010. The shifts in snowmelt runoff are determined by Center Time (CT) method. Meteorological stations representing the stream gauge stations regarding the basin characteristics are also selected to be used in the analyses. In order to relate CT shifts to temperature and precipitation changes, trend analysis are applied to temperature, precipitation and streamflow data. In addition to these, days with daily average temperature less than freezing and wet days below freezing until CT for each station pair between stream gauge and meteorological stations and each year are also analyzed. These days till CT within a year for each station pair can be indirectly linked to snowy days and accumulated snow amount. Complete analyses show significant warming at each station in the region and no important trends in annual precipitation. However at a few stations meaningful seasonal changes in precipitation are observed. Regional warming and associated changes in precipitation and snowmelt runoff cause significant shifts to earlier times of snowmelt runoff. In the region eight out of fifteen stream gauge stations in Euphrates, Tigris and Aras basins showed significant time shifts according to statistical trend tests.